Enhanced Enrichment of Medaka Ovarian Germline Stem Cells by a Combination of Density Gradient Centrifugation and Differential Plating
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Tissue Collection and Cell Dissociation
2.3. Embryonic Cell Culture
2.4. Percoll Density Gradient Centrifugation (PDGC)
2.5. Differential Plating (DP)
2.6. Quantitative Reverse Transcriptase Polymerase Chain Reaction (qRT-PCR) Analysis
2.7. Cell labeling and Transplantation Assay
2.8. Statistical Analysis
3. Results
3.1. Separation of Dissociated Ovarian Cells by PDGC
3.2. Effects of Different Adhesion Biomolecules in DP on OGSC Enrichment
3.3. Combinatorial Effects of PDGC and DP on OGSC Enrichment
3.4. Localization of Enriched OGSCs in Gonadal Region of Developing Larvae
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Horan, C.J.; Williams, S.A. Oocyte stem cells: Fact or fantasy? Reproduction 2017, 154, R23–R35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, S.; Kobayashi, K.; Nishimura, T.; Higashijima, S.-I.; Tanaka, M. Identification of Germline Stem Cells in the Ovary of the Teleost Medaka. Science 2010, 328, 1561–1563. [Google Scholar] [CrossRef] [PubMed]
- Yoshizaki, G.; Okutsu, T.; Morita, T.; Terasawa, M.; Yazawa, R.; Takeuchi, Y. Biological Characteristics of Fish Germ Cells and their Application to Developmental Biotechnology. Reprod. Domest. Anim. 2012, 47, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.-T.; Saito, T.; Crodian, J.; Collodi, P. Zebrafish Germline Chimeras Produced by Transplantation of Ovarian Germ Cells into Sterile Host Larvae1. Biol. Reprod. 2011, 84, 1190–1197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshizaki, G.; Ichikawa, M.; Hayashi, M.; Iwasaki, Y.; Miwa, M.; Shikina, S.; Okutsu, T. Sexual plasticity of ovarian germ cells in rainbow trout. Development 2010, 137, 1227–1230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Katayama, N.; Yoshizaki, G. Generation of juvenile rainbow trout derived from cryopreserved whole ovaries by intraperitoneal transplantation of ovarian germ cells. Biochem. Biophys. Res. Commun. 2016, 478, 1478–1483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, T.-T.; Tesfamichael, A.; Collodi, P. Production of Zebrafish Offspring from Cultured Female Germline Stem Cells. PLoS ONE 2013, 8, e62660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yazdekhasti, H.; Rajabi, Z.; Parvari, S.; Abbasi, M. Used protocols for isolation and propagation of ovarian stem cells, different cells with different traits. J. Ovarian Res. 2016, 9, 68. [Google Scholar] [CrossRef] [Green Version]
- Ichida, K.; Hayashi, M.; Miwa, M.; Kitada, R.; Takahashi, M.; Fujihara, R.; Boonanuntanasarn, S.; Yoshizaki, G. Enrichment of transplantable germ cells in salmonids using a novel monoclonal antibody by magnetic-activated cell sorting. Mol. Reprod. Dev. 2019, 86, 1810–1821. [Google Scholar] [CrossRef]
- Pertoft, H. Fractionation of cells and subcellular particles with Percoll. J. Biochem. Biophys. Methods 2000, 44, 1–30. [Google Scholar] [CrossRef]
- Mächtle, W.; Börger, L. Analytical Ultracentrifugation of Polymers and Nanoparticles; Springer: Berlin, Germany, 2006; pp. 125–128. [Google Scholar]
- Freshney, R.I. Culture of Animal Cells; Wiley-Blackwell: Hoboken, NJ, USA, 2010; pp. 227–229. [Google Scholar]
- Lacerda, S.M.S.N.; Batlouni, S.R.; Silva, S.B.G.; Homem, C.S.P.; França, L.R. Germ cells transplantation in fish: The Nile-tilapia model. Anim. Reprod. 2006, 3, 146–159. [Google Scholar]
- Yoshikawa, H.; Morishima, K.; Fujimoto, T.; Saito, T.; Kobayashi, T.; Yamaha, E.; Arai, K. Chromosome Doubling in Early Spermatogonia Produces Diploid Spermatozoa in a Natural Clonal Fish1. Biol. Reprod. 2009, 80, 973–979. [Google Scholar] [CrossRef] [Green Version]
- Wong, T.-T.; Collodi, P. Dorsomorphin Promotes Survival and Germline Competence of Zebrafish Spermatogonial Stem Cells in Culture. PLoS ONE 2013, 8, e71332. [Google Scholar] [CrossRef] [Green Version]
