Circular RNA—Is the Circle Perfect?
Abstract
:1. Introduction
2. Circular RNA—Complex Molecule
2.1. Prevalence
2.2. Properties of circRNA
2.3. CircRNAs Localisation
2.4. Biogenesis
2.5. CircRNA Functions
2.5.1. m6A Modifications
2.5.2. CircRNA–Proteins Interactions
- It binds to both proteins and strengthens the interaction between them (cements). This effect is achieved by the following two mechanisms: circRNA mediates the post-translational changes (ubiquitination and phosphorylation) of protein A catalysed by protein B or the transactivation of protein A by protein B followed by subsequent changes;
- It binds only to one of the proteins that strengthen or dissociate the interaction between the two proteins;
- It binds to both proteins and dissociates them (normally they combine) [23].
2.5.3. Binding or Sequestration of Proteins
2.6. Circular RNA in Essential Processes—Cell Cycle, Proliferation, Apoptosis
3. Circular RNA—A Potential Biomarker in Cancer
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Z.; Cheng, Y.; Wu, F.; Wu, L.; Cao, H.; Wang, Q.; Tang, W. The emerging landscape of circular RNAs in immunity: Breakthroughs and challenges. Biomark. Res. 2020, 8, 25. [Google Scholar] [CrossRef]
- Sanger, H.L.; Klotz, G.; Riesner, D.; Gross, H.J.; Kleinschmidt, A.K. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc. Natl. Acad. Sci. USA 1976, 73, 3852–3856. [Google Scholar] [CrossRef] [Green Version]
- Laurent, G.S.; Wahlestedt, C.; Kapranov, P. The Landscape of long noncoding RNA classification. Trends Genet. 2015, 31, 239–251. [Google Scholar] [CrossRef] [Green Version]
- Guria, A.; Sharma, P.; Natesan, S.; Pandi, G. Circular RNAs—The road less traveled. Front. Mol. Biosci. 2020, 6, 146. [Google Scholar] [CrossRef]
- Zhou, M.Y.; Yang, J.M.; Xiong, X.D. The emerging landscape of circular RNA in cardiovascular diseases. J. Mol. Cell. Cardiol. 2018, 122, 134–139. [Google Scholar] [CrossRef]
- Boeckel, J.N.; Jaé, N.; Heumüller, A.W.; Chen, W.; Boon, R.A.; Stellos, K.; Zeiher, A.M.; John, D.; Uchida, S.; Dimmeler, S. Identification and characterization of hypoxia-regulated endothelial circular RNA. Circ. Res. 2015, 117, 884–890. [Google Scholar] [CrossRef] [Green Version]
- Cheng, D.; Wang, J.; Dong, Z.; Li, X. Cancer-related circular RNA: Diverse biological functions. Cancer Cell Int. 2021, 21, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-L. The biogenesis and emerging roles of circular RNAs. Nat. Rev. Mol. Cell Biol. 2016, 17, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Ebbesen, K.K.; Hansen, T.B.; Kjems, J. Insights into circular RNA biology. RNA Biol. 2017, 14, 1035–1045. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Huang, S. Circular RNA: An emerging non-coding RNA as a regulator and biomarker in cancer. Cancer Lett. 2018, 418, 41–50. [Google Scholar] [CrossRef]
- Memczak, S.; Jens, M.; Elefsinioti, A.; Torti, F.; Krueger, J.; Rybak, A.; Maier, L.; Mackowiak, S.D.; Gregersen, L.H.; Munschauer, M.; et al. Circular rnas are a large class of animal rnas with regulatory potency. Nature 2013, 495, 333–338. [Google Scholar] [CrossRef]
- Belousova, E.A.; Filipenko, M.L.; Kushlinskii, N.E. Circular RNA: New regulatory molecules. Bull. Exp. Biol. Med. 2018, 164, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.O.; Wang, H.B.; Zhang, Y.; Lu, X.; Chen, L.L.; Yang, L. Complementary sequence-mediated exon circularization. Cell 2014, 159, 134–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salzman, J. Circular RNA expression: Its potential regulation and function. Trends Genet. 2016, 32, 309–316. [Google Scholar] [CrossRef] [Green Version]
- You, X.; Vlatkovic, I.; Babic, A.; Will, T.; Epstein, I.; Tushev, G.; Akbalik, G.; Wang, M.; Glock, C.; Quedenau, C.; et al. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat. Neurosci. 2015, 18, 603–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- circAtlas2.0. Available online: http://circatlas.biols.ac.cn/ (accessed on 25 October 2021).
