Biochemical Composition of Cumin Seeds, and Biorefining Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Extraction of Oils and Their Analyses
2.2.1. Extraction of Essential Oil and Its Analysis
2.2.2. Extraction of Vegetable Oil
2.2.3. Fatty Acid Profile Determination
2.2.4. Unsaponifiable Compound (i.e., Sterol) Determination inside Vegetable Oils
2.3. Nutritional Content Determination from By-Products
2.4. By-Products and Their Biological and Chemical Analyses
2.4.1. Total Phenol Content (TPC) Determination
2.4.2. Total Flavonoid Content (TFC) Determination
2.4.3. Trolox Equivalent Antioxidant Capacity (TEAC) Determination
2.4.4. Antibacterial Activity Determination
- Strains of bacteria:
- Assays for Minimum Inhibitory Concentrations (MIC), and Minimum Bactericidal Concentrations (MBC):
2.5. Statistical Analyses
3. Results
3.1. Yield and Chemical Composition of Essential Oils of Cumin Seeds
3.2. Vegetable Oil Content, Fatty Acid and Phytosterol Compositions in Cumin Seeds
3.3. Nutritional Content of Cumin Seeds
3.4. Effect of Hydrodistillation and Delipidation on Cumin Cakes
3.5. Biological Activities of Cumin By-Products
3.5.1. Total Contents of Phenols (TPC), Flavonoids (TFC) and Antioxidant Activity
3.5.2. Minimum Inhibitory and Bactericidal Concentrations (MIC and MBC)
4. Discussion
4.1. Yield and Chemical Composition of Essential Oils of Cumin Seeds
4.2. Vegetable Oil Content, Fatty Acid and Phytosterol Compositions in Cumin Seeds
4.3. Nutritional Content of Cumin Seeds
4.4. Effect of Hydrodistillation and Delipidation on Cumin Cakes
4.5. Biological Activities of Cumin By-Products
4.5.1. Total Contents of Phenols (TPC), Flavonoids (TFC) and Antioxidant Activity
4.5.2. Minimum Inhibitory and Bactericidal Concentrations (MIC and MBC)
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thy, P.; Jenkins, B.M.; Grundvig, S.; Shiraki, R.; Lesher, C.E. High temperature elemental losses and mineralogical changes in common biomass ashes. Fuel 2006, 85, 783–795. [Google Scholar] [CrossRef]
- Sayed Ahmad, B.; Talou, T.; Saad, Z.; Hijazi, A.; Merah, O. The Apiaceae: Ethnomedicinal family as source for industrial uses. Ind. Crops Prod. 2017, 109, 661–671. [Google Scholar] [CrossRef] [Green Version]
- Sayed Ahmad, B.; Talou, T.; Saad, Z.; Hijazi, A.; Cerny, M.; Chokr, A.; Kanaan, H.; Merah, O. Fennel oil and by-products seed characterization and their potential applications. Ind. Crops Prod. 2018, 111, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Sayed Ahmad, B.; Straumite, E.; Sabovics, M.; Kruma, Z.; Merah, O.; Saad, Z.; Hijazi, A.; Talou, T. Effect of Addition of Fennel (Foeniculum vulgare L.) on the Quality of Protein Bread. Proc. Latv. Acad. Sci. Sect. B. Nat. Exact Appl. Sci. 2017, 71, 509–514. [Google Scholar] [CrossRef] [Green Version]
- Sayed Ahmad, B.; Talou, T.; Straumite, E.; Sabovics, M.; Kruma, Z.; Saad, Z.; Hijazi, A.; Merah, O. Evaluation of Nutritional and Technological Attributes of Whole Wheat Based Bread Fortified with Chia Flour. Foods 2018, 7, 135. [Google Scholar] [CrossRef] [Green Version]
- Miaraa, M.D.; Bendif, H.; Ouabea, A.; Rebbas, K.; Ait Hammou, M.; Amirat, M.; Greene, A.; Teixidor-Toneu, I. Ethnoveterinary remedies used in the Algerian steppe: Exploring the relationship with traditional human herbal medicine. J. Ethnopharmacol. 2019, 244, 112164. [Google Scholar] [CrossRef]
- Nguyen, Q.H.; Talou, T.; Cerny, M.; Evon, P.; Merah, O. Oil and fatty acid accumulation during coriander (Coriandrum sativum L.) fruit ripening under organic cultivation. Crop J. 2015, 3, 366–369. [Google Scholar] [CrossRef]
- Nguyen, Q.H.; Talou, T.; Evon, P.; Cerny, M.; Merah, O. Fatty acid composition and oil content during coriander fruit development. Food Chem. 2020, 326, 127034. [Google Scholar] [CrossRef]
- Uitterhaegen, E.; Labonne, L.; Merah, O.; Talou, T.; Ballas, S.; Veronese, T.; Evon, P. Impact of a thermomechanical fiber pre-treatment using twin-screw extrusion on the production and properties of renewable binderless coriander fiberboards. Int. J. Mol. Sci. 2017, 18, 1539. [Google Scholar] [CrossRef] [Green Version]