- Psenicka, M.; Saito, T.; Linhartová, Z.; Gazo, I. Isolation and transplantation of sturgeon early-stage germ cells. Theriogenology 2015, 83, 1085–1092. [Google Scholar] [CrossRef] [Green Version]
- Lacerda, S.M.S.N.; Batlouni, S.R.; Costa, G.M.J.; Segatelli, T.M.; Quirino, B.R.; Queiroz, B.M.; Kalapothakis, E.; França, L.R. A New and Fast Technique to Generate Offspring after Germ Cells Transplantation in Adult Fish: The Nile Tilapia (Oreochromis niloticus) Model. PLoS ONE 2010, 5, e10740. [Google Scholar] [CrossRef] [PubMed]
- Shikina, S.; Yoshizaki, G. Improved In Vitro Culture Conditions to Enhance the Survival, Mitotic Activity, and Transplantability of Rainbow Trout Type A Spermatogonia1. Biol. Reprod. 2010, 83, 268–276. [Google Scholar] [CrossRef] [Green Version]
- Kanatsu-Shinohara, M.; Miki, H.; Inoue, K.; Ogonuki, N.; Toyokuni, S.; Ogura, A.; Shinohara, T. Long-Term Culture of Mouse Male Germline Stem Cells Under Serum-or Feeder-Free Conditions1. Biol. Reprod. 2005, 72, 985–991. [Google Scholar] [CrossRef] [Green Version]
- Shikina, S.; Ihara, S.; Yoshizaki, G. Culture conditions for maintaining the survival and mitotic activity of rainbow trout transplantable type A spermatogonia. Mol. Reprod. Dev. 2007, 75, 529–537. [Google Scholar] [CrossRef]
- Silva, M.; Costa, G.; Lacerda, S.; Brandão-Dias, P.; Kalapothakis, E.; Júnior, A.S.; Alvarenga, E.; França, L.R. Successful xenogeneic germ cell transplantation from Jundia catfish (Rhamdia quelen) into adult Nile tilapia (Oreochromis niloticus) testes. Gen. Comp. Endocrinol. 2016, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Wakamatsu, Y.; Pristyazhnyuk, S.; Kinoshita, M.; Tanaka, M.; Ozato, K. The see-through medaka: A fish model that is transparent throughout life. Proc. Natl. Acad. Sci. USA 2001, 98, 10046–10050. [Google Scholar] [CrossRef] [Green Version]
- Ryu, J.H.; Gong, S.P. Effects of Feeder Cells on the Primary Culture of Ovarian Cell Populations from Adult Japanese Medaka (Oryzias latipes). J. Anim. Reprod. Biotechnol. 2020, 35, 65–72. [Google Scholar] [CrossRef]
- Wallace, R.A.; Selman, K. Ultrastructural aspects of oogenesis and oocyte growth in fish and amphibians. J. Electron Microsc. Tech. 1990, 16, 175–201. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, T.H.; Jespersen, Å.; Korsgaard, B. Gonadal morphogenesis and sex differentiation in intraovarian embryos of the viviparous fishZoarces viviparus (Teleostei, Perciformes, Zoarcidae): A histological and ultrastructural study. J. Morphol. 2006, 267, 1032–1047. [Google Scholar] [CrossRef]
- Xu, H.; Li, M.; Gui, J.; Hong, Y. Cloning and expression of medaka dazl during embryogenesis and gametogenesis. Gene Exp. Patterns 2007, 7, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Hong, N.; Xu, H.; Li, M.; Yan, Y.; Purwanti, Y.; Yi, M.; Li, Z.; Wang, L.; Yuan, Y. Medaka dead end encodes a cytoplasmic protein and identifies embryonic and adult germ cells. Gene Exp. Patterns 2009, 9, 541–548. [Google Scholar] [CrossRef]
- Wang, D. Identification of Pluripotency Genes in the Fish Medaka. Int. J. Biol. Sci. 2011, 7, 440–451. [Google Scholar] [CrossRef] [Green Version]
- Froschauer, A.; Khatun, M.M.; Sprott, D.; Franz, A.; Rieger, C.; Pfennig, F.; O Gutzeit, H. oct4 -EGFP reporter gene expression marks the stem cells in embryonic development and in adult gonads of transgenic medaka. Mol. Reprod. Dev. 2012, 80, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Duan, J.; Cheng, N.; Nagahama, Y. Specific expression of Olpiwi1 and Olpiwi2 in medaka (Oryzias latipes) germ cells. Biochem. Biophys. Res. Commun. 2012, 418, 592–597. [Google Scholar] [CrossRef]
- Aoki, Y.; Nagao, I.; Saito, D.; Ebe, Y.; Kinjo, M.; Tanaka, M. Temporal and spatial localization of three germline-specific proteins in medaka. Dev. Dyn. 2008, 237, 800–807. [Google Scholar] [CrossRef]
