H2S, Polysulfides, and Enzymes: Physiological and Pathological Aspects
Abstract
:1. Enzyme Production of H2S and Polysulfides
2. Physiological Functions of H2S and Polysulfides
3. Possible Production of Other Sulfur-Containing Substances, Sulfur Oxides
4. Knockout of H2S and Polysulfides-Producing Enzymes
5. Regulation of Enzymatic Activity by In Vivo Substances
6. Conclusions
Author Contributions
Conflicts of Interest
References
- Abe, K.; Kimura, H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci. 1996, 16, 1066–1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosoki, R.; Matsuki, N.; Kimura, H. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem. Biophys. Res. Commun. 1997, 237, 527–531. [Google Scholar] [CrossRef] [PubMed]
- Shibuya, N.; Tanaka, M.; Yoshida, M.; Ogasawara, Y.; Togawa, T.; Ishii, K.; Kimura, H. 3-Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid. Redox Signal. 2009, 11, 703–714. [Google Scholar] [CrossRef] [PubMed]
- Shibuya, N.; Mikami, Y.; Kimura, Y.; Nagahara, N.; Kimura, H. Vascular endothelium expresses 3-mercaptopyruvate sulfurtransferase and produces hydrogensulfide. J. Biochem. 2009, 146, 623–626. [Google Scholar] [CrossRef]
- Shibuya, N.; Koike, S.; Tanaka, M.; Ishigami-Yuasa, M.; Kimura, Y.; Ogasawara, Y.; Fukui, K.; Nagahara, N.; Kimura, H. A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells. Nat. Commun. 2013, 4, 1366. [Google Scholar] [CrossRef] [Green Version]
- Mikami, Y.; Shibuya, N.; Kimura, Y.; Nagahara, N.; Ogasawara, Y.; Kimura, H. Thioredoxin and dihydrolipoic acid are required for 3-mercaptopyruvate sulfurtransferase to produce hydrogen sulfide. Biochem. J. 2011, 439, 479–485. [Google Scholar] [CrossRef] [Green Version]
- Mikami, Y.; Shibuya, N.; Kimura, Y.; Nagahara, N.; Yamada, M.; Kimura, H. Hydrogen sulfide protects the retina from light-induced degeneration by the modulation of Ca21 influx. J. Biol. Chem. 2011, 286, 39379–39386. [Google Scholar] [CrossRef] [Green Version]
- Modis, K.; Asimakopoulou, A.; Colettal, C.; Papapetropoulos, A.; Szabo, C. Oxidative stress suppresses the cellular bioenergetic effect of the 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide pathway. Biochem. Biophys. Res. Commun. 2013, 433, 401–407. [Google Scholar] [CrossRef]
- Yadav, P.K.; Yamada, K.; Chiku, T.; Koutmos, M.; Banerjee, R. Structure and kinetic analysis of H2S production by human mercaptopyruvate sulfurtransferase. J. Biol. Chem. 2013, 288, 20002–20013. [Google Scholar] [CrossRef] [Green Version]
- Kimura, Y.; Toyofuku, Y.; Koike, S.; Shibuya, N.; Nagahara, N.; Lefer, D.; Ogasawara, Y.; Kimura, H. Identification of H2S3 and H2S produced by 3-mercaptopyruvate sulfurtransferase in the brain. Sci. Rep. 2015, 5, 14774. [Google Scholar] [CrossRef] [Green Version]
- Nagahara, N.; Koike, S.; Nirasawa, T.; Kimura, H.; Ogasawara, Y. Alternative pathway of H2S and polysulfides production from sulfurated catalytic-cysteine of reaction intermediates of 3-mercaptopyruvate sulfurtransferase. Biochem. Biophys. Res. Commun. 2018, 496, 648–653. [Google Scholar] [CrossRef] [PubMed]
- Kimura, H. Physiological roles of hydrogen sulfide and polysulfides. Folia Pharm. Jpn. 2016, 147, 23–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura, Y.; Kimura, H. Hydrogen sulfide protects neurons from oxidative stress. FASEB J. 2004, 8, 1165–1167. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Yang, G.; Jia, X.; Wu, L.; Wang, R. Activation of KATP channels by H2S in rat insulin-secreting cells and the underlying mechanisms. J. Physiol. 2005, 569, 519–531. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, Y.; Kimura, Y.; Kimura, H.; Niki, I. L-Cysteine inhibits insulin release from the pancreatic β-cell. Diabetes 2006, 55, 1391–1397. [Google Scholar] [CrossRef] [Green Version]