- Salzman, J.; Gawad, C.; Wang, P.L.; Lacayo, N.; Brown, P.O. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE 2012, 7, e30733. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Yang, Y.; Shan, G. Identification and detection of mecciRNAs. Methods 2021, in press. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, X.; Li, J.; Hu, S.; Deng, Y.; Yin, H.; Bao, X.; Zhang, Q.C.; Wang, G.; Wang, B.; et al. Identification of mecciRNAs and their roles in the mitochondrial entry of proteins. Sci. China Life Sci. 2020, 63, 1429–1449. [Google Scholar] [CrossRef]
- Meng, X.; Li, X.; Zhang, P.; Wang, J.; Zhou, Y.; Chen, M. Circular RNA: An emerging key player in RNA world. Brief. Bioinform. 2017, 18, 547–557. [Google Scholar] [CrossRef]
- Mehta, S.L.; Dempsey, R.J.; Vemuganti, R. Role of circular RNAs in brain development and CNS diseases. Prog. Neurobiol. 2020, 186, 101746. [Google Scholar] [CrossRef]
- Enuka, Y.; Lauriola, M.; Feldman, M.E.; Sas-Chen, A.; Ulitsky, I.; Yarden, Y. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res. 2016, 44, 1370–1383. [Google Scholar] [CrossRef]
- Zhou, W.Y.; Cai, Z.R.; Liu, J.; Wang, D.S.; Ju, H.Q.; Xu, R.H. Circular RNA: Metabolism, functions and interactions with proteins. Mol. Cancer 2020, 19, 172. [Google Scholar] [CrossRef] [PubMed]
- Qu, S.; Yang, X.; Li, X.; Wang, J.; Gao, Y.; Shang, R.; Sun, W.; Dou, K.; Li, H. Circular RNA: A new star of noncoding RNAs. Cancer Lett. 2015, 365, 141–148. [Google Scholar] [CrossRef] [PubMed]
- He, A.T.; Liu, J.; Li, F.; Yang, B.B. Targeting circular RNAs as a therapeutic approach: Current strategies and challenges. Signal Transduct. Target. Ther. 2021, 6, 185. [Google Scholar] [CrossRef] [PubMed]
- Shang, Q.; Yang, Z.; Jia, R.; Ge, S. The novel roles of circRNAs in human cancer. Mol. Cancer 2019, 18, 6. [Google Scholar] [CrossRef]
- Fanale, D.; Taverna, S.; Russo, A.; Bazan, V. Circular RNA in Exosomes. Adv. Exp. Med. Biol. 2018, 1087, 109–117. [Google Scholar] [CrossRef]
- Pucci, M.; Asiáin, P.R.; Sáez, E.D.; Jantus-Lewintre, E.; Malarani, M.; Khan, S.; Fontana, S.; Naing, A.; Passiglia, F.; Raez, L.E.; et al. Extracellular vesicles as miRNA nano-shuttles: Dual role in tumor progression. Target. Oncol. 2018, 13, 175–187. [Google Scholar] [CrossRef] [PubMed]
- Ruivo, C.F.; Adem, B.; Silva, M.; Melo, S.A. The biology of cancer exosomes: Insights and new perspectives. Cancer Res. 2017, 77, 6480–6488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boukouris, S.; Mathivanan, S. Exosomes in bodily fluids are a highly stable resource of disease biomarkers. Proteom. Clin. Appl. 2015, 9, 358–367. [Google Scholar] [CrossRef] [Green Version]
- Wilusz, J.E. Controlling translation via modulation of tRNA levels. Wiley Interdiscip. Rev. RNA 2015, 6, 453–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilusz, J.E. A 360 view of circular RNAs: From biogenesis to functions. Wiley Interdiscip. Rev. RNA 2018, 9, e1478. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, A.; Memczak, S.; Wyler, E.; Torti, F.; Porath, H.T.; Orejuela, M.R.; Piechotta, M.; Levanon, E.Y.; Landthaler, M.; Dieterich, C.; et al. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep. 2015, 10, 170–177. [Google Scholar] [CrossRef] [Green Version]