- Wu, M.; Xiong, J.; Ma, L.; Lu, Z.; Qin, X.; Luo, A.; Zhang, J.; Xie, H.; Shen, W.; Wang, S. Enrichment of Female Germline Stem Cells from Mouse Ovaries Using the Differential Adhesion Method. Cell. Physiol. Biochem. 2018, 46, 2114–2126. [Google Scholar] [CrossRef] [Green Version]
- Shinohara, T.; Avarbock, M.R.; Brinster, R.L. β1-and α6-integrin are surface markers on mouse spermatogonial stem cells. Proc. Natl. Acad. Sci. USA 1999, 96, 5504–5509. [Google Scholar] [CrossRef] [Green Version]
- Guan, K.; Wolf, F.; Becker, A.; Engel, W.; Nayernia, K.; Hasenfuss, G. Isolation and cultivation of stem cells from adult mouse testes. Nat. Protoc. 2009, 4, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Kibbey, M.C. Maintenance of the EHS sarcoma and Matrigel preparation. J. Tissue Cult. Methods 1994, 16, 227–230. [Google Scholar] [CrossRef]
- Okutsu, T.; Suzuki, K.; Takeuchi, Y.; Yoshizaki, G.; Takeuchi, T. Testicular germ cells can colonize sexually undifferentiated embryonic gonad and produce functional eggs in fish. Proc. Natl. Acad. Sci. USA 2006, 103, 2725–2729. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Iwasaki, Y.; Shikina, S.; Yoshizaki, G. Generation of functional eggs and sperm from cryopreserved whole testes. Proc. Natl. Acad. Sci. USA 2013, 110, 1640–1645. [Google Scholar] [CrossRef] [Green Version]
- Seki, S.; Kusano, K.; Lee, S.; Iwasaki, Y.; Yagisawa, M.; Ishida, M.; Hiratsuka, T.; Sasado, T.; Naruse, K.; Yoshizaki, G. Production of the medaka derived from vitrified whole testes by germ cell transplantation. Sci. Rep. 2017, 7, 43185. [Google Scholar] [CrossRef]
- Yang, Y.; Honaramooz, A. Efficient purification of neonatal porcine gonocytes with Nycodenz and differential plating. Reprod. Fertil. Dev. 2011, 23, 496. [Google Scholar] [CrossRef] [PubMed]
- Heidari, B.; Gifani, M.; Shirazi, A.; Zarnani, A.-H.; Baradaran, B.; Naderi, M.M.; Behzadi, B.; Borjian-Boroujeni, S.; Sarvari, A.; Lakpour, N.; et al. Enrichment of Undifferentiated Type A Spermatogonia from Goat Testis Using Discontinuous Percoll Density Gradient and Differential Plating. Avicenna J. Med. Biotechnol. 2014, 6, 94–103. [Google Scholar] [PubMed]
Genes | Primer Sequences (5′ > 3′) | Product Size (bp) | Accession No. |
---|---|---|---|
Nanos2 | Forward, GGTGCAAACAACTGTGGATG Reverse, CTTGCAGAAGCGGCAGTAAT | 262 | NM_001160447.1 |
Vasa | Forward, GAGAAGGTTCCGACCACCAG Reverse, AATGGTGTTGGGCAGGTCAA | 177 | NM_001104676.1 |
β-actin | Forward, CCACCATGTACCCTGGAATC Reverse, GCTGGAAGGTGGACAGAGAG | 153 | NM_001104808.1 |
Donors | No. of Recipients Transplanted | No. (%) 1 of Recipients Survived to 20 dpf | No. (%) 1 of Recipients that Transplanted OGSCs Localized in Gonadal Region |
---|---|---|---|
Control (non-injected) | 58 | 42 (72) | 0 (0) a |
Medium | 40 | 26 (65) | 0 (0) a |
Total ovarian cells | 40 | 28 (70) | 4 (10) b |
Enriched OGSCs | 44 | 28 (64) | 9 (20) c |
Embryonic cells | 42 | 24 (57) | 0 (0) a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryu, J.H.; Gong, S.P. Enhanced Enrichment of Medaka Ovarian Germline Stem Cells by a Combination of Density Gradient Centrifugation and Differential Plating. Biomolecules 2020, 10, 1477. https://doi.org/10.3390/biom10111477
Ryu JH, Gong SP. Enhanced Enrichment of Medaka Ovarian Germline Stem Cells by a Combination of Density Gradient Centrifugation and Differential Plating. Biomolecules. 2020; 10(11):1477. https://doi.org/10.3390/biom10111477
Chicago/Turabian StyleRyu, Jun Hyung, and Seung Pyo Gong. 2020. "Enhanced Enrichment of Medaka Ovarian Germline Stem Cells by a Combination of Density Gradient Centrifugation and Differential Plating" Biomolecules 10, no. 11: 1477. https://doi.org/10.3390/biom10111477
APA StyleRyu, J. H., & Gong, S. P. (2020). Enhanced Enrichment of Medaka Ovarian Germline Stem Cells by a Combination of Density Gradient Centrifugation and Differential Plating. Biomolecules, 10(11), 1477. https://doi.org/10.3390/biom10111477