Supplementary Material

8-Deoxy-Rifamycin Derivatives from *Amycolatopsis mediterranei* S699 Δ*rifT* Strain

Feng Ye^{1,†}, Yanrong Shi^{1,†}, Shengliang Zhao¹, Zhiying Li¹, Haoxin Wang², Chunhua Lu¹ and Yuemao Shen^{1,2,*}

- ¹ Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, No. 44 West Wenhua Road, Jinan, Shandong 250012, China; yefeng1997@mail.sdu.edu.cn (F.Y.); yrshi910212@sdu.edu.cn (Y.S.); 201720261108@mail.sdu.edu.cn (S.Z.); 201936104@mail.sdu.edu.cn (Z.L.); ahua0966@sdu.edu.cn (C.L.)
- ² State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China; wanghaoxin@sdu.edu.cn
- * Correspondence: yshen@sdu.edu.cn; Tel.: +86-531-8838-2108
- + Contributed equally to this work.

Contents

1. Construction of the mutant strain Amycolatopsis mediterranei S699 $\Delta rifT$	4
1.1 Construction of the plasmid pOJ260-rifT	5
1.2 Construction of the mutant strain Amycolatopsis mediterranei S699 Δ rifT	5
1.3 Construction of the rifT gene complementation mutant	6
1.3.1 Construction of the rifT gene complementation plasmid	6
1.3.2 Construction of the rifT gene complementation mutant	6
1.4 HPLC analysis of the metabolites of Amycolatopsis mediterranei S699 ${\it \Delta}$ rifT and the rifT g	ene complementation
mutant strain ΔrifT::rifT	7
Figure S8. Structures of known compounds 12–18	8
2. NMR data of compounds 1–11	8
Table S1. NMR spectroscopic data for 1 in DMSO- d_6 (δ in ppm, J in Hz)	
Table S2. NMR spectroscopic data for 2 in CD ₃ OD (δ in ppm, <i>J</i> in Hz)	9
Table S3. NMR spectroscopic data for 3 in CD ₃ OD (δ in ppm, <i>J</i> in Hz)	
Table S4. NMR spectroscopic data for 4 in CD ₃ OD (δ in ppm, <i>J</i> in Hz)	11
Table S5. NMR spectroscopic data for 5 in CD ₃ OD (δ in ppm, <i>J</i> in Hz)	12
Table S6. NMR spectroscopic data for 6 in CD ₃ OD (δ in ppm, <i>J</i> in Hz)	13
Table S7. NMR spectroscopic data for 7 in CD ₃ OD (δ in ppm, J in Hz)	14
Table S8. NMR spectroscopic data for 8 in CD ₃ OD (δ in ppm, <i>J</i> in Hz)	15
Table S9. NMR spectroscopic data for 9 in CD ₃ OD (δ in ppm, <i>J</i> in Hz)	
Table S10. NMR spectroscopic data for 10 in CD ₃ OD (δ in ppm, <i>J</i> in Hz)	
Table S11. NMR spectroscopic data for 11 in CD ₃ OD (δ in ppm, <i>J</i> in Hz)	
3. NMR and HRESIMS spectra of compounds 1–11	
Figures S9–14. HRESIMS and NMR spectra of 1	19
Figures S15-17. Analysis of sugar stereochemistry in compound 1	22
Figures S18–23. HRESIMS and NMR spectra of 2	24
Figures S24–29. HRESIMS and NMR spectra of 3	27
Figures S30–35. HRESIMS and NMR spectra of 4	
Figures S36–50. HRESIMS and NMR spectra of 5	
Figures S42–47. HRESIMS and NMR spectra of 6	
Figures S48–50. HRESIMS spectra of 7–9	
Figures S51–55. NMR spectra of 7	
Figures S56–60. NMR spectra of 8	43
Figures S61–65. NMR spectra of 9	
Figures S66 and S67. HRESIMS spectra of 10 and 11	
Figures S68–72. NMR spectra of 10	
Figures S73–77. NMR spectra of 11	51
4. Bioactivity	54
4.1 Antimicrobial activity of compounds 1–18 (Figure S78)	

Table S12. Diameter of the inhibition zones and MIC of active compounds against Staphylococcus au	reus ATCC
25923	54
Table S13. The OD ₆₀₀ value of Staphylococcus aureus ATCC 25923 bacterial solution in different cor	icentration
gradients of active compounds	54
Table S14. Antiproliferative activity against KG1 cells of compounds 14-18	55
4.2 Anti-Type III secretion system (T3SS) activity of compounds 1-18 (Figure S79)	

1. Construction of the mutant strain Amycolatopsis mediterranei S699 $\Delta rifT$

А

В

Figure S1. Flow chart for the construction of *Amycolatopsis mediterranei* S699 $\Delta rifT$. (A) Construction of the plasmid pOJ260-*rifT*; (B) Construction of *Amycolatopsis mediterranei* S699 $\Delta rifT$.

1.1 Construction of the plasmid pOJ260-rifT

The left and right homologous fragments rif-HF₁ and rif-HF₂ were amplified by PCR with the primer pairs of *rifT*-HF₁-F/R and *rifT*-HF₂-F/R using the genomic DNA of *Amycolatopsis mediterranei* S699 as a template, and ligated to the vector pOJ260 by Gibson Assembly. The resulting construct pOJ260-rifT was verified by KpnI digestion, and further conformed by DNA sequencing (Figure S2).