- Meng, S.; Zhou, H.; Feng, Z.; Xu, Z.; Tang, Y.; Li, P.; Wu, M. CircRNA: Functions and properties of a novel potential biomarker for cancer. Mol. Cancer 2017, 16, 94. [Google Scholar] [CrossRef] [PubMed]
- Starke, S.; Jost, I.; Rossbach, O.; Schneider, T.; Schreiner, S.; Hung, L.H.; Bindereif, A. Exon circularization requires canonical splice signals. Cell Rep. 2015, 10, 103–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, L.; Jiang, Z.; Li, T.; Hu, Y.; Guo, J. Circular RNA s in hepatocellular carcinoma: Functions and implications. Cancer Med. 2018, 7, 3101–3109. [Google Scholar] [CrossRef] [PubMed]
- Ashwal-Fluss, R.; Meyer, M.; Pamudurti, N.R.; Ivanov, A.; Bartok, O.; Hanan, M.; Evantal, N.; Memczak, S.; Rajewsky, N.; Kadener, S. circRNA biogenesis competes with pre-mRNA splicing. Mol. Cell. 2014, 5, 55–66. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Du, W.W.; Zeng, K.; Wu, N.; Fang, L.; Lyu, J.; Yee, A.J.; Yang, B.B. An antisense circular RNA circSCRIB enhances cancer progression by suppressing parental gene splicing and translation. Mol. Ther. 2021, 29, 2754–2768. [Google Scholar] [CrossRef] [PubMed]
- Jeck, W.R.; Sorrentino, J.A.; Wang, K.; Slevin, M.K.; Burd, C.E.; Liu, J.; Marzluff, W.F.; Sharpless, N.E. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 2013, 19, 141–157. [Google Scholar] [CrossRef] [Green Version]
- Guarnerio, J.; Bezzi, M.; Jeong, J.C.; Pafenholz, S.V.; Berry, K.; Naldini, M.M.; Lo-Coco, F.; Tay, Y.; Beck, A.H.; Pandolfi, P.P. Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations. Cell 2016, 165, 289–302. [Google Scholar] [CrossRef] [Green Version]
- Vidal, A.F. Read-through circular RNAs reveal the plasticity of RNA processing mechanisms in human cells. RNA Biol. 2020, 17, 1823–1826. [Google Scholar] [CrossRef]
- Wang, E.T.; Sandberg, R.; Luo, S.; Khrebtukova, I.; Zhang, L.; Mayr, C.; Kingsmore, S.F.; Schroth, G.P.; Burge, C.B. Alternative isoform regulation in human tissue transcriptomes. Nature 2008, 456, 470–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, S. SR proteins: Binders, regulators, and connectors of RNA. Mol. Cells 2017, 40, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geuens, T.; Bouhy, D.; Timmerman, V. The hnRNP family: Insights into their role in health and disease. Hum. Genet. 2016, 135, 851–867. [Google Scholar] [CrossRef] [Green Version]
- Altesha, M.A.; Ni, T.; Khan, A.; Liu, K.; Zheng, X. Circular RNA in cardiovascular disease. J. Cell. Physiol. 2019, 234, 5588–5600. [Google Scholar] [CrossRef]
- Diallo, L.H.; Tatin, F.; David, F.; Godet, A.C.; Zamora, A.; Prats, A.C.; Garmy-Susini, B.; Lacazette, E. How are circRNAs translated by non-canonical initiation mechanisms? Biochimie 2019, 164, 45–52. [Google Scholar] [CrossRef]
- Yang, Y.; Fan, X.; Mao, M.; Song, X.; Wu, P.; Zhang, Y.; Jin, Y.; Yang, Y.; Chen, L.L.; Wang, Y.; et al. Extensive translation of circular RNAs driven by N 6-methyladenosine. Cell Res. 2017, 27, 626–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Guo, X.; Wen, Y.; Huang, S.; Yuan, X.; Tang, L.; Sun, H. N6-methyladenosine modification opens a new chapter in circular RNA biology. Front. Cell Dev. Biol. 2021, 9, 2031. [Google Scholar] [CrossRef]
- Chen, X.T.; Li, Z.W.; Zhao, X.; Li, M.L.; Hou, P.F.; Chu, S.F.; Zheng, J.N.; Bai, J. Role of Circular RNA in Kidney-Related Diseases. Front. Pharmacol. 2021, 12, 286. [Google Scholar] [CrossRef]
