Tautomerism of guanosine analogues

Jakub Radek Štoček¹ and Martin Dračínský^{1,*}

- ¹ Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague, Czech Republic.
- * Correspondence: dracinsky@uochb.cas.cz

Supporting Information

Table S1. Relative energies (kJ/mol) of four tautomers of compounds **1–11** calculated at B3LYP/6-311++G(2df,2pd) level.

~							
			2,3-I	1,2-I	2,4-I	1,3-I	1,3-I
	R ⁵	\mathbb{R}^{6}	(keto)	(keto)	(enol)	(imino) ^a	(imino) ^b
1	Н	Н	0.0	13.9	20.7	23.3	24.4
2	CH ₃	Н	0.0	12.0	30.5	23.8	24.5
3	<i>t</i> -butyl	Н	0.0	12.8	22.0	22.3	23.1
4	NH ₂	Н	0.0	6.5	25.9	29.8	29.6
5	CF ₃	Н	0.0	16.3	24.3	28.7	30.3
6	NO_2	Н	0.0	24.9	24.6	34.8	37.5
7	Н	CH ₃	0.0	12.6	28.2	21.3	22.4
8	Н	<i>t</i> -butyl	0.0	12.8	27.8	22.3	23.6
9	Н	$\rm NH_2$	0.0	34.8	28.0	36.7	38.8
10	Н	CF ₃	0.0	32.3	29.0	45.3	46.6
11	Н	NO ₂	0.0	32.5	20.0	49.1	49.8

^aImino hydrogen heading towards H3; ^bimino hydrogen heading towards N1

Table S2. Relative energies (kJ/mol) of four tautomers of bicyclic compounds **12–17** calculated at B3LYP/6-311++G(2df,2pd) level.

HN H ₂ N			CH ₃		HN H2N N	$ \begin{array}{c} H \\ N \\ H_2 N \\ N \\ H_2 N \\ N \end{array} $	
	12 ^{CH₃}	13	3	14	15	16	17
	2,3-I	1,2-I	2,4-I	1,3-I	1,3-I		
	(keto)	(keto)	(enol)	(imino) ^a	(imino) ^b		
12	0.0	41.0	33.8	49.0	50.1		
13	0.0	17.2	34.3	32.8	32.6		
14	0.0	38.5	38.3	45.1	45.9		
15	0.0	11.5	48.7	27.5	27.3		
16	0.0	8.5	46.8	20.4	20.1		
17	0.0	10.8	30.6	21.0	21.7		

^aImino hydrogen heading towards H3; ^bimino hydrogen heading towards N1

$HN H_2N N R^5$									
			2,3-I	1,2-I	2,4-I	1,3-I	1,3-I		
	\mathbb{R}^{5}	\mathbb{R}^{6}	(keto)	(keto)	(enol)	(imino) ^a	(imino) ^b		
1	Η	Н	0.00	21.5	15.5	26.2	27.8		
2	CH ₃	Н	0.00	19.2	29.0	26.9	27.9		
3	<i>t</i> -butyl	Н	0.00	19.1	33.2	25.58	26.7		
4	$\rm NH_2$	Н	0.00	12.9	22.1	33.1	32.8		
5	CF ₃	Н	0.00	20.2	22.7	30.5	32.6		
6	NO_2	Н	0.00	32.3	21.2	37.0	40.6		
7	Н	CH ₃	0.00	19.5	25.0	24.0	25.5		
8	Н	<i>t</i> -butyl	0.00	21.4	24.5	26.4	28.2		
9	Н	NH ₂	0.00	41.1	23.4	39.4	42.0		
10	Н	CF ₃	0.00	36.0	26.3	44.3	45.9		
11	Н	NO ₂	0.00	37.6	15.4	50.0	51.0		

Table S3. Relative energies (kJ/mol) of four tautomers of compounds **1–11** calculated at B3LYP/6-31+G(d,p) level.

^aImino hydrogen heading towards H3; ^bimino hydrogen heading towards N1

Table S4. Relative energies (kJ/mol) of four tautomers of bicyclic compounds **12–17** calculated at B3LYP/6-31+G(d,p) level.

Hľ H ₂ N			CH ₃ ∑N N N H			$ \begin{array}{c} $	
	12 ^{CH3}	1:	3	14	15	16	17
	2,3-I	1,2-I	2,4-I	1,3-I	1,3-I		
	(keto)	(keto)	(enol)	(imino) ^a	(imino) ^b		
12	0.0	49.6	30.5	53.1	54.4		
13	0.0	21.2	31.2	34.3	34.0		
14	0.0	46.4	36.2	48.8	49.8		
15	0.0	17.8	47.6	30.1	29.8		
16	0.0	14.7	48.6	23.0	22.8		
17	0.0	17.4	29.6	24.0	25.0		

^aImino hydrogen heading towards H3; ^bimino hydrogen heading towards N1

Figure S1. H5 and NH₂ region of variable-temperature ¹H NMR spectra of compound **7** in a 3:1 mixture of DMF-*d*⁷ and CD₂Cl₂.

Figure S2. Low-field region of variable-temperature ¹H NMR spectra of compound **1** in a 3:1 mixture of DMF-*d*⁷ and CD₂Cl₂.

Figure S3. Low-field region of variable-temperature ¹H NMR spectra of compound **10** in a 3:1 mixture of DMF-*d*⁷ and CD₂Cl₂.

Figure S4. Low-field region of variable-temperature ¹H NMR spectra of compound **18** in a 3:1 mixture of DMF-*d*⁷ and CD₂Cl₂.

Figure S5. Low-field region of variable-temperature ¹H NMR spectra of compound **16** in a 3:1 mixture of DMF-*d*⁷ and CD₂Cl₂.

Figure S6. Low-field region of ¹H NMR spectra of compound **18** (a), compound **7** (b) and their 1:1 mixture (c).

Figure S7. Low-field region of ¹H NMR spectra of compound **18** (a), compound **10** (b) and their 1:1 mixture (c).

Figure S8. Low-field region of ¹H NMR spectra of compound **1** (a), compound **T** (b) and their 1:1 mixture (c).

Figure S9. Low-field region of ¹H NMR spectra of compound **7** (a), compound **DAP** (b) and their 1:1 mixture (c).