Figure S2. Verification of the *rifT* gene knock-out plasmid pOJ260-*rifT*.

- 1.2 Construction of the mutant strain Amycolatopsis mediterranei S699 ArifT
- 1) Plasmid pOJ260-*rifT* was transformed into *Amycolatopsis mediterranei* S699 wild type strain, and the transformants were selected on YMG agar plate (60 μ g/mL Apr). The single crossover mutants were verified by PCR with the primer pairs of *rifT*-CK-F/R (Figure S3).

Figure S3. PCR verification of the single cross-over mutants.

2) The verified single crossover mutant strain was cultivated on YMG agar plates without antibiotics for four generation to allow the production of the double crossover mutants. The candidates were first selected by comparing their growth on YMG agar plates with or without Apr (60 μ g/mL). The ones which cannot grow on YMG agar plates with apramycin were further screened by PCR with the primer pairs of *rifT*-CK-F/R to identify the *rifT* gene deleted mutant strain (Figure S4).

Figure S4. PCR verification of *rifT* gene double cross-over mutant.

1.3 Construction of the rifT gene complementation mutant

1.3.1 Construction of the rifT gene complementation plasmid

The *rifT* gene was amplified by PCR with the primer pairs of *rifT*-CP-F/R and ligated into the integrative vector pSET152 to produce pSET152-pRIFK-*rifT*, which were verified by PCR and further confirmed by DNA sequencing (Figure S5).

1-5: plasmid pSET152-pRIFK-rifT

1.3.2 Construction of the rifT gene complementation mutant

1) The construct pSET152-pRIFK-*rifT* was electroporated into *Amycolatopsis mediterranei S699* Δ*rifT*. The transformants were selected on YMG agar plates (60 µg / mL Apr) and verified by PCR with the primer pairs of *rifT*-CK-F/R, *rifT*-CP-F/R and pSET152-CK-F/R to obtain the *rifT* gene complementation mutant Δ*rifT*:: *rifT* (Figure S6).

CK-: ∆*rifT* gDNA

Ck+: plasmid pSET152-pRIFK-*rifT*

1: ΔrifT::rifT gene complementation mutant gDNA

Figure S6. PCR verification of the *rifT* gene complementation mutant *ΔrifT::rifT*.

Primers used in this study			
primers	Nucleotide sequence (5' to 3')		
<i>rifT-</i> HF1-F	ccagtgccAAGCTTctcggaagtcagcgattcggccgt		
<i>rifT-</i> HF1-R	gctgctcccctcaccggcagttcga		
<i>rifT-</i> HF ₂ -F	gtgaggggggggggcgccgcggcttcatctctaagggtct		
<i>rifT-</i> HF ₂ -R	ctatgacatgattacGAATTCtcgtccgcggcgggctcg		
rifT-CK-F	gaaggggccgtcgcgacc		
<i>rifT-</i> CK-R	gatgtcgcagccgtcgacg		
<i>rifT-</i> CP-F	Ggagattcggaga CATATG gtgaaggtcgccatcct		
<i>rifT-</i> CP-R	acatgattacGAATTCttacaggtcgacgggctgc		
pSET152-CK- F	ctaccaagccgagggatgtaag		
pSET152-CK- R	gcaacgcaattaatgtgagttagct		

1.4 HPLC analysis of the metabolites of Amycolatopsis mediterranei S699 Δ rifT and the rifT gene

complementation mutant strain $\Delta rifT$::rifT

Figure S7. HPLC analysis of the *rifT* gene knock-out and complementation mutants.

No	δ _H (mult)	δc mult	HMBC	¹ H- ¹ H COSY
1	on (man.)	130.1s	TIMBE	11 11 6661
2		136.9s		
2	7.30 (s)	104.5d	C-9 C-10	
4	7.50 (3)	104.30 147 7s	C-9, C-10	
5	734(s)	103.7d	C-4 C-6 C-7 C-8	
6	7.54 (3)	153.4s	C = 0, C = 0, C = 1, C = 0	
7		100.45 127.4s		
8	7.68(s)	127.15 123.1d	C-6 C-8 C-9 C-13	H-13
9	7.00 (3)	137.1s	c 0, c 0, c 0, c 0, c 10	11 10
10		122.6s		
10		169.3s		
12		125.9s		
13	1.74 (s)	12.5a	C-11, C-12, C-29	H-29
14	2.29(s)	17.1g	C-6, C-7, C-8	
15	(=)	167.2s	_ ;, _ ;, _ ;	
16		121.0s		
17	6.23 (d. 10.7)	133.8d		H-18, H-30
18	6.64 (t, 13.1)	125.9d	C-15	H-17, H-19
19	5.93 (dd, 14.2, 6.7)	142.8d	C-16	H-18, H-20
20	2.24 (m)	40.6d		H-21, H-31
21	3.63 (dd, 8.0)	73.2d	C-32	H-20
22	1.74 (m)	36.2d		H-23, H-32
23	3.43 (m)	76.7d		H-22
24	1.67 (m)	35.0d		H-33
25	3.82 (d, 8.8)	69.9d	C-27, C-33	H-23, H-26
26	1.56 (m)	38.2d		H-25, H-34
27	3.71 (dd, 5.84)	72.3d		H-28
28	2.53 (m)	37.1d	C-27	H-29, H-34a