- Mnif, S.; Aifa, S. Cumin (Cuminum cyminum L.) from traditional uses to potential biomedical applications. Chem. Biodiv. 2015, 12, 733–742. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R.; Petrelli, R.; Cappellacci, L.; Canale, A.; Senthil-Nathan, S.; Maggi, F. Not just popular spices! Essential oils from Cuminum cyminum and Pimpinella anisum are toxic to insect pests and vectors without affecting non-target invertebrates. Ind. Crop. Prod. 2018, 124, 236–243. [Google Scholar] [CrossRef]
- Bagirova, M.; Dinparvar, S.; Allahverdiyev, A.M.; Unal, K.; Abamor, E.S.; Novruzova, M. Investigation of antileshmanial activities of Cuminum cyminum based green silver nanoparticles on L. tropica promastigotes and amastigotes in vitro. Acta Trop. 2020, 208, 105498. [Google Scholar] [CrossRef] [PubMed]
- Dinparvar, S.; Bagirova, M.; Allahverdiyev, A.M.; Abamor, E.S.; Safarov, T.; Aydogdu, M.; Aktas, D. A nanotechnology-based new approach in the treatment of breast cancer: Biosynthesized silver nanoparticles using Cuminum cyminum L. seed extract. J. Photochem. Photobiol. B Biol. 2020, 208, 111902. [Google Scholar] [CrossRef] [PubMed]
- Koohsari, S.; Sheikholeslami, M.A.; Parvardeh, S.; Ghafghazi, S.; Samadi, S.; Khazaei Poul, Y.; Pouriran, R.; Amiri, S. Antinociceptive and antineuropathic effects of cuminaldehyde, the major constituent of Cuminum cyminum seeds: Possible mechanisms of action. J. Ethnopharm. 2020, 255, 112786. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatgraphy/Mass Spectrometry, 5th ed.; Texensis Publishing: Gruver, TX, USA, 2017; 723p. [Google Scholar]
- Dwivedy, A.K.; Prakash, B.; Chanotiya, C.S.; Bisht, D.; Dubey, N.K. Chemically characterized Mentha cardiaca L. essential oil as plant based preservative in view of efficacy against biodeteriorating fungi of dry fruits, aflatoxin secretion, lipid peroxidation and safety profile assessment. Food Chem. Toxicol. 2017, 106, 175–184. [Google Scholar] [CrossRef]
- Morshedloo, M.R.; Maggi, F.; Neko, H.T.; Aghdam, M.S. Sumac (Rhus coriaria L.) fruit: Essential oil variability in Iranian populations. Ind. Crop Prod. 2018, 111, 1–7. [Google Scholar] [CrossRef]
- Araújo, F.M.; Dantas, M.C.S.M.; Silva, L.S.; Aona, L.Y.S.; de Souza-Neta, L.C. Antibacterial activity and chemical composition of the essential oil of Croton heliotropiifolius Kunth from Amargosa, Bahia, Brazil. Ind. Crop Prod. 2017, 105, 203–206. [Google Scholar] [CrossRef]
- ISO 665:2000. Oilseeds-Determination of Moisture and Volatile Matter Content; International Organization for Standardization: Geneva, Switzerland, 2000. [Google Scholar]
- ISO 749:1977. Oilseed Residues-Determination of Total Ash; International Organization for Standardization: Geneva, Switzerland, 1977. [Google Scholar]
- ISO 5983-1:2005. Animal Feeding Stuffs–Determination of Nitrogen Content and Calculation of Crude Protein Content-Part 1: Kjeldahl Method; International Organization for Standardization: Geneva, Switzerland, 2005. [Google Scholar]
- Yemm, W.E.; Willis, A.J. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 1954, 57, 508–514. [Google Scholar] [CrossRef] [Green Version]
- Van Soest, P.; Wine, R.H. Determination of lignin and cellulose in acid-detergent fiber with permanganate. J. Assoc. Off. Anal. Chem. 1968, 51, 780–785. [Google Scholar] [CrossRef]
- Van Soest, P.; Wine, R.H. Use of detergents in the analysis of fibrous feeds. Part iv. Determination of plant cell-wall constituents. J. Assoc. Off. Agric. Chem. 1967, 50, 50–55. [Google Scholar]
- Slinkard, K.; Singleton, V.L. Total phenol analysis: Automation and comparison with manual methods. Am. J. Enol. Vitic. 1977, 28, 49–55. [Google Scholar]