- Olson, K.R.; Dombkowski, R.A.; Russell, M.J.; Doellman, M.M.; Head, S.K.; Whitfield, N.L.; Madden, J.A. Hydrogen sulfide as an oxygen sensor/transducer in vertebrate hypoxic vasoconstriction and hypoxic vasodilation. J. Exp. Biol. 2006, 209, 4011–4023. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.J.; Nanduri, J.; Raghuraman, G.; Souvannakitti, D.; Gadalla, M.M.; Kumar, G.K.; Snyder, S.H.; Prabhakar, N.R. H2S mediates O2 sensing in the carotid body. Proc. Natl. Acad. Sci. USA 2010, 107, 10719–10724. [Google Scholar] [CrossRef] [Green Version]
- Zanardo, R.C.O.; Brancaleone, V.; Distrutti, E.; Fiorucci, S.; Cirino, G.; Wallace, J.L. Hydrogen sulfide is an endogenous modulator of leukocyte-mediated inflammation. FASEB J. 2006, 20, 2118–2120. [Google Scholar] [CrossRef]
- Elrod, J.W.; Calvert, J.W.; Morrison, J.; Doeller, J.E.; Kraus, D.W.; Tao, L.; Jiao, X.; Scalia, R.; Kiss, L.; Szabo, C.; et al. Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc. Natl. Acad. Sci. USA 2007, 104, 15560–15565. [Google Scholar] [CrossRef] [Green Version]
- Tripatara, P.; Patel, N.; Collino, M.; Gallicchio, M.; Kieswich, J.; Castiglia, S.; Benetti, E.; Stewart, K.N.; Brown, P.A.; Yaqoob, M.M.; et al. Generation of endogenous hydrogen sulfide by cystathionine γ-lyase limits renal ischemia/reperfusion injury and dysfunction. Lab. Invest. 2008, 88, 1038–1048. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.J.; Wang, M.J.; Moore, P.K.; Jin, H.M.; Yao, T.; Zhu, Y.C. The novel proangiogenic effect of hydrogen sulfide is dependent on Akt phosphorylation. Cardiovasc Res. 2007, 76, 29–40. [Google Scholar] [CrossRef]
- Papapetropoulos, A.; Pyriochou, A.; Altaany, Z.; Yang, G.; Marazioti, A.; Zhou, Z.; Jeschke, M.G.; Branski, L.K.; Herndon, D.N.; Wang, R.; et al. Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proc. Natl. Acad. Sci. USA 2009, 106, 21972–21977. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, N.; Fu, C.; Pappin, D.J.; Tonks, N.K. H2S-induced sulfhydration of the phosphatase PTP1B and its role in the endoplasmic reticulum stress response. Sci. Signal. 2011, 4, ra86. [Google Scholar] [CrossRef] [Green Version]
- Shatalin, K.; Shatalina, E.; Mironov, A.; Nudler, E. H2S: A universal defense against antibiotics in bacteria. Science 2011, 334, 986–990. [Google Scholar] [CrossRef]
- Kimura, H. Physiological role of hydrogen sulfide and polysulfide in the central nervous system. Neurochem. Int. 2013, 63, 492–497. [Google Scholar] [CrossRef]
- Kimura, H. Hydrogen sulfide and polysulfides as signaling molecules. Proc. Jpn. Acad. Ser. B 2015, 91, 131–159. [Google Scholar] [CrossRef] [Green Version]
- Nagai, Y.; Tsugane, M.; Oka, J.I.; Kimura, H. Hydrogen sulfide induces calcium waves in astrocytes. FASEB J. 2004, 18, 557–559. [Google Scholar] [CrossRef] [PubMed]
- Kimura, Y.; Mikami, Y.; Osumi, K.; Tsugane, M.; Oka, J.; Kimura, H. Polysulfides are possible H2S-derived signaling molecules in rat brain. FASEB J. 2013, 27, 2451–2457. [Google Scholar] [CrossRef] [PubMed]
- Greiner, R.; Pálinkás, Z.; Bäsell, K.; Becher, D.; Antelmann, H.; Nagy, P.; Dick, T.P. Polysulfides link H2S to protein thiol oxidation. Antioxid Redox Signal. 2013, 19, 1749–1765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koike, S.; Ogasawara, Y.; Shibuya, N.; Kimura, H.; Ishii, K. Polysulfide exerts a protective effect against cytotoxicity caused by t-buthylhydroperoxide through Nrf2 signaling in neuroblastoma cells. FEBS Lett. 2013, 587, 3548–3555. [Google Scholar] [CrossRef] [Green Version]