6.69 (d, 9.4)	147.0d	C-11, C-13	H-13, H-28	
2.04 (s)	20.6q	C-15, C-16, C-17	H-17	
0.89 (d, 6.1)	16.8q	C-19, C-20, C-21	H-20	
0.78 (d, 6.4)	10.1q	C-21, C-22, C-23	H-22	
0.82 (d, 7.2)	10.4q	C-23, C-24, C-25	H-24	
0.66 (d, 6.4)	9.0q	C-25, C-26, C-27	H-26	
0.85 (d, 6.9)	16.9q	C-27, C-28, C-29	H-28	
4.82 (s)	105.1d	C-2′, C-2	H-2′	
4.09 (s)	70.8d			
3.23	73.0d			
3.33	72.1d	C-2′, C-6′	H-5′	
3.96 (m)	71.1d		H-4′, H-6′	
1.19 (d, 5.8)	18.0q	C-1′, C-2′	H-5′	
	HO 40 40 40 40 40 40 40 40 40 40 40 40 40			
	6.69 (d, 9.4) 2.04 (s) 0.89 (d, 6.1) 0.78 (d, 6.4) 0.82 (d, 7.2) 0.66 (d, 6.4) 0.85 (d, 6.9) 4.82 (s) 4.09 (s) 3.23 3.33 3.96 (m) 1.19 (d, 5.8)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table S2. NMR spectroscopic data for **2** in CD₃OD (δ in ppm, *J* in Hz)

No.	<i>δ</i> н (mult.)	δc mult.	НМВС	¹ H- ¹ H COSY
1		180.0s		
2		142.0s		
3	7.67 (s)	117.4d	C-1, C-2, C-10	H-14
4		nd ^a		
5		nd ^a		
6		160.6s		
7		132.5s		
8	7.92 (s)	131.2d	C-1, C-6, C-10, C-14	
9		nd ^a		
10		130.5s		
11		nd ^a		
12		107.5s		
13	1.44 (s)	24.4q	C-12, C-29	
14	2.35 (s)	17.1q	C-6, C-7, C-8	
15		170.2s		
16		129.9s		
17	6.47 (d, 11.2)	138.5d	C-15, C-30	H-18, H-30
18	6.80 (dd, 11.2, 14.7)	127.6d		H-17, H-19
19	6.03 (dd, 7.9, 15.1)	145.8d	C-17	H-18, H-20
20	2.41 (m)	42.4d	C-18, C-21	H-19, H-21, H-31
21	3.76 (m)	75.7d		H-20, H-22
22	1.88 (m)	35.8d		H-23, H-32
23	3.50 (dd, 3.5, 8.7)	78.1d	C-24, C-25	H-24
24	1.81 (m)	37.6d	C-25, C-33	H-23, H-33
25	3.74 (m)	75.4d	C-24, C-33, C-34	H-24, H-26
26	1.93 (m)	34.5d		H-25, H-27, H-34
27	3.98 (d, 3.6)	89.2d	C-12, C-25, C-28	H-26
28	4.39 (d, 5.2)	71.2d		H-29
29	2.48	46.6t	C-12, C-27, C-28	H-28
	1.75 (m)			
30	2.07 (s)	20.6q	C-15, C-16, C-17	H-17
31	0.99 (d, 6.8)	17.2q	C-19, C-20, C-21	H-20

32	1.02 (d, 7.0)	11.3q	C-21, C-22, C-23	H-22
33	0.85 (d, 7.0)	10.3q	C-23, C-24, C-25	H-24
34	0.83 (d, 7.0)	12.6q	C-25, C-26, C-27	H-26

Table S3. NMR spectroscopic data for **3** in CD₃OD (δ in ppm, *J* in Hz)

No.	δн (mult.)	δc mult.	HMBC	¹ H- ¹ H COSY
1		181.3s		
2		142.3s		
3	7.67 (s)	117.9d	C-1, C-2, C-10	
4		187.2s		
5		nd ^a		
6		160.3s		
7		133.1s		
8	7.93 (s)	132.0d	C-1, C-6, C-10, C-14	
9		124.5s		
10		130.7s		
11				
12		211.0s		
13	2.17 (s)	31.3q	C-12, C-29	
14	2.35 (s)	17.6q	C-6, C-7, C-8	
15		170.4s		
16		130.1s		
17	6.47 (d, 11.0)	139.1d	C-15, C-19, C-30	H-18, H-30
18	6.80 (dd, 11.2, 15.0)	128.2d	C-17, C-20	H-17, H-19
19	6.04 (dd, 8.0, 15.0)	146.6d	C-17	H-18, H-20
20	2.41 (m)	43.0d	C-19, C-21	H-21, H-31
21	3.78 (dd, 0.7, 8.9)	76.3d	C-19, C-20, C-23, C-32	H-20, H-22
22	1.90 (m)	37.3d	C-32	H-21, H-32
23	3.50 (dd, 4.6, 7.8)	79.6d	C-21, C-24, C-25, C-33	H-22, H-24
24	1.84 (m)	39.1d	C-23, C-33	H-23, H-33
25	4.05 (dd, 2.0, 11.3)	84.2d	C-23, C-26, C-33, C-34	H-24, H-26
26	2.01 (m)	44.8d		H-25, H-27, H-34
27	3.44 (q, 8.5)	83.4d	C-29, C-34	H-26, H-28
28	3.96 (dq, 3.4, 8.6)	81.5d	C-12	H-27, H-29
29	2.76	49.1t	C-12, C-28	H-28
	2.65 (dq, 3.5, 15.6)			
30	2.07 (s)	21.1q	C-15, C-16, C-17	
31	0.99 (d, 6.2)	17.9q	C-19, C-20, C-21	H-20
32	0.97 (d, 5.8)	11.6q	C-21, C-22, C-23	H-22
33	0.95 (d, 6.6)	11.3q	C-23, C-24, C-25	H-24
34	1.04 (d, 6.5)	14.9q	C-25, C-26, C-27	H-26