- Samatha, T.; Shyamsundarachary, R.; Srinivas, P.; Swamy, N. Quantification of total phenolic and total flavonoid contents in extracts of Oroxylum Indicum L. Kurz. Asian J. Pharm. Clin. Res. 2012, 5, 177–179. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Sebaaly, C.; Kassem, S.; Grishina, E.; Kanaan, H.; Sweidan, A.; Said Chmit, M.; Kanaan, H.M. Anticoagulant and antibacterial activities of polysaccharides of red algae Corallina collected from Lebanese coast. J. Appl. Pharm. Sci. 2014, 4, 30–37. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, N.; Husain, S.S.; Ali, M. Chemical composition and antimicrobial activity of volatile oil of the seeds of Cuminum cyminum L. World J. Pharm. Pharm. Sci. 2014, 3, 1428–1441. [Google Scholar]
- Bettaieb, I.; Bourgou, S.; Sriti, J.; Msaada, K.; Limam, F.; Marzouk, B. Essential oils and fatty acids composition of Tunisian and Indian cumin (Cuminum cyminum L.) seeds: A comparative study. J. Sci. Food Agric. 2011, 91, 2100–2107. [Google Scholar] [CrossRef]
- El-Ghorab, A.H.; Nauman, M.; Anjum, F.M.; Hussain, S.; Nadeem, M. A comparative study on chemical composition and antioxidant activity of ginger (Zingiber officinale) and cumin (Cuminum cyminum). J. Agric. Food Chem. 2010, 58, 8231–8237. [Google Scholar] [CrossRef]
- Hajlaoui, H.; Mighri, H.; Noumi, E.; Snoussi, M.; Trabelsi, N.; Ksouri, R.; Bakhrouf, A. Chemical composition and biological activities of Tunisian Cuminum cyminum L. essential oil: A high effectiveness against Vibrio spp. strains. Food Chem. Toxicol. 2010, 48, 2186–2192. [Google Scholar] [CrossRef]
- Li, R.; Jiang, Z.-T. Chemical composition of the essential oil of Cuminum cyminum L. from China. Flav. Fragr. J. 2004, 19, 311–313. [Google Scholar] [CrossRef]
- Dubey, P.N.; Saxena, S.N.; Mishra, B.K.; Solanki, R.K.; Vishal, M.K.; Singh, B.; Sharma, L.K.; John, S.; Agarwal, D.; Yogi, A. Preponderance of cumin (Cuminum cyminum L.) essential oilconstituents across cumin growing agro-ecological sub regions India. Ind. Crops Prod. 2017, 95, 50–59. [Google Scholar] [CrossRef]
- El-Sawi, S.A.; Mohamed, M. Cumin herb as a new source of essential oils and its response to foliar spray with some micro-elements. Food Chem. 2002, 77, 75–80. [Google Scholar] [CrossRef]
- Lucchesi, M.E.; Chemat, F.; Smadja, J. An original solvent free microwave extraction of essential oils from spices. Flav. Fragr. J. 2004, 19, 134–138. [Google Scholar] [CrossRef]
- Dobravalskytė, D.; Venskutonis, P.R.; Zebib, B.; Merah, O.; Talou, T. Essential Oil Composition of Myrrhis odorata (L.) Scop. Leaves Grown in Lithuania and France. J. Essent. Oil Res. 2013, 25, 44–48. [Google Scholar] [CrossRef]
- Bettaieb Rebey, I.; Bourgou, S.; Rahali, F.Z.; Msaada, K.; Ksouri, R.; Marzouk, B. Relation between salt tolerance and biochemical changes in cumin (Cuminum cyminum L.) seeds. J. Food Drug Anal. 2017, 25, 391–402. [Google Scholar] [CrossRef] [Green Version]
- Beis, S.H.; Azcan, N.; Ozek, T.; Kara, M.; Baser, K.H.C. Production of essential oil from Cumin seeds. Chem. Nat. Compd. 2000, 36, 265–268. [Google Scholar] [CrossRef]
- Derakhshan, S.; Sattari, M.; Bigdeli, M. Effect of subinhibitory concentrations of cumin (Cuminum cyminum L.) seed essential oil and alcoholic extract on the morphology, capsule expression and urease activity of Klebsiella pneumoniae. Int. J. Antimicrob. Agents 2008, 32, 432–436. [Google Scholar] [CrossRef]
- Viuda-Martos, M.; Ruíz-Navajas, Y.; Fernández-López, J.; Pérez-Álvarez, J.A. Chemical composition of the essential oils obtained from some spices widely used in Mediterranean region. Acta Chim. Slov. 2007, 54, 921–926. [Google Scholar]
- Mohammadpour, H.; Moghimipour, E.; Rasooli, I.; Fakoor, M.H.; Alipoor Astaneh, S.; Shehni Moosaie, S.; Jalili, Z. Chemical composition and antifungal activity of Cuminum cyminum L. essential oil from Alborz Mountain against Aspergillus species. Jundishapur J. Nat. Pharm. Prod. 2012, 7, 50–55. [Google Scholar] [CrossRef] [Green Version]
- Reza, A.; Moghadam, L. Essential oil of the seeds of Cuminum cyminum L. (Apiaceae). Bull. Environ. Pharmacol. Life Sci. 2015, 34, 161–163. [Google Scholar]
- Shahnaz, H.; Hifza, A.; Bushra, K.; Khan, J.I. Lipid studies of Cuminum cyminum fixed oil. Pak. J. Bot. 2004, 36, 395–401. [Google Scholar]
- Hemavathy, J.; Prabhakar, J.V. A research note lipid composition of cumin (Cuminum cyminum L.) seeds. J. Food Sci. 1988, 53, 1578–1579. [Google Scholar] [CrossRef]