- Aufiero, S.; Van Den Hoogenhof, M.M.G.; Reckman, Y.J.; Beqqali, A.; Van Der Made, I.; Kluin, J.; Khan, M.A.; Pinto, Y.M.; Creemers, E.E. Cardiac circRNAs arise mainly from constitutive exons rather than alternatively spliced exons. RNA 2018, 24, 815–827. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Shao, Y.; Fu, L.; Xie, Y.I.; Zhu, L.; Sun, W.; Yu, R.; Xiao, B.; Guo, J. Plasma circular RNA profiling of patients with gastric cancer and their droplet digital RT-PCR detection. J. Mol. Med. 2018, 96, 85–96. [Google Scholar] [CrossRef]
- Li, Z.; Huang, C.; Bao, C.; Chen, L.; Lin, M.; Wang, X.; Zhong, G.; Yu, B.; Hu, W.; Dai, L.; et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol. 2015, 22, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Tsukahara, T. A view of pre-mRNA splicing from RNase R resistant RNAs. Int. J. Mol. Sci. 2014, 15, 9331–9342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Liu, T.; Wang, X.; He, A. Circles reshaping the RNA world: From waste to treasure. Mol. Cancer 2017, 16, 58. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Cordin, O.; Minder, C.M.; Linder, P.; Xu, R.M. Crystal structure of the human ATP-dependent splicing and export factor UAP56. Proc. Natl. Acad. Sci. USA 2004, 101, 17628–17633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujita, K.I.; Yamazaki, T.; Harada, K.; Seno, S.; Matsuda, H.; Masuda, S. URH49 exports mRNA by remodeling complex formation and mediating the NXF1-dependent pathway. Biochim. Biophys. Acta Gene Regul. Mech. 2020, 1863, 194480. [Google Scholar] [CrossRef] [PubMed]
- Hansen, T.B.; Jensen, T.I.; Clausen, B.H.; Bramsen, J.B.; Finsen, B.; Damgaard, C.K.; Kjems, J. Natural RNA circles function as efficient microRNA sponges. Nature 2013, 495, 384–388. [Google Scholar] [CrossRef]
- Cen, J.; Liang, Y.; Huang, Y.; Pan, Y.; Shu, G.; Zheng, Z.; Liao, X.; Zhou, M.; Chen, D.; Fang, Y.; et al. Circular RNA circSDHC serves as a sponge for miR-127-3p to promote the proliferation and metastasis of renal cell carcinoma via the CDKN3/E2F1 axis. Mol. Cancer 2021, 20, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Du, W.W.; Weining, Y.; Elizabeth, L.; Zhenguo, Y.; Preet, D.; Burton, B.Y. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 2016, 44, 2846–2858. [Google Scholar] [CrossRef] [Green Version]
- Armakola, M.; Higgins, M.J.; Figley, M.D.; Barmada, S.J.; Scarborough, E.A.; Diaz, Z.; Fang, X.; Shorter, J.; Krogan, N.J.; Finkbeiner, S.; et al. Inhibition of RNA lariat debranching enzyme suppresses TDP-43 toxicity in ALS disease models. Nat. Genet. 2012, 44, 1302–1309. [Google Scholar] [CrossRef] [Green Version]
- Califf, R.M. Biomarker definitions and their applications. Exp. Biol. Med. 2018, 243, 213–221. [Google Scholar] [CrossRef]
- Bach, D.H.; Lee, S.K.; Sood, A.K. Circular RNAs in cancer. Mol. Ther. Nucleic Acids 2019, 16, 118–129. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, H.; Zheng, R.; Wu, P.; Sun, Z.; Chen, J.; Zhang, L.; Zhang, C.; Qian, H.; Jiang, J.; et al. Circular RNA ITCH suppresses metastasis of gastric cancer via regulating miR-199a-5p/Klotho axis. Cell Cycle 2021, 20, 522–536. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Li, B.; Chen, Y.; Zou, D.; Yang, S.; Zhang, Y.; Wu, N.; Sheng, L.; Huang, H.; Ouyang, G.; et al. Hsa_circ_0012152 and Hsa_circ_0001857 accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Front. Oncol. 