No	δн (mult.)	$\delta_{\rm C}$ mult.	HMBC	¹ H- ¹ H COSY
1		181.9s		
2		143.1s		
3	7.67 (s)	116.7d	C-1,C-2,C-9	
4		nd^a		
5		nd^a		
6		161.3s		
7		133.5s		
8	7.92 (s)	132.1d	C-1,C-6,C-9,C-13	
9		136.4s		
10		ndª		
11		200.2s		
12		143.3s		
13	2.32 (s)	17.5q	C-11, C-12, C-29	H-29
14	1.97 (s)	12.8q	C-6, C-7, C-8	
15		170.8s		
16		133.0s		
17	6.52 (d, 11.3)	141.7d	C-15, C-19, C-30	H-18
18	7.13 (dd, 11.3, 15.1)	129.4d	C-17, C-19	
19	6.07 (dd, 10.2, 15.2)	146.3d	C-17, C-31	H-18, H-20
20	2.49 (m)	48.2d		H-31
21	3.88 (m)	78.0d	C-19	H-20, H-22
22	1.65 (m)	43.8d		H-23, H-32
23	3.27 (dd, 3.1, 9.9)	82.1d		H-22, H-24
24	1.93 (m)	34.5d		H-33
25	3.97 (d, 8.6)	73.7d	C-34	H-26
26	1.48 (m)	41.8d		H-25, H-34
27	3.17 (t, 10.2)	74.2d	C-29, C-34	H-26, H-28
28	2.51 (m)	49.8d		H-29, H-34a
29	5.75 (d, 8.2)	145.8d	C-11, C-14	H-14, H-28
30	4.46 (m)	65.7t	C-15, C-16, C-17	
	4.24 (m)			
31	1.14 (d, 6.9)	20.3q	C-19, C-20, C-21	H-20
32	0.66 (d, 7.0)	12.2q	C-21, C-22, C-23	H-22
33	1.06 (d, 7.0)	12.1q	C-23, C-24, C-25	H-24
34	0.80 (d, 6.4)	12.9q	C-25, C-26, C-27	H-26
34a	5.12 (d, 4.1)	94.8d	C-25	H-28

Table S5. NMR spectroscopic data for **5** in CD₃OD (δ in ppm, *J* in Hz)

No.	δн (mult.)	$\delta_{\rm C}$ mult.	HMBC	¹ H- ¹ H COSY
1		181.1s		
2		124.7s		
3	7.60 (s)	118.9d	C-1, C-5, C-10	
4		188.0s		
5		129.3s		
6		164.0s		
7		133.6s		
8	7.96 (s)	132.5d	C-1, C-6, C-10, C-14	
9		126.9s		
10		132.9s		
11		201.1s		
12		142.6s		
13	2.11 (s)	13.2q	C-11, C-12, C-29	H-29
14	2.36 (s)	17.7q	C-6, C-7, C-8	
15		173.5s		
16		132.5s		
17	6.24 (d, 10.8)	135.6d	C-15, C-19, C-30	H-18
18	6.49 (dd, 11.0, 15.9)	126.9d	C-17, C-20	H-17
19	6.08 (dd, 6.7, 15.9)	142.0d	C-17, C-20, C-21	H-18, H-20
20	2.31 (m)	39.8d		H-19, H-21
21	4.03 (m)	75.5d	C-32	H-20, H-22
22	1.86 (m)	35.0d	C-32	H-32
23	3.48 (dd, 1.9, 10.4)	79.5d	C-21	H-24
24	1.78 (m)	38.7d	C-23	H-23, H-33
25	3.97 (m)	71.9d	C-23, C-24, C-26, C-33	H-26
26	1.38 (m)	44.5d	C-25, C-34	H-25, H-34
27	4.30 (s)	69.2d	C-25, C-26, C-28, C-29, C-34, C-34a	H-26, H-28
28	2.86 (m)	46.8d	C-12, C-29, C-34a	H-29, H-34a
29	6.26 (dd, 1.1, 10.4)	140.5d	C-11, C-13	H-28
30	2.09 (s)	20.9q	C-15, C-16, C-17	H-17
31	0.91 (d, 6.9)	18.7q	C-19, C-20, C-21	H-20
32	1.05 (d, 7.0)	11.8q	C-21, C-22, C-23	H-22
33	0.71 (d, 6.8)	9.5q	C-23, C-24, C-25	H-24
34	0.38 (d, 7.0)	12.3q	C-25, C-26, C-27	H-26
34a	4.00, 4.01 (m)	66.4t	C-27, C-35	H-28
35		173.0s		
36	2.03 (s)	21.5q	C-35	

Table S6. NMR spectroscopic data for **6** in CD₃OD (δ in ppm, *J* in Hz)