- Bourgou, S.; Bettaieb, I.; Saidani, M.; Marzouk, B. Fatty acids, essential oil and phenolics modifications of black cumin fruit under NaCl stress conditions. J. Agric. Food Chem. 2010, 58, 12399–12406. [Google Scholar] [CrossRef]
- Mallet, J.F.; Gaydou, E.M.; Archavlis, A. Determination of petroselinic acid inUmbelliflorae seed oils by combined GC and13C NMR spectroscopy analysis. J. Am. Oil Chem. Soc. 1990, 67, 607–610. [Google Scholar] [CrossRef]
- Roche, J.; Bouniols, A.; Cerny, M.; Mouloungui, Z.; Merah, O. Fatty acid and phytosterol accumulation during seed ripening in three oilseed species. Internat. J. Food Sci. Technol. 2016, 51, 1820–1826. [Google Scholar] [CrossRef] [Green Version]
- Bettaieb-Rebey, I.; Kefi, S.; Limam, F.; Marzouk, B. Variations in fatty acid composition during maturation of cumin (Cuminum cyminum L.) seeds. Afr. J. Biotechnol. 2013, 12, 5303–5307. [Google Scholar] [CrossRef] [Green Version]
- Sharma, L.K.; Agarwal, D.; Rathore, S.S.; Malhotra, S.K.; Saxena, S.N. Effect of cryogenic grinding on volatile and fatty oil constituents of cumin (Cuminum cyminum L.) genotypes. J. Food Sci. Technol. 2016, 53, 2827–2834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uitterhaegen, E.; Sampaio, K.A.; De Greyt, W.; Cerny, M.; Evon, P.; Merah, O.; Talou, T.; Stevens, C. Characterization of coriander vegetable oil of French origin. Molecules 2016, 21, 1202. [Google Scholar] [CrossRef] [Green Version]
- Murphy, D.; Richards, D.; Taylor, R.; Capdevielle, J.; Guillemot, J.-C.; Grison, R.; Fairbairn, D.; Bowra, S. Manipulation of seed oil content to produce industrial crops. Ind. Crops Prod. 1994, 3, 17–27. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Scientific opinion on the safety of coriander seed oil as a novel food ingredient. Eur. Food Safety Authority J. 2013, 11, 3422. [Google Scholar]
- Pala, V. Erythrocyte membrane fatty acids and subsequent breast cancer: A prospective Italian study. J. Natl. Cancer Inst. 2001, 93, 1088–1095. [Google Scholar] [CrossRef]
- Tvrzická, E.; Stanková, B.; Vecka, M.; Zák, A. Fatty acids: Occurrence and biological significance. Cas. Lek. Cesk. 2009, 148, 16–24. (In Czech) [Google Scholar] [PubMed]
- Zlatanov, M. Studies on sterol composition of some glyceride oils from family Apiaceae. Lipid/Fett 1995, 97, 381–383. [Google Scholar] [CrossRef]
- Ramadan, M.F.; Asker, M.M.S.; Tadros, M. Antiradical and antimicrobial properties of cold-pressed black cumin and cumin oils. Eur. Food Res. Technol. 2012, 234, 833–844. [Google Scholar] [CrossRef]
- Yang, B.; Karlsson, R.M.; Pentti, O.H.; Kallio, H.P. Phytosterols in Sea Buckthorn (Hippophaë rhamnoides L.) Berries: Identification and Effects of Different Origins and Harvesting Times. J. Agric. Food Chem. 2001, 49, 5620–5629. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, M.F.; Sharanabasappa, G.; Parmjyothi, S.; Seshagiri, M.; Moersel, J.T. Profile and levels of fatty acids and bioactive constituents in mahua butter from fruit-seeds of buttercup tree [Madhuca longifolia (Koenig)]. Eur. Food Res. Technol. 2006, 222, 710–718. [Google Scholar] [CrossRef]
- Hasan Khan, M.M.; Chaudhry, A.S. Chemical composition of selected forages and spices and the effect of these spices on in vitro rumen degradability of some forages. Asian Austr. J. Anim. Sci. 2010, 23, 889–900. [Google Scholar] [CrossRef]
- Moawad, S.A.; El-Ghorab, A.H.; Hassan, M.; Nour-Eldin, H.; El-Gharabli, M.M. Chemical and microbiological characterization of Egyptian cultivars for some spices and herbs commonly exported abroad. Food Nutr. Sci. 2015, 6, 643–659. [Google Scholar] [CrossRef] [Green Version]
- Pradeep, K.U.; Geervani, P.; Eggum, B.O. Common Indian spices: Nutrient composition, consumption and contribution to dietary value. Plant Foods Hum. Nutr. 1993, 44, 137–148. [Google Scholar] [CrossRef]
- Gopalan, C.; Rama Sastri, B.V.; Balasubramanian, S.K. Nutritive Value of Indian Foods, 2nd ed.; Indian Council of Medical Research: Hyderabad, India, 1989; pp. 59–93.