2020, 10, 1655. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhong, C.; Jiao, J.; Li, P.; Cui, B.; Ji, C.; Ma, D. Characterization of hsa_circ_0004277 as a new biomarker for acute myeloid leukemia via circular RNA profile and bioinformatics analysis. Int. J. Mol. Sci. 2017, 18, 597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, F.; Zheng, B.; Si, S.; Wang, J.; Zhao, G.; Yao, Z.; Niu, Z.; He, W. The Roles of CircRNAs in Bladder Cancer: Biomarkers, Tumorigenesis Drivers, and Therapeutic Targets. Front. Cell Dev. Biol. 2021, 9, 666863. [Google Scholar] [CrossRef] [PubMed]
- Lü, L.; Sun, J.; Shi, P.; Kong, W.; Xu, K.; He, B.; Zhang, S.; Wang, J. Identification of circular RNAs as a promising new class of diagnostic biomarkers for human breast cancer. Oncotarget 2017, 8, 44096. [Google Scholar] [CrossRef]
- Yin, W.B.; Yan, M.G.; Fang, X.; Guo, J.J.; Xiong, W.; Zhang, R.P. Circulating circular RNA hsa_circ_0001785 acts as a diagnostic biomarker for breast cancer detection. Clin. Chim. Acta 2018, 487, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ma, F.; Wu, L.; Zhang, X.; Tian, J.; Li, J.; Cao, J.; Ma, Y.; Zhang, L.; Wang, L. Identification of Hsa_circ_0104824 as a potential biomarkers for breast cancer. Technol. Cancer Res. Treat. 2020, 19, 1533033820960745. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, X.; Zhang, Z.; Liu, Z.; Zhu, J.; Lyu, S.; Li, L.; Lang, R.; He, Q. Comprehensive circular RNA expression profiling constructs a ceRNA network and identifies hsa_circ_0000673 as a novel oncogene in distal cholangiocarcinoma. Aging 2020, 12, 23251. [Google Scholar] [CrossRef]
- Jiang, X.M.; Li, Z.L.; Li, J.L.; Xu, Y.; Leng, K.M.; Cui, Y.F.; Sun, D.J. A novel prognostic biomarker for cholangiocarcinoma: circRNA Cdr1as. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 365–371. [Google Scholar]
- Frey, L.; Klümper, N.; Schmidt, D.; Kristiansen, G.; Toma, M.; Ritter, M.; Alajati, A.; Ellinger, J. CircEHD2, CircNETO2 and CircEGLN3 as Diagnostic and Prognostic Biomarkers for Patients with Renal Cell Carcinoma. Cancers 2021, 13, 2177. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Wang, W.C.; McAlister, V.; Zhou, Q.; Zheng, X. Circular RNA in colorectal cancer. J. Cell. Mol. Med. 2021, 25, 3667–3679. [Google Scholar] [CrossRef]
- Jia, Y.; Liu, M.; Wang, S. CircRNA hsa_circRNA_0001776 inhibits proliferation and promotes apoptosis in endometrial cancer via downregulating LRIG2 by sponging miR-182. Cancer Cell Int. 2020, 20, 1–13. [Google Scholar] [CrossRef]
- Hu, Y.; Zhu, Y.; Zhang, W.; Lang, J.; Ning, L. Utility of plasma circBNC2 as a diagnostic biomarker in epithelial ovarian cancer. OncoTargets Ther. 2019, 12, 9715. [Google Scholar] [CrossRef] [Green Version]
- Fan, L.; Cao, Q.; Liu, J.; Zhang, J.; Li, B. Circular RNA profiling and its potential for esophageal squamous cell cancer diagnosis and prognosis. Mol. Cancer 2019, 18, 16. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zheng, M.; Kong, S.; Li, X.; Meng, S.; Wang, X.; Wang, F.; Tang, C.; Ju, S. Circular RNA hsa_circ_0007507 May Serve as a Biomarker for the Diagnosis and Prognosis of Gastric Cancer. Front. Oncol. 2021, 11, 699625. [Google Scholar] [CrossRef]