No.	<i>δ</i> н (mult.)	$\delta_{\rm C}$ mult.	HMBC	¹ H- ¹ H COSY
1		ndª		
2		ndª		
3	7.61 (s)	118.7d	C-1, C-5, C-10	
4		nd ^a		
5		nd ^a		
6		160.6s		
7		133.1s		
8	7.97 (s)	132.0d	C-1, C-6, C-10, C-14	
9		ndª		
10		ndª		
11		201.3s		
12		138.5s		
13	2.04 (d,1.0)	12.2q	C-11, C-12, C-29	H-29
14	2.37 (s)	17.5q	C-6, C-7, C-8	
15		173.3s		
16		133.5s		
17	6.28 (d, 11.1)	135.0d	C-18, C-30	
18	6.53 (dd, 11.2, 16.6)	128.9d		H-17,H-19
19	6.01 (dd, 6.4, 15.2)	137.8d	C-18, C-20	H-18,H-20
20	2.43 (m)	48.1d		H-19, H-21, H-31
21	4.24 (dd, 2.0, 8.6)	72.2d		H-20, H-22
22	1.94 (m)	35.5d		H-21, H-23, H-32
23	3.46 (dd, 2.3, 9.9)	79.4d		H-22, H-24
24	1.77 (m)	38.7d		H-23, H-33
25	3.95 (d, 9.6)	71.6d	C-33	H-26
26	1.40 (m)	44.1d		H-25, H-34
27	3.98 (s)	74.5d	C-29, C-34, C-34a	H-28
28	2.61 (m)	41.4d		H-29, H-34a
29	6.42 (dd, 2.0, 9.2)	147.0d	C-11, C-13	H-13, H-28
30	2.08 (s)	20.6q	C-15, C-16, C-17	H-17
31	3.52, 3.53 (d, 4.8)	63.9t	C-19, C-21	H-20
32	1.07 (d, 3.2)	12.5q	C-21, C-22, C-23	H-22
33	0.73 (d, 6.8)	9.3q	C-23, C-24, C-25	H-24
34	0.36 (d, 7.0)	11.5q	C-25, C-26, C-27	H-26
34a	1.06 (d, 3.3)	20.0q	C-27, C-35	H-28

Table S7. NMR spectroscopic data for **7** in CD₃OD (δ in ppm, *J* in Hz)

No.	δн (mult.)	δc mult.	HMBC	¹ H- ¹ H COSY
1		180.5s		
2		141.2s		
3	7.61 (s)	118.2d	C-1, C-2, C-10	
4		nd ^a		
5		nd ^a		
6		160.0s		
7		nd ^a		
8	7.97 (s)	131.6d	C-1, C-6, C-10, C-14	
9		nd ^a		
10		132.0s		
11		201.1s		
12		140.7s		
13	2.09 (s)	12.6q	C-11, C-12, C-29	H-29
14	2.36 (s)	17.1q	C-6, C-8, C-10	
15		172.7s		
16		133.4s		
17	6.29 (dd, 1.0, 11.0)	134.6d	C-15, C-30	H-18, H-30
18	6.53 (dd, 11.0, 15.9)	128.4d	C-20	H-17, H-19
19	6.01 (dd, 7.0, 15.8)	137.5d	C-17	H-18, H-20
20	2.42 (m)	47.4d		H-21, H-31
21	4.26 (1.8, 9.1)	71.7d	C-32	H-20, H-22
22	1.95 (m)	35.2d	C-32	H-32
23	3.47 (m)	79.1d	C-25	H-22, H-24
24	1.78 (m)	38.5d		H-23, H-33
25	3.96 (dd, 1.0, 10.2)	71.2d	C-33	H-24, H-26
26	1.40 (m)	44.0d		H-25, H-34
27	4.37 (m)	68.8d	C-25, C-28, C-29, C-34, C-34a	H-26, H-28
28	2.66 (m)	49.7d		H-29, H-34a
29	6.32 (dd, 1.1, 9.4)	141.9d	C-11, C-13	H-13, H-28
30	2.08 (s)	20.1q	C-15, C-16, C-17	H-17
31	3.54 (m)	63.5t	C-19, C-20, C-21	H-20
32	1.08 (d, 7.0)	12.0q	C-21, C-22, C-23	H-22
33	0.73 (d, 6.8)	8.8q	C-23, C-24, C-25	H-24
34	0.39 (d, 7.0)	11.7q	C-25, C-26, C-27	H-26
34a	3.56 (m)	64.3t		H-28

Table S8. NMR spectroscopic data for **8** in CD₃OD (δ in ppm, *J* in Hz)