- Emam, O. The quality of cumin treated with gamma and microwave irradiation. Ann. Agric. Sci. Moshtohor. 2001, 39, 1601–1614. [Google Scholar]
- Khanum, F.; Krishna, K.R.S.; Semwal, A.D.; Vishwanathan, K.R. Proximate composition and mineral contents of spices. Ind. J. Nutr. Diet. 2001, 38, 93–97. [Google Scholar]
- Kazemi, H.; Mortazavian, S.M.M.; Ghorbani-Javid, M. Breeding cumin landraces (Cuminum cyminum L.) for drought tolerance based on physiological and genetical traits. J. Appl. Res. Med. Arom. Plant. 2018, 9, 78–90. [Google Scholar] [CrossRef]
- Rosa, M.; Prado, C.; Podazza, G.; Interdonato, R.; González, J.A.; Hilal, M.; Prado, F.E. Soluble sugars-metabolism, sensing and abiotic stress: A complex network in the life of plants. Plant Signal. Behav. 2009, 4, 388–393. [Google Scholar] [CrossRef] [Green Version]
- Sowbhagya, H.B.; Suma, P.F.; Mahadevamma, S.; Tharanathan, R.N. Spent residue from cumin—A potential source of dietary fiber. Food Chem. 2007, 104, 1220–1225. [Google Scholar] [CrossRef]
- Muthamma Milan, K.S.; Dholakia, H.; Kaul Tiku, P.; Vishveshwaraiah, P. Enhancement of digestive enzymatic activity by cumin (Cuminum cyminum L.) and role of spent cumin as a bionutrient. Food Chem. 2008, 110, 678–683. [Google Scholar] [CrossRef]
- Sowbhagya, H.B. Chemistry, Technology, and Nutraceutical Functions of Cumin ( Cuminum cyminum L): An Overview. Crit. Rev. Food Sci. Nutr. 2013, 53, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Sayed Ahmad, B.; Talou, T.; Straumite, E.; Sabovics, M.; Kruma, Z.; Saad, Z.; Hijazi, A.; Merah, O. Protein Bread Fortification with Cumin and Caraway Seeds and By-products Flour. Foods 2018, 7, 28. [Google Scholar] [CrossRef] [Green Version]
- Sayed Ahmad, B.; Talou, T.; Saad, Z.; Hijazi, H.; Merah, O. Chemical composition and biological activity of Foeniculum vulgare oilseed. Inform 2018, 29, 27–29. [Google Scholar] [CrossRef] [Green Version]
- Sayed Ahmed, B. Etude de L’agroraffinage des Graines d’Apiaceae, Lamiaceae et Chenopodiaceae Pour la Production de Molécules Bio-Sourcées en vue D’application en Industrie Cosmétique. Ph.D. Thesis, Institut National Polytechnique de Toulouse, Toulouse, France, 2018. [Google Scholar]
- Uitterhaegen, E.; Labonne, L.; Merah, O.; Talou, T.; Ballas, S.; Véronèse, T.; Evon, P. Optimization of thermopressing conditions for the production of binderless boards from a coriander twin-screw extrusion cake. J. Appl. Polymer Sci. 2017, 134, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Uitterhaegen, E.; Burianová, K.; Ballas, S.; Véronèse, T.; Merah, O.; Talou, T.; Stevens, C.V.; Evon, P.; Simon, V. Characterization of volatile organic compound emissions from self-bonded boards resulting from a coriander biorefinery. Ind. Crops Prod. 2018, 122, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Simon, V.; Uitterhaegen, E.; Robillard, A.; Ballas, S.; Véronèse, T.; Vilarem, G.; Merah, O.; Talou, T.; Evon, P. VOC and carbonyl compound emissions of a fiberboard resulting from a coriander biorefinery: Comparison with two commercial wood-based building materials. Environ. Sci. Pollut. Res. 2020, 27, 16121–16133. [Google Scholar] [CrossRef]
- Athamena, S.; Chalghem, I.; Kassah-Laouar, A.; Laroui, S.; Khebri, S. Activité antioxydante et antimicrobienne d’extraits de Cuminum cyminum L. Leb. Sci. J. 2010, 11, 69–81. [Google Scholar]