- Koike, S.; Shibuya, N.; Kimura, H.; Ishii, K.; Ogasawara, Y. Polysulfide promotes neuroblastoma cell differentiation by accelerating calcium influx. Biochem. Biophys.Res. Commun. 2015, 459, 488–492. [Google Scholar] [CrossRef] [PubMed]
- Koike, S.; Kayama, T.; Yamamoto, S.; Komine, D.; Tanaka, R.; Nishimoto, S.; Suzuki, T.; Kishida, A.; Ogasawara, Y. Polysulfides protect SH-SY5Y cells from methylglyoxal-induced toxicity by suppressing protein carbonylation: A possible physiological scavenger for carbonyl stress in the brain. NeuroToxicol 2016, 55, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Toohey, J.I. Sulphane sulphur in biological systems: A possible regulatory role. Biochem. J. 1989, 264, 625–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Libiad, M.; Yadav, P.K.; Vitvitsky, V.; Martinov, M.; Banerjee, R. Organization of the human mitochondrial hydrogen sulfide oxidation pathway. J. Biol. Chem. 2014, 289, 30901–30910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, J.L. Sulfane sulfur. Methods Enzymol. 1987, 143, 25–29. [Google Scholar] [PubMed]
- Wróbel, M.; P Sura, Z.; Srebro, Z. Sulfurtransferases and the content of cysteine, glutathione and sulfane sulfur in tissues of the frog Rana temporaria. Comp. Biochem. Physiol. Part B 2000, 125, 211–217. [Google Scholar] [CrossRef]
- Wróbel, M.; Czubak, J.; Bronowicka-Adamska, P.; Jurkowska, H.; Adamek, D.; Papla, B. Is development of high-grade gliomas sulfur-dependent. Molecules 2014, 19, 21350–21362. [Google Scholar] [CrossRef] [Green Version]
- Bronowicka-Adamska, P.; Jurkowska, H.; Gawda, A.; Skalska, P.; Nazimek, K.; Marcinkiewicz, J.; Wróbel, M. Expression and activity of hydrogen sulfide generating enzymes in murine macrophages stimulated with lipopolysaccharide and interferon-γ. Mol. Biol. Rep. 2019, 46, 2791–2798. [Google Scholar] [CrossRef] [Green Version]
- Nandi, S.S.; Mishra, P.K. H2S and homocysteine control a novel feedback regulation of cystathionine beta synthase and cystathionine gamma lyase in cardiomyocytes. Sci. Rep. 2017, 7, 3639. [Google Scholar] [CrossRef]
- Nishida, M.; Kumagai, Y.; Ihara, H.; Fujii, S.; Motohashi, H.; Akaike, T. Redox signaling regulated by electrophiles and reactive sulfur species. J. Clin. Biochem. Nutr. 2016, 58, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Yasuhiro, S.; Yoshito, K. Sulfane Sulfur in Toxicology: A Novel Defense System Against Electrophilic Stress. Toxicol. Sci. 2019, 170, 3–9. [Google Scholar]
- Nishida, M.; Sawa, T.; Kitajima, N.; Ono, K.; Inoue, H.; Ihara, H.; Motohashi, H.; Yamamoto, M.; Suematsu, M.; Kurose, H.; et al. Hydrogen sulfide anion regulates redox signaling via electrophile sulfhydration. Nat. Chem. Biol. 2012, 8, 714–724. [Google Scholar] [CrossRef] [PubMed]
- Shinkai, Y.; Masuda, A.; Akiyama, M.; Xian, M.; Kumagai, Y. Cadmium-mediated activation of the HSP90/HSF1 pathway regulated by reactive persulfides/polysulfides. Toxicol. Sci. 2017, 156, 412–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akiyama, M.; Shinkai, Y.; Unoki, T.; Shim, I.; Ishii, I.; Kumagai, Y. The capture of cadmium by reactive polysulfides attenuates cadmium-induced adaptive responses and hepatotoxicity. Chem. Res. Toxicol. 2017, 30, 2209–2217. [Google Scholar] [CrossRef]
- Kaczor, M.; Sura, P.; Bronowicka-Adamska, P.; Wróbel, M. Exposure to lead in water and cysteine non-oxidative metabolism in Pelophylax ridibundus tissues. Aquat. Toxicol. 2013, 127, 72–77. [Google Scholar] [CrossRef]