No.	δн (mult.)	δc mult.	НМВС	¹ H- ¹ H COSY
1		181.0s		
2		133.7s		
3	7.59 (s)	118.5d	C-1, C-5, C-10	
4		188.0d		
5		129.1s		
6		160.7s		
7		132.2s		
8	7.93 (s)	132.0d	C-1, C-7, C-10, C-14	H-14
9		124.2s		
10		142.5s		
11		201.2s		
12		141.7s		
13	2.10 (s)	13.0q	C-11, C-12, C-29, C-30	
14	2.38 (s)	17.5q	C-6, C-7, C-8	
15		170.9s		
16		134.3s		
17	6.51 (d, 10.9)	140.0d	C-15, C-18, C-19, C-30	H-18
18	6.90 (dd, 11.0, 16.1)	127.4d	C-16, C-17, C-20	H-19
19	6.36 (dq, 1.3, 7.4)	146.2d	C-17, C-20, C-21	H-18, H-20
20	2.32 (m)	39.3s	C-18, C-19, C-21, C-31	H-21, H-31
21	4.05 (d, 9.9)	76.6d	C-19, C-20, C-32	H-20, H-22
22	1.93 (m)	34.6d	C-32	H-21, H-23, H-32
23	3.49 (dd, 1.8, 10.3)	79.5d	C-21, C-24, C-32, C-33	H-22, H-24
24	1.81 (m)	38.4d	C-23, C-33	H-23, H-25, H-33
25	3.97 (dd, 1.2, 10.2)	71.7d	C-23, C-24, C-26, C-27, C-33	H-24, H-26
26	1.42 (m)	44.5d	C-25, C-34	H-25, H-34
27	4.38 (d, 6.6)	69.6d	C-25, C-26, C-28, C-29, C-34, C-34a	H-26, H-28
28	2.69 (q, 7.2, 16.6)	50.3d	C-29, C-30	H-27, H-29, H-34a
29	6.34 (d, 6.4)	142.0d	C-11, C-12, C-13, C-27	H-13, H-28
30	4.23, 4.36 (dq, 12.1)	65.4t	C-15, C-16, C-17	
31	0.94 (d, 7.0)	18.2q	C-19, C-21	H-20
32	1.06 (d, 7.0)	11.3q	C-21, C-22, C-23	H-22
33	0.74 (d, 6.8)	9.4q	C-23, C-24, C-25	H-24
34	0.42 (d, 7.0)	11.9q	C-25, C-26, C-27	H-26
34a	3.43, 3.61 (dq, 7.9, 10.9)	65.0t	C-27, C-28, C-29	H-28

nd^a: not observed and/or not defined

Table S9. NMR spectroscopic data for **9** in CD₃OD (δ in ppm, *J* in Hz)

No.	δн (mult.)	$\delta_{\rm C}$ mult.	HMBC	¹ H- ¹ H COSY
1		181.0s		
2		142.0s		
3	7.58 (s)	119.0d	C-1, C-2, C-10	
4		188.0s		
5		nd ^a		
6		160.7s		
7		132.3s		
8	7.94 (s)	132.4d	C-1, C-7, C-9, C-10, C-14	H-14
9		129.1s		
10		132.5s		
11		201.1s		
12		142.2s		
13	2.08 (s)	13.2q	C-11, C-12, C-29	H-29
14	2.35 (s)	17.7q	C-6, C-7, C-8	
15		172.2s		
16		133.4s		
17	6.24 (dd, 0.8,10.8)	135.9d	C-15, C-18, C-19, C-30	H-18, H-30
18	6.45 (dd, 10.9, 15.9)	126.0d	C-16, C-17, C-21	H-17, H-19
19	5.95 (d, 16.0)	148.2d	C-17, H-18, C-20, C-31	H-18
20		76.9d		
21	3.94 (br d, 0.8)	76.6d	C-19, C-22, C-23, C-32	H-22
22	2.00 (m)	35.2d	C-32	H-21, H-23, H-32
23	3.42 (d, 6.8)	80.7d	C-21, C-22, C-24, C-32, C-33	H-22, H-24
24	1.71 (m)	38.9d	C-23, C-33	H-23, H-33
25	3.92 (dd, 1.0, 10.2)	72.2d	C-23, C-24, C-26, C-27, C-33	H-24, H-26
26	1.39 (m)	44.5d	C-25, C-34	H-25, H-34
27	4.35 (br s)	69.7d	C-25, C-26, C-28, C-29, C-34,	H-26, H-28
			C-34a	
28	2.65 (dq, 1.2, 7.9)	50.3d	C-12, C-29, C-34a	H-27, H-29, H-34a
29	6.29 (dd, 0.7, 9.5)	142.5d	C-11, C-13, C-27, C-28, C-34a	H-28
30	2.09 (s)	20.9q	C-15, C-16, C-17	H-17
31	1.02 (s)	26.7q	C-19, C-20, C-21	
32	1.17 (d, 7.0)	14.5q	C-21, C-22, C-23	H-22
33	0.74 (d, 6.8)	9.7q	C-23, C-24, C-25	H-24
34	0.40 (d, 7.0)	12.3q	C-25, C-26, C-27	H-26
34a	3.40, 3.59 (dq, 1.8, 9.7)	65.0t	C-27, C-28, C-29	H-28

Table S10. NMR spectroscopic data for **10** in CD₃OD (δ in ppm, *J* in Hz)