- Chen, Q.; Chen, Q.Q.; Gan, Z.L.; Zhao, J.H.; Wang, Y.; Zhang, S.M.; Li, J.M.; Ni, Y.Y. In vitro comparison of antioxidant capacity of cumin (Cuminum cyminum L.) oils and their main components. LWT-Food Sci. Technol. 2014, 55, 632–637. [Google Scholar] [CrossRef]
- Bettaieb Rebey, I.; Bourgou, S.; Ben Slimen Debez, I.; Jabri Karoui, I.; Hamrouni Sellami, I.; Msaada, K.; Limam, F.; Marzouk, B. Effects of extraction solvents and provenances on phenolic contents and antioxidant activities of cumin (Cuminum cyminum L.) seeds. Food Bioprocess Technol. 2012, 5, 2827–2836. [Google Scholar] [CrossRef]
- Allahghadri, T.; Rasooli, I.; Owlia, P.; Nadooshan, M.J.; Ghazanfari, T.; Taghizadeh, M.; Astaneh, S.D.A. Antimicrobial property, antioxidant capacity, and cytotoxicity of essential oil from cumin produced in Iran. J. Food Sci. 2010, 75, H54–H61. [Google Scholar] [CrossRef] [PubMed]
- Bettaieb, I.; Bourgou, S.; Wannes, W.A.; Hamrouni, I.; Limam, F.; Marzouk, B. Essential oils, phenolics, and antioxidant activities of different parts of cumin (Cuminum cyminum L.). J. Agric. Food Chem. 2010, 58, 10410–10418. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Singh Kapoor, I.; Pandey, S.K. Studies on essential oils-part thirteen: Natural antioxidant for sunflower oil. J. Sci. Ind. Res. 1998, 57, 139–142. [Google Scholar]
- Martinez-Tome, M.; Jimenez, A.M.; Ruggieri, S.; Frega, N.; Murcia, A. Antioxidant properties of Mediterranean spices compared with common food additives. J. Food Prot. 2001, 64, 1412–1419. [Google Scholar] [CrossRef]
- Shan, B.; Cai, Y.Z.; Sun, M.; Corke, H. Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. J. Agric. Food Chem. 2005, 53, 7749–7759. [Google Scholar] [CrossRef]
- Damasius, J.; Skemaite, M.; Kirkilaite, G.; Vinauskiene, R.; Venskutonis, P.R. Antioxidant and antimicrobial properties of caraway (Carum carvi L.) and Cumin (Cuminum cyminum L.) extracts. Vet. Ir Zootech. 2007, 40, 62. [Google Scholar]
- Nadeem, M.; Riaz, A. Cumin (Cuminum cyminum) as a potential source of antioxidants. Pak. J. Food Sci. 2012, 22, 101–107. [Google Scholar]
- Deepak. Importance of Cuminum cyminum L. and Carum carvi L. in traditional medicaments—A review. Ind. J. Tradit. Knowl. 2013, 12, 300–307. [Google Scholar]
- Khalil, N.; Ashour, M.; Fikry, S.; Singab, A.N.; Salama, O. Chemical composition and antimicrobial activity of the essential oils of selected Apiaceous fruits. Future J. Pharm. Sci. 2018, 4, 88e92. [Google Scholar] [CrossRef]
- Saeidi, S.; Shojaei, P.; Bazi, S.; Sanadgol, N. Antibacterial activity of some Iranian medicinal plants against important human pathogens. Asian J. Biol. Sci. 2013, 6, 331–339. [Google Scholar] [CrossRef]
- Al-Snafi, A.E. The pharmacological activities of Cuminum cyminum—A review. IOSR J. Pharm. 2016, 6, 2250–3013. [Google Scholar]
Nb. | Volatile Compounds | RI | RT | Lebanon | France | Algeria | Syria |
---|---|---|---|---|---|---|---|
Monoterpene Hydrocarbons | (%) | ||||||
1 | α-Thuyene | 927 | 6.65 | 0.30 | 0.19 | 0.13 | 0.20 |
2 | α-Pinene | 933 | 6.87 | 0.57 | 0.71 | 0.27 | 0.40 |
3 | Sabinene | 973 | 8.16 | 0.51 | 0.53 | 0.26 | 0.38 |
4 | β-Pinene | 977 | 8.29 | 11.49 | 12.61 | 10.56 | 8.21 |
5 | Myrcene | 991 | 8.73 | 0.62 | 0.40 | 0.33 | 0.51 |