- Kaczor, M.; Sura, P.; Wróbel, M. Changes in activity of three sulfurtransferases in response to exposure to cadmium, lead and mercury ions. J. Environ. Prot. 2013, 4, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Huang, Y.; Chen, S.; Tang, C.; Jin, H.; Du, J. Role of endogenous sulfur dioxide in regulating vascular structural remodeling in hypertension. Oxid. Med. Cell Longev. 2016, 2016, 4529060. [Google Scholar] [CrossRef] [Green Version]
- Du, S.X.; Jin, H.F.; Bu, D.F.; Zhao, X.; Geng, B.; Tang, C.S.; Du, J.B. Endogenously generated sulfur dioxide and its vasorelaxant effect in rats. Acta. Pharm. Sin. 2008, 29, 923–930. [Google Scholar] [CrossRef] [Green Version]
- Meng, Z.; Zhang, H. The vasodilator effect and its mechanism of sulfur dioxide-derivatives on isolated aortic rings of rats. Inhal. Toxicol. 2007, 19, 979–986. [Google Scholar] [CrossRef]
- Wang, Y.K.; Ren, A.J.; Yang, X.Q.; Wang, L.G.; Rong, W.F.; Tang, C.S.; Yuan, W.J.; Lin, L. Sulfur dioxide relaxes rat aorta by endothelium-dependent and -independent mechanisms. Physiol. Res. 2009, 58, 521–527. [Google Scholar]
- Nagahara, N.; Nirasawa, T.; Yoshii, T.; Niimura, Y. Is novel signal transducer sulfur oxide involved in the redox cycle of persulfide at the catalytic site cysteine in a stable reaction intermediate of mercaptopyruvate sulfurtransferase? Antioxid Redox Signal. 2012, 16, 747–753. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Osada, J.; Aratani, Y.; Kluckman, K.; Reddick, R.; Malinow, M.R.; Maeda, N. Mice deficient in cystathionine γ-synthase: Animal models for mild and severe homocyst(e)inemia. Proc. Natl. Acad. Sci. USA 1995, 92, 1585–1589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, G.; Wu, L.; Jiang, B.; Yang, W.; Qi, J.; Cao, K.; Meng, Q.; Mustafa, A.K.; Mu, W.; Zhang, S.; et al. H2S as a physiologic vasorelaxant: Hypertension in mice with deletion of cystathionine gamma-lyase. Science 2008, 322, 587–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagahara, N.; Nagano, M.; Ito, T.; Shimamura, K.; Akimoto, T.; Suzuki, H. Antioxidant enzyme, 3-mercaptopyruvate sulfurtransferase-knockout mice exhibit increased anxiety-like behaviors: A model for human mercaptolactatecysteine disulfiduria. Sci. Rep. 2013, 3, 1986. [Google Scholar] [CrossRef] [Green Version]
- Peleli, M.; Bibli, S.I.; Li, Z.; Chatzianastasiou, A.; Varela, A.; Katsouda, A.; Zukunft, S.; Bucci, M.; Vellecco, V.; Davos, C.H.; et al. Cardiovascular phenotype of mice lacking 3-mercaptopyruvate sulfurtransferase. Biochem. Pharm. 2020. in print. [Google Scholar] [CrossRef]
- Nasi, S.; Ehirchiou, D.; Chatzianastasiou, A.; Nagahara, N.; Papapetropoulos, A.; Bertrand, J.; Cirino, G.; So, A.; Busso, B. The protective role of the 3-mercaptopyruvate sulfurtransferase (3-MST)-hydrogen sulfide (H2S) pathway against experimental osteoarthritis. Arthritis Res. 2020. in print. [Google Scholar] [CrossRef] [Green Version]
- Taoka, S.; West, M.; Banerjee, R. Characterization of the heme and pyridoxal phosphate cofactors of human cystathionine beta-synthase reveals nonequivalent active sites. Biochemistry 1999, 38, 2738–2744. [Google Scholar] [CrossRef]
- Taoka, S.; Banerjee, R. Characterization of NO binding to human cystathionine beta-synthase: Possible implications of the effects of CO and NO binding to the human enzyme. J. Inorg. Biochem. 2001, 87, 245–251. [Google Scholar] [CrossRef]
- Aitken, S.M.; Kirsch, J.F. Kinetics of the yeast cystathionine beta-synthase forward and reverse reactions: Continuous assays and the equilibrium constant for the reaction. Biochemistry 2003, 42, 571–578. [Google Scholar] [CrossRef]
- Belew, M.S.; Quazi, F.I.; Willmore, W.G.; Aitken, S.M. Kinetic characterization of recombinant human cystathionine beta-synthase purified from E. coli. Protein Expr. Purif. 2009, 64, 139–145. [Google Scholar] [CrossRef]