No.	δн (mult.)	δc mult.	НМВС	¹ H- ¹ H COSY
1		181.0s		
2		142.6s		
3	7.59 (s)	119.2d	C-1, C-2, C-10	H-14
4		nd ^a		
5		nd ^a		
6		161.4s		
7		131.5s		
8	7.92 (s)	132.0d	C-1, C-6, C-10, C-14	
9		nd ^a		
10		133.0s		
11		201.4s		
12		142.2s		
13	2.07 (s)	13.2q	C-11, C-12, C-29	
14	2.34 (s)	17.5q	C-6, C-7, C-8	
15		173.3s		
16		134.3s		
17	6.26 (dd, 1.1, 10.9)	133.3d	C-15, C-16, C-30	H-30
18	6.13 (dd, 11.0, 15.1)	130.4d	C-16, C-20	H-17
19	5.82 (dd, 12.4, 15.1)	136.6d	C-17, C-31	H-18, H-20
20	1.85 (m)	52.7d	C-18, C-19, C-31	H-19
21	3.81 (m)	73.9d	C-19, C-22, C-32	H-20, H-22
22	2.93 (m)	50.0d	C-21, C-32	H-21, H-32
23		211.3s	C-24, C-25	
24	2.45 (m)	50.8d	C-33	H-25, H-33
25	3.86 (m)	71.5d	C-26, C-27, C-33	H-24, H-26
26	1.32 (m)	42.8d	C-25	H-25, H-34
27	4.41 (m)	68.9d	C-25, C-26, C-28, C-29, C-34, C-34a	H-26, H-28
28	2.56 (m)	49.7d	C-29, C-34a	H-34a
29	6.23 (dd, 1.4, 9.2)	141.3d	C-11, C-13, C-27	H-28
30	2.04 (s)	20.9q	C-15, C-16, C-17	H-17
31	4.37, 4.23 (m)	65.1t	C-19	
32	1.03 (d, 6.8)	15.5q	C-21, C-22	H-22
33	1.13 (d, 7.4)	8.5q	C-24, C-25	H-24
34	0.44 (d, 7.0)	12.2q	C-25, C-26, C-27	H-26
34a	3.50, 3.39 (m)	65.0t	C-27, C-28, C-29	H-28

Table S11. NMR spectroscopic data for **11** in CD₃OD (δ in ppm, *J* in Hz)

No.	δн (mult.)	$\delta_{\rm C}$ mult.	HMBC	¹ H- ¹ H COSY
1		179.7s		
2		141.8s		
3	7.43 (s)	119.0d	C-1, C-2, C-10	
4		nd ^a		
5		nd ^a		
6		162.0s		
7		132.9s		
8	7.89 (s)	131.2d	C-1, C-6, C-10, C-14	
9				
10		133.0s		
11		200.3s		
12		142.9s		
13	2.04 (s)	12.5q	C-11, C-12, C-29	H-29
14	2.31 (s)	16.8q	C-6, C-7, C-8	
15		172.0s		
16		132.9s		
17	6.22 (m)	134.5d	C-15, C-19, C-30	H-30
18	6.29 (m)	124.3d	C-16, C-20	H-19
19	5.84 (d, 14.4)	142.8d	C-17, C-20	H-18
20		82.3s		
21	3.80 (d, 10.5)	86.4d	C-19, C-22, C-31, C-32	H-22
22	1.79 (m)	48.3d	C-21, C-23, C-32	H-21, H-32
23		106.8s		
24	1.91 (m)	43.0d	C-23, C-33	H-33
25	4.23 (dd, 0.7, 10.2)	73.8d	C-33	H-24, H-26
26	1.46 (m)	43.7d		H-25, H-27, H-34
27	4.28 (br s)	68.3d	C-25, C-26, C-28, C-29, C-34,	H-26
			C-34a	
28	2.56 (m)	48.9d	C-29, C-34a	H-29, H-34a
29	6.25 (m)	142.0d	C-11, C-13	H-13, H-28
30	2.08 (s)	20.3q	C-15, C-16, C-17	H-17
31	1.31 (s)	28.7q	C-19, C-20, C-21	
32	1.13 (d, 6.5)	13.0q	C-21, C-22, C-23	H-22
33	0.97 (d, 7.2)	8.6q	C-23, C-24, C-25	H-24
34	0.55 (d, 8.1)	12.4q	C-25, C-26, C-27	H-26
34a	3.46, 3.35 (m)	64.8t		H-28

3. NMR and HRESIMS spectra of compounds 1–11

Figures S9–14. HRESIMS and NMR spectra of 1

Figure S9. HRESIMS spectrum of 1.

Figure S11. ¹³C NMR spectrum of 1 in DMSO-d₆ (150 MHz).

Figures S15-17. Analysis of sugar stereochemistry in compound 1

Due to the instability of amide *N*-glycoside, compound **1** occurs spontaneous hydrolysis of glycosidic bond and transform to corresponding aglycone proansamycin B-M1 and deoxyhexapyranose moiety. The process was recorded by HPLC as following:

Figure

S15. HPLC detection of degradation of compound **1**.

Compound 1 and its degradation mixture (10mg) was subjected to column chromatography (CC) over silica gel (CH₂Cl₂: MeOH 10 : 1 ; 5:1 and 1:1) to afford Fr. 1A (from 10 : 1 eluent), Fr. 1B (1.3 mg, from 5:1 eluent) and Fr. 1C (from 5:1 eluent). The components were detected by TLC as following:

Figure S16. TLC detection of compound 1 degradation mixture and components Fr. 1A–C.

Figure S17. Comparison of ¹H NMR of deoxyhexapyranose moiety with α -*L*-rhamnose standard in D₂O.

Figures S18–23. HRESIMS and NMR spectra of 2

Figure S19. ¹H NMR spectrum of 2 in CD₃OD (400 MHz).

Figures S24–29. HRESIMS and NMR spectra of 3

Figures S30–35. HRESIMS and NMR spectra of 4

3. 5

2 0

2.5

5

s. c

7.5

7.0

6.5

6

5.5

5.0

-100

0.5

1.0

1 5

Figures S36–50. HRESIMS and NMR spectra of 5

Figures S42–47. HRESIMS and NMR spectra of 6

Figures S48–50. HRESIMS spectra of 7–9

Figures S56–60. NMR spectra of 8

Figures S61–65. NMR spectra of 9

Figure S61. ¹H NMR spectrum of 9 in CD₃OD (400 MHz).