6 | p-Cymene | 1025 | 10.01 | 13.77 | 10.04 | 10.30 | 7.77 |
7 | D-Limonene | 1028 | 10.16 | 0.53 | 0.39 | 0.31 | 0.49 |
9 | γ-Terpinene | 1058 | 11.37 | 10.60 | 6.44 | 8.67 | 13.14 |
12 | E-Myroxide | 1165 | 15.93 | nf | 0.05 | nf | nf |
14 | Terpinen-4-ol | 1177 | 16.42 | 1.11 | 0.20 | 1.33 | 1.35 |
15 | Terpineol | 1190 | 17.01 | nf | 0.09 | nf | nf |
20 | Phellandral | 1274 | 20.70 | 0.15 | 0.05 | 0.04 | 0.29 |
Oxygenated monoterpenes | (%) | ||||||
8 | Eucalyptol | 1031 | 10.26 | 0.30 | 0.16 | 0.19 | 0.17 |
10 | L-Fenchone | 1088 | 12.59 | 0.07 | 0.03 | nf | 0.04 |
11 | Trans-pinocarveol | 1138 | 14.73 | 0.08 | 0.10 | 0.06 | nf |
13 | Menthol | 1167 | 15.99 | nf | 0.18 | nf | nf |
17 | Cumenol | 1230 | 18.77 | nf | 0.04 | nf | 0.07 |
18 | Cuminaldehyde | 1243 | 19.32 | 43.89 | 43.93 | 49.53 | 36.19 |
19 | Carvone | 1244 | 19.39 | nf | 0.36 | nf | 0.62 |
21 | 1,3-p-Menthadien-7-al | 1284 | 21.12 | 4.40 | 4.41 | nf | 8.88 |
23 | 1,4-p-Menthadien-7-al | 1292 | 21.40 | 9.82 | 17.22 | 17.07 | 17.47 |
24 | p-Mentha-1,4-dien-7-ol | 1328 | 23.05 | nf | 0.08 | 0.10 | nf |
Phenylpropanoids | (%) | ||||||
16 | Estragol | 1198 | 17.35 | nf | 0.10 | 0.03 | nf |
22 | cis-Anethole | 1285 | 21.21 | 0.24 | 0.55 | 0.21 | 0.71 |
25 | Eugenol | 1358 | 24.32 | nf | 0.11 | nf | nf |
Monoterpene hydrocarbons | 39.65 | 31.07 | 32.20 | 32.68 | |||
Oxygenated hydrocarbons | 58.56 | 66.51 | 66.95 | 63.44 | |||
Phenylpropanoids | 0.24 | 0.76 | 0.24 | 0.71 | |||
Essential oil yield (%DM) | 1.9 b ± 0.0 | 1.7 bc ± 0.0 | 1.6 c ± 0.0 | 2.9 a ± 0.1 |
Fatty Acid | Lebanon | France | Algeria | Syria |
---|---|---|---|---|
Palmitic acid (C16:0) | 4.2 a,b ± 0.0 | 3.9 b ± 0.2 | 3.9 b ± 0.1 | 4.3 a ± 0.0 |
Palmitoleic acid (C16:1n7) | 0.3 a ± 0.0 | 0.3 a ± 0.0 | 0.2 a ± 0.0 | 0.3 a ± 0.0 |
Stearic acid (C18:0) | 0.3 b ± 0.0 | nf | 0.9 a ± 0.0 | 1.0 a ± 0.1 |
Petroselinic acid (C18:1n12) | 49.2 a,b ± 0.4 | 51.5 a ± 0.9 | 51.6 a ± 0.5 | 47.4 b ± 0.9 |
Oleic acid (C18:1n9) | 11.9 b ± 0.1 | 11.2 b ± 0.5 | 11.3 a,b ± 0.0 | 12.2 a ± 0.9 |
cis-Vaccenic acid (C18:1n7) | 1.3 a ± 0.0 | 1.5 a ± 0.2 | 1.3 a ± 0.0 | 1.2 a ± 0.0 |
Linoleic acid (C18:2n6) | 32.2 a,b ± 0.1 | 31.4 a,b ± 0.7 | 30.5 b ± 0.5 | 32.9 a ± 0.1 |
Arachidic acid (C20:0) | 0.1 a ± 0.0 | 0.1 a ± 0.0 | nf | 0.1 a ± 0.0 |
Linolenic acid (C18:3n3) | 0.5 a ± 0.0 | 0.2 b ± 0.1 | 0.3 b ± 0.0 | 0.6 a ± 0.0 |
MUFA PUFA SFA | 62.7 32.7 4.6 | 64.5 31.6 4.0 | 64.4 30.8 4.8 | 61.1 33.5 5.4 |
Vegetable oil yield (% DM) | 23.1 b ± 0.2 | 29.1 a ± 0.8 | 13.4 c ± 0.2 | 14.6 c ± 0.5 |
Sterol | Lebanon | France | Algeria | Syria |
---|---|---|---|---|
Campesterol | 26.3 b ± 1.4 | 37.7 a ± 1.0 | 39.5 a ± 1.9 | 41.6 a ± 2.9 |
Stigmasterol | 90.9 b ± 4.5 | 142.8 a ± 4.9 | 139.7 a ± 8.8 | 141.9 a ± 3.3 |
β-sitosterol | 110.3 b ± 2.6 | 160.2 a ± 2.7 | 153.4 a ± 12.8 | 154.8 a ± 2.1 |
Δ5-avenasterol | 9.5 b ± 0.6 | 14.9 a ± 0.3 | 17.0 a ± 1.4 | 18.2 a ± 2.7 |
Total | 237.0 | 355.7 | 349.5 | 356.6 |
β-sitosterol/campesterol | 4.2 | 4.2 | 3.9 | 3.7 |
Nutritional trait | Lebanon | France | Algeria | Syria |
---|---|---|---|---|
Minerals (% DM) | 10.5 a ± 0.1 | 5.4 d ± 0.1 | 8.0 c ± 0.1 | 8.7 b ± 0.1 |
Proteins (% DM) | 24.7 a ± 0.3 | 22.6 b ± 0.4 | 20.9 c ± 0.4 | 24.0 a,b ± 0.2 |
Soluble sugars (% DM) | 10.8 b ± 0.3 | 8.9 c ± 0.2 | 11.2 b ± 0.1 | 13.2 a ± 0.2 |
Source | Trait | Origin | |||