- Manna, P.; Gungor, N.; McVie, R.; Jain, S.K. Decreased cystathionine-γ-lyase (CSE) activity in livers of type 1 diabetic rats and peripheral blood mononuclear cells (PBMC) of type 1 diabetic patients. J. Biol. Chem. 2014, 289, 11767–11778. [Google Scholar] [CrossRef] [Green Version]
- Chu, L.; Ebersole, J.L.; Kurzban, G.P.; Holt, S.C. Cystalysin, a 46-kDa L-cysteine desulfhydrase from Treponema denticola: Biochemical and biophysical characterization. Clin. Infect. Dis. 1999, 28, 442–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braunstein, A.E.; Goryachenkova, E.V. The beta-replacement-specific pyridoxal-P-dependent lyases. Adv. Enzym. Relat. Areas Mol. Biol. 1984, 56, 1–89. [Google Scholar]
- Matsuo, Y.; Greenberg, D.M. A crystalline enzyme that cleaves homoserine and cystathionine. III. Coenzyme resolution, activators, and inhibitors. J. Biol. Chem. 1959, 234, 507–515. [Google Scholar] [PubMed]
- Olson, K.R.; Healy, M.J.; Qin, Z.; Skovgaard, N.; Vulesevic, B.; Duff, D.W.; Whitfield, N.L.; Yang, G.; Wang, R.; Perry, S.F. Hydrogen sulfide as an oxygen sensor in trout gill chemoreceptors. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 29, R669–R680. [Google Scholar] [CrossRef] [Green Version]
- Wróbel, M.; Lewandowska, I.; Bronowicka-Adamska, P.; Paszewski, A. The level of sulfane sulfur in the fungus Aspergillus nidulans wild type and mutant strains. Amino Acids 2009, 37, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Westley, J. Rhodanese. Adv. Enzym. Relat. Areas Mol. Biol. 1973, 39, 327–368. [Google Scholar]
- Lee, C.Y.; Hwang, J.H.; Lee, Y.S.; Cho, K.S. Purification and characterization of mouse liver rhodanese. J. Biochem. Mol. Biol. 1995, 28, 170–176. [Google Scholar]
- Oi, S. Inhibition of rat liver rhodanese by di-, tricarboxylic, and alpha-keto acids. J. Biochem. 1975, 78, 825–834. [Google Scholar] [CrossRef]
- Picton, R.; Eggo, M.C.; Merrill, G.A.; Langman, M.J.; Singh, S. Mucosal protection against sulphide: Importance of the enzyme rhodanese. Gut 2002, 50, 201–205. [Google Scholar] [CrossRef] [Green Version]
- Ramasamy, S.; Singh, S.; Taniere, P.; Langman, M.J.; Eggo, M.C. Sulfide-detoxifying enzymes in the human colon are decreased in cancer and upregulated in differentiation. Am. J. Physiol. Gastrointest Liver Physiol. 2006, 291, G288–G296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vazquez, E.; Gazzaniga, S.; Polo, C.; Batlle, A. Mitochondrial and cytosolic rhodanese from liver of DAB-treated mice. III. Inhibition kinetic studies. Cancer Biochem. Biophys. 1997, 15, 285–293. [Google Scholar] [PubMed]
- Nandi, D.L.; Horowitz, P.M.; Westley, J. Rhodanese as a thioredoxin oxidase. Int J. Biochem. Cell Biol. 2000, 32, 465–473. [Google Scholar] [CrossRef]
- Anosike, E.O.; Jack, A.S. A comparison of some biochemical properties of liver thiosulphate sulphurtransferase from guinea pig (Lepus caniculus) & albino rat. Indian J. Biochem. Biophys. 1982, 19, 13–16. [Google Scholar]
- Turkowsky, A.; Blotevogel, K.H.; Fischer, U. Properties of a soluble thiosulfate sulfur transferase (rhodanese) of the marine methanogen Methanosarcina frisia. FEMS Microbiol. Lett. 1991, 81, 251–256. [Google Scholar] [CrossRef]
- Vandenbergh, P.A.; Berk, R.S. Purification and characterization of rhodanese from Acinetobacter calcoaceticus. Can. J. Microbiol. 1980, 26, 281–286. [Google Scholar] [CrossRef]
- Porter, D.W.; Baskin, S.I. The effect of three alpha-keto acids on 3-mercaptopyruvate sulfurtransferase activity. J. Biochem. Toxicol. 1996, 11, 45–50. [Google Scholar] [CrossRef]