Figures S66 and S67. HRESIMS spectra of 10 and 11

Figure S67. HRESIMS spectrum of 11.

Figure S73. ¹H NMR spectrum of 11 in CD₃OD (400 MHz).

4. Bioactivity

4.1 Antimicrobial activity of compounds 1–18 (Figure S78)

Figure S78. Antimicrobial activity of compounds **1–18.** (a) The inhibitory activity of compounds **1–18** (20 µg each) against *Staphylococcus aureus* ATCC 25923; (b) The inhibitory activity of compounds **1–18** (20 µg each) against the *Proteusbacillus vulgaris* CPCC 160013. In the assays against bacteria, rifampicin and kanamycin were used as the positive control. Methanol was used as the blank control for antimicrobial experiments.

Table S12. Diameter of the inhibition zones and MIC of active compounds against Staphylococcus aureus ATCC 25923.

Test compounds	2	3	5	6	13	15
diameter of the inhibition zones (mm)	12	14	13	15	12	10
MIC (µg/mL)	10	20	20	20	40	20

Table 13. The OD ₆₀₀ value of Staphylococcus	aureus ATCO	25923	bacterial	solution	in	different
concentration gradients of active compounds.						

Concentration (µg/mL)	320	160	80	40	20	10	5	2.5	1.25	0.625
2	0.0487	0.0473	0.0483	0.0485	0.0665	0.0685	0.4328	0.7804	0.7513	0.8952
3	0.0458	0.0446	0.0465	0.0453	0.0923	0.26	0.7743	0.7798	0.8095	0.9738
5	0.0497	0.0467	0.0473	0.0483	0.0846	0.1611	0.6428	0.8907	0.9731	1.1691
6	0.0428	0.0417	0.046	0.0454	0.0763	0.4787	0.6645	0.867	0.9723	1.2392
13	0.0474	0.0459	0.057	0.08 <mark>73</mark>	0.6734	0.9208	1.0208	1.2659	1.3653	1.3515
15	0.0504	0.045	0.0509	0.0639	0.0566	0.1278	0.1972	0.5912	0.704	0.9647

compounds	OD480-1	OD480-2	OD480-3	OD ₄₈₀ average	calculated value	growth rate	inhibition rate
14	0.295	0.2878	0.3018	0.294866667	0.108436667	9.273877433	90.72612257
	0.2716	0.271	0.2784	0.273666667	0.087236667	7.460780373	92.53921963
	0.8105	0.8656	0.8472	0.8411	0.65467	55.98963456	44.01036544
	1.4018	1.3477	1.3153	1.354933333	1.168503333	99.93443202	0.065567975
	1.4089	1.4328	1.3265	1.3894	1.20297	102.8821401	-2.882140139
15	0.6377	0.5611	0.538	0.578933333	0.392503333	33.56823773	66.43176227
	1.0721	1.0962	0.8926	1.0203	0.83387 71.31543613		28.68456387
	1.2205	1.219	1.1652	1.201566667	1.015136667	86.81798615	13.18201385
	1.2933	1.2337	1.1951	1.2407	1.05427	90.16480368	9.835196319
	1.2729	1.3385	1.246	1.2858	1.09937	94.02191111	5.978088893
16	0.2741	0.2705	0.2735	0.2727	0.08627	7.378107708	92.62189229
	0.2341	0.2325	0.2329	0.233166667	0.046736667	3.9970808	96.0029192
	0.2188	0.2214	0.2243	0.2215	0.03507	2.99930726	97.00069274
	0.2267	0.2039	0.2379	0.222833333	0.036403333	3.113338522	96.88666148
	0.963	0.9325	0.9556	0.950366667	0.763936667 65.3344964		34.66550355
17	0.236	0.2416	0.2404	0.239333333	0.057116333	5.491955128	94.50804487
	0.234	0.2313	0.2377	0.234333333	0.052116333	5.011185897	94.9888141
	0.8773	0.8335	0.8595	0.856766667	0.674549667	64.86054487	35.13945513
	1.4527	1.4084	1.2972	1.3861	1.203883	115.7579808	-15.75798077
	1.5162	1.4173	1.4725	1.468666667	1.286449667	123.6970833	-23.69708333
18	0.2406	0.2441	0.244	0.2429	0.060683	5.834903846	94.16509615
	0.2155	0.215	0.2157	0.2154	0.033183	3.190673077	96.80932692
	0.2068	0.2075	0.2584	0.224233333	0.042016333	4.040032051	95.95996795
	0.9891	0.9755	1.0742	1.012933333	0.830716333	79.87657051	20.12342949
	1.2731	1.2964	1.3848	1.3181	1.135883	109.2195192	-9.219519231

 Table 14. Antiproliferative activity against KG1 cells of compounds 14-18.

4.2 Anti-Type III secretion system (T3SS) activity of compounds 1-18 (Figure S79)

Figure S79. SDS-PAGE analysis of the inhibitory activity of compounds **1–18** (100 μ M, respectively) against the T3SS of *S. enterica* Typhimurium UK-1 χ 8956. Cytosporone B (Csn-B), an octaketide, isolated from the endophytic fungus *Dothiorella* sp. HTF3 strain, exhibited a strong inhibitory effect on the secretion of SPI-1 effectors (SipA, SipB, SipC, SipD) without evident effects on the flagellar protein FliC. Thus it was used as the positive control. DMSO: vehicle control; SipC: SPI-1 effector protein; FliC: flagellin protein.