---|---|---|---|---|---|
Lebanon | France | Algeria | Syria | ||
Hydrodistillated cake (%) | Minerals | 9.3 a ± 0.4 | 5.1 c ± 0.1 | 7.7 b ± 0.2 | 6.6 b ± 0.2 |
Proteins | 21.4 a ± 0.3 | 20.1 b ± 0.0 | 16.5 c ± 0.4 | 20.3 a,b ± 0.1 | |
Soluble sugars | 2.2 a ± 0.1 | 2.1 a,b ± 0.0 | 1.8 c ± 0.1 | 1.9 b,c ± 0.0 | |
NDF | 57.0 a ± 0.3 | 50.4 b ± 0.6 | 56.9 a ± 1.0 | 58.1 a ± 0.8 | |
ADF | 22.9 c ± 0.5 | 35.6 a ± 0.6 | 26.7 b ± 1.2 | 28.2 b ± 0.6 | |
Delipidated cake (%) | Minerals | 11.0 a ± 0.0 | 5.9 d ± 0.1 | 8.5 c ± 0.0 | 9.8 b ± 0.2 |
Proteins | 30.1 a ± 0.3 | 26.6 b ± 0.5 | 22.9 d ± 0.1 | 25.0 c ± 0.2 | |
Soluble sugars | 12.5 b ± 0.5 | 9.5 c ± 0.2 | 12.5 b ± 0.5 | 14.6 a ± 0.5 | |
NDF | 59.9 a ± 0.5 | 53.2 b ± 0.8 | 58.0 a ± 0.3 | 59.3 a ± 0.4 | |
ADF | 25.6 b ± 1.4 | 42.1 a ± 0.8 | 28.7 b ± 0.9 | 28.7 b ± 0.3 |
Trait | Origin | Delipidated Cake | Hydrodistillated Cake | Aromatic Water |
---|---|---|---|---|
TPC (mg GAE/g extract) | Lebanon | 31.1 b ± 0.1 | 19.8 c ± 0.1 | 67.5 a ± 0.4 |
France | 69.4 b ± 0.5 | 20.2 c ± 0.1 | 97.3 a ± 0.1 | |
Algeria | 24.1 b ± 0.1 | 10.3 c ± 0.8 | 36.0 a ± 0.0 | |
Syria | 57.2 c ± 0.0 | 59.6 b ± 0.4 | 67.5 a ± 0.3 | |
TFC (mg Ru/g extract) | Lebanon | 14.3 b ± 0.1 | 7.5 c ± 0.0 | 21.2 a ± 0.5 |
France | 37.5 b ± 0.7 | 12.8 c ± 0.0 | 41.3 a ± 0.3 | |
Algeria | 10.3 b ± 0.1 | 3.1 c ± 0.0 | 15.4 a ± 0.0 | |
Syria | 30.1 c ± 0.1 | 36.6 b ± 0.7 | 39.1 a ± 0.1 | |
TEAC (TE µmol/g extract) | Lebanon | 65.4 b ± 0.1 | 28.2 c ± 0.1 | 128.3 a ± 0.7 |
France | 140.2 b ± 1.0 | 45.4 c ± 0.4 | 207.2 a ± 0.2 | |
Algeria | 34.8 c ± 0.5 | 36.4 b ± 0.3 | 97.6 a ± 0.5 | |
Syria | 127.3 b ± 0.1 | 124.7 c ± 0.3 | 165.4 a ± 0.4 |
Trait | Bacterial Strain | Delipidated Cake | Hydrodistillated Cake | Aromatic Water |
---|---|---|---|---|
MIC (mg/mL) | Staphylococcus aureus | 0.33 | >0.30 | >0.17 |
Enterococcus faecalis | 0.33 | >0.30 | >0.17 | |
Staphylococcus epidermidis | 0.08 | >0.30 | >0.17 | |
Escherichia coli | 0.16 | >0.15 | >0.17 | |
Pseudomonas aeruginosa | 0.33 | >0.15 | >0.17 | |
MBC (mg/mL) | Staphylococcus aureus | 0.33 | >0.30 | >0.17 |
Enterococcus faecalis | 0.33 | >0.30 | >0.17 | |
Staphylococcus epidermidis | 0.08 | >0.30 | >0.17 | |
Escherichia coli | 0.16 | >0.15 | >0.17 | |
Pseudomonas aeruginosa | 0.33 | >0.15 | >0.17 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merah, O.; Sayed-Ahmad, B.; Talou, T.; Saad, Z.; Cerny, M.; Grivot, S.; Evon, P.; Hijazi, A. Biochemical Composition of Cumin Seeds, and Biorefining Study. Biomolecules 2020, 10, 1054. https://doi.org/10.3390/biom10071054
Merah O, Sayed-Ahmad B, Talou T, Saad Z, Cerny M, Grivot S, Evon P, Hijazi A. Biochemical Composition of Cumin Seeds, and Biorefining Study. Biomolecules. 2020; 10(7):1054. https://doi.org/10.3390/biom10071054
Chicago/Turabian StyleMerah, Othmane, Bouchra Sayed-Ahmad, Thierry Talou, Zeinab Saad, Muriel Cerny, Sarah Grivot, Philippe Evon, and Akram Hijazi. 2020. "Biochemical Composition of Cumin Seeds, and Biorefining Study" Biomolecules 10, no. 7: 1054. https://doi.org/10.3390/biom10071054
APA StyleMerah, O., Sayed-Ahmad, B., Talou, T., Saad, Z., Cerny, M., Grivot, S., Evon, P., & Hijazi, A. (2020). Biochemical Composition of Cumin Seeds, and Biorefining Study. Biomolecules, 10(7), 1054. https://doi.org/10.3390/biom10071054