

Supplementary Information

A Biochemometric Approach for the Identification of In Vitro Anti-Inflammatory Constituents of Masterwort

Julia Zwirchmayr¹, Ulrike Grienke¹, Scarlet Hummelbrunner¹, Jaqueline Seigner², Rainer de Martin², Verena M. Dirsch¹, and Judith M. Rollinger^{1,*}

- ¹ Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
- ² Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstaße. 17, 1090 Vienna, Austria
- * Correspondence: judith.rollinger@univie.ac.at; Tel.: +43-1-4277-55255; Fax: +43-1-4277-855255

Received: date; Accepted: date; Published: date

Table S1

Table S1 HEMWat system table for HPCCC fractionation with gradient elution

		Used layer of			
HEMWat System No.	<i>n</i> -hex	EtOAc	MeOH	H ₂ O	binary solvent system
22	3	1	3	1	upper & lower layer
21	5	2	5	2	upper layer
20	2	1	2	1	upper layer
19	3	2	3	2	upper layer
17	1	1	1	1	upper layer
15	2	3	2	3	upper layer
10	1	5	1	5	upper & lower layer

Table S2

Table S2 Pooling of microfractions

HPCCC Fractions of 1 st and 2 nd run		Fraction Yield	Microfraction
1st run	2nd run	[mg]	Witcioffaction
1 – 13	1 – 11	64.09	PO01_01
14 - 20	12 – 17	10.13	PO01_02
21 – 25	18 – 23	5.23	PO01_03
26 - 36	24 - 26	4.21	PO01_04
37 – 41	27 – 28	9.86	PO01_05
42-44	29 - 31	58.44	PO01_06

www.mdpi.com/journal/biomolecules

45 - 46	32 – 36	38.64	PO01_07
HPCCC Fractions of 1st and 2nd run		Fraction Yield	Mircofraction
1st run	2nd run	[mg]	
47 - 49	-	20.75	PO01_08
50 - 52	-	9.01	PO01_09
53 – 55			
56 – 66	37 – 55	11.24	PO01_10
67 – 72		11.34	
73 - 83	56 – 57	8.34	PO01_11
84 - 91	-	9.30	PO01_12
92 – 99	58 - 60	13.32	PO01_13
100 – 105	61 – 68	12.59	PO01_14
106 – 109		7.61	PO01_15
110 – 114	69 – 86	7.01	
115 – 119		7 77	
120 – 125	87 – 95	1.11	PO01_16
126 – 131	96 - 100	7.57	PO01_17
132 – 134	101 – 104	6.05	PO01_18
135 – 138	105 – 109	9.16	PO01_19
139 – 142	110 – 114	6.14	PO01_20
143 – 146	115 100	5.21	PO01_21
147 – 150	115 – 122		
151 – 155	123 – 133		
156 – 166	134 – 144	7.01	PO01_22
167 – 172	145 – 155	7.21	
176 – 178	169 – 179	10.69	PO01_23
173 – 175	156 – 168	13.39	PO01_24
179 – 181	180 – 191	16.11	PO01_25
182 – 184	192 – 200	8.35	PO01_26
185 – 188	201 – 212	4.80	PO01_27
189 – 192	213 – 216	5.56	PO01_28
193 – 197	217 – 222	11.37	PO01_29
198 – 202	223 – 225	4.77	PO01_30
203 - 206	226 - 280		
207 - 212	-		
213 - 217	-	40.04	PO01_31
218 - 223	-		
224 - 228	-		
229 – 232	-		
233 - 238	-		
239 - 285	-]	

Figure S1 TLC of microfractions PO01_01-PO01_31; detection UV254 (top) and UV366 (bottom).

Figure S2. Bioactivity results of PO01_11-PO01_29, the crude extract PO-E (all 50 µg/mL) and the positive control parthenolide (10 µM) tested in a cell-based in vitro NF- κ B-driven luciferase reporter assay in HEK293-NF κ B-luc cells stimulated with 2 ng/mL TNF α as indicated. The luciferase signal derived from the NF- κ B reporter was normalized to the vehicle control (0.1% DMSO) with TNF α . Bar charts represent (residual) NF- κ B transactivation activity expressed as mean ± SD; *n* = 3.

Figure S3. CAD chromatogram of package I (PO01_11-PO01_14); tR 6.00 – 9.60 min.

Figure S4. LC-MS-CAD analysis of the microfraction PO01_14 and the pure compound imperatorin; (A) LC chromatogram of PO01_14 and imperatorin at t_R 7.6 min; (B) Mass spectra of PO01_14 and imperatorin showing the m/z value of 271.1 g/mol.

Figure S5. CAD chromatogram of package II (PO01_14-PO01_17); tr 6.0–9.0 min.

Figure S6. CAD chromatogram of package III (PO01_22-PO01_25); tr 5.0-8.5 min.

Figure S7. Concentration-response curves showing the positively correlated compounds **1**, **2**, **4**, and **5** assayed in a cell-based NF- κ B-reporter gene assay at different concentrations. Shown are the residual NF- κ B activities in TNF α (2 ng/mL)-activated HEK293-NF- κ B-luc cells after treatment with the respective compounds. The luciferase signal derived from the NF- κ B reporter was normalized to the CTG-fluorescence and expressed as fold change normalized to the TNF α signal. IC₅₀ values were determined by non-linear regression with the sigmoidal dose response settings (variable slope) using GraphPad Prism 4.03 software.

Figure S8. CTG fluorescence as a measure for cell viability after treatment with pure compounds **1-6**, **9** and a 1:1 mixture of **1** and **2** (all tested at 10 μ g/mL) and the positive control parthenolide (10 μ M) in TNF α (2 ng/mL)-activated HEK293-NFKB-luc cells; data are normalized to vehicle control (0.1% DMSO) with TNF α . Data represent mean ± SD. *n* = 4

Figure S9. 1H NMR data of package I (PO01_11-PO01_14).