- Vachek, H.; Wood, J.L. Purification and properties of mercaptopyruvate sulfur transferase of Escherichia coli. Biochim. Biophys. Acta 1972, 258, 133–146. [Google Scholar] [CrossRef]
- Nagahara, N.; Katayama, A. Post-translational regulation of mercaptopyruvate sulfurtransferase via a low redox potential cysteine-sulfenate in the maintenance of redox homeostasis. J. Biol. Chem. 2005, 280, 34569–34576. [Google Scholar] [CrossRef] [Green Version]
- Nagahara, N.; Yoshii, T.; Abe, Y.; Matsumura, T. Thioredoxin-dependent enzymatic activation of mercaptopyruvate sulfurtransferase. An intersubunit disulfide bond serves as a redox switch for activation. J. Biol. Chem. 2007, 282, 1561–1569. [Google Scholar] [CrossRef] [Green Version]
Function | Reference |
---|---|
Induction of long-term potentiation in the hippocampus as a synaptic model of memory | Abe and Kimura, 1996 [1] |
Effect on smooth muscle relaxant activity | Hosoki et al., 1997 [2] |
Protective action of nerve cells from oxidative stress | Kimura and Kimura, 2004 [13] |
Regulation of insulin secretion | Yang et al., 2005 [14]; Kaneko et al., 2006 [15] |
Oxygen sensor | Olson et al., 2006 [16]; Peng et al., 2010 [17] |
Antiinfection | Zanardo et al., 2006 [18] |
Protective action of myocardium and kidney from ischemia reperfusion injury | Elrod et al., 2007 [19]; Tripatara et al., 2008 [20] |
Angiogenic effect | Cai et al., 2007 [21]; Papapetropoulos et al., 2009 [22] |
Protection of retinal neurons from light-induced damage and apoptosis | Mikami et al., 2011b [7] |
Regulation of endoplasmic reticulum stress | Krishnan et al., 2011 [23] |
Bacterial resistance against antibiotics | Shatalin et al., 2011 [24] |
Reduction of disulfide bonds in a ligand-binding domain of N-methyl-D-aspartic acid receptors | Kimura, 2013 [25]; 2015 [26] |
Amplification of the activity of N-methyl-D-aspartic acid receptor upon activation by neurotransmitters | Kimura, 2015 [26] |
Activation of H+-ATPase resulting in decrease of calcium influx into photoreceptor cells of the retina | Kimura, 2016 [12] |
Function | Reference |
---|---|
Induction of calcium influx by activating a cation channel, subfamily A, and member 1 in astrocytes | Nagai et al., 2004 [27]; Kimura et al., 2013 [28] |
Inhibition of tumor suppressor lipid phosphatase and tensin homolog by changing the protein to its oxidized form | Greiner et al., 2013 [29] |
Upregulation of antioxidant genes, such as heme oxygenase 1 and glutamate cysteine ligase | Koike et al., 2013 [30] |
Induction of long-term potentiation in the hippocampus due to activation of N-methyl-D-aspartic acid receptors | Kimura, 2015 [26] |
Upregulation of antioxidant genes such as heme oxygenase 1 and glutamate cysteine ligase | Kimura, 2015 [26] |
Decrease in toxic carbonyl stress in neuroblastoma cells | Koike et al., 2015 [31] |
Induction of neural outgrowth and cell differentiation of neuroblastoma cells | Koike et al., 2016 [32] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagahara, N.; Wróbel, M. H2S, Polysulfides, and Enzymes: Physiological and Pathological Aspects. Biomolecules 2020, 10, 640. https://doi.org/10.3390/biom10040640
Nagahara N, Wróbel M. H2S, Polysulfides, and Enzymes: Physiological and Pathological Aspects. Biomolecules. 2020; 10(4):640. https://doi.org/10.3390/biom10040640
Chicago/Turabian StyleNagahara, Noriyuki, and Maria Wróbel. 2020. "H2S, Polysulfides, and Enzymes: Physiological and Pathological Aspects" Biomolecules 10, no. 4: 640. https://doi.org/10.3390/biom10040640
APA StyleNagahara, N., & Wróbel, M. (2020). H2S, Polysulfides, and Enzymes: Physiological and Pathological Aspects. Biomolecules, 10(4), 640. https://doi.org/10.3390/biom10040640