- Chen, S.; Li, T.; Zhao, Q.; Xiao, B.; Guo, J. Using circular RNA hsa_circ_0000190 as a new biomarker in the diagnosis of gastric cancer. Clin. Chim. Acta 2017, 466, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yang, Y.; Xu, J.; Bai, W.; Ren, X.; Wu, H. CircRNAs as biomarkers of cancer: A meta-analysis. BMC Cancer 2018, 18, 303. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.; Zhong, L.; Ju, K.; Lu, T.; Lv, J.; Cao, H. Plasmatic circRNA predicting the occurrence of human glioblastoma. Cancer Manag. Res. 2020, 12, 2917. [Google Scholar] [CrossRef]
- Stella, M.; Falzone, L.; Caponnetto, A.; Gattuso, G.; Barbagallo, C.; Battaglia, R.; Mirabella, F.; Broggi, G.; Altieri, R.; Certo, F.; et al. Serum extracellular vesicle-derived circHIPK3 and circSMARCA5 are two novel diagnostic biomarkers for glioblastoma multiforme. Pharmaceuticals 2021, 14, 618. [Google Scholar] [CrossRef]
- Zhen, N.; Gu, S.; Ma, J.; Zhu, J.; Yin, M.; Xu, M.; Wang, J.; Huang, N.; Cui, Z.; Bian, Z.; et al. CircHMGCS1 promotes hepatoblastoma cell proliferation by regulating the IGF signaling pathway and glutaminolysis. Theranostics 2019, 9, 900. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Hu, C.; Zhai, X.; Sun, D. Circular RNA 0006602 in plasma exosomes: A new potential diagnostic biomarker for hepatocellular carcinoma. Am. J. Transl. Res. 2021, 13, 6001. [Google Scholar] [PubMed]
- Li, Z.; Zhou, Y.E.; Yang, G.; He, S.; Qiu, X.; Zhang, L.; Deng, Q.; Zheng, F. Using circular RNA SMARCA5 as a potential novel biomarker for hepatocellular carcinoma. Clin. Chim. Acta 2019, 492, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Huang, Q.; Zheng, J.; Hsueh, C.Y.; Yuan, X.; Heng, Y.; Zhou, L. Diagnostic role of dysregulated circular RNA hsa_circ_0036722 in laryngeal squamous cell carcinoma. OncoTargets Ther. 2020, 13, 5709. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Xin, Z.; Xu, Y.; Xu, J.; Wang, G. Construction and analysis of circular RNA molecular regulatory networks in liver cancer. Cell Cycle 2017, 16, 2204–2211. [Google Scholar] [CrossRef]
- Liu, X.X.; Yang, Y.E.; Liu, X.; Zhang, M.Y.; Li, R.; Yin, Y.H.; Qu, Y.Q. A two-circular RNA signature as a noninvasive diagnostic biomarker for lung adenocarcinoma. J. Transl. Med. 2019, 17, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, X.; Wang, X.; Wei, S.; Chen, Y.; Chen, Y.; Fan, X.; Han, S.; Wu, G. hsa_circ_0013958: A circular RNA and potential novel biomarker for lung adenocarcinoma. FEBS J. 2017, 284, 2170–2182. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Sun, X.; Miao, S.; Lu, T.; Wang, Y.; Liu, J.; Jiao, W. hsa_circ_0000729, a potential prognostic biomarker in lung adenocarcinoma. Thorac. Cancer 2018, 9, 924–930. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, W.; Shao, Z. Prognostic and diagnostic significance of circRNAs expression in lung cancer. J. Cell. Physiol. 2019, 234, 18459–18465. [Google Scholar] [CrossRef]
- Xian, J.; Su, W.; Liu, L.; Rao, B.; Lin, M.; Feng, Y.; Qiu, F.; Chen, J.; Zhou, Q.; Zhao, Z.; et al. Identification of Three Circular RNA Cargoes in Serum Exosomes as Diagnostic Biomarkers of Non–Small-Cell Lung Cancer in the Chinese Population. J. Mol. Diagn. 2020, 22, 1096–1108. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, L.; Ren, W.; Li, S.; Zhi, K.; Zheng, J.; Gao, L. Diagnostic Value of CircRNAs as Potential Biomarkers in Oral Squamous Cell Carcinoma: A Meta-Analysis. Front. Oncol. 2021, 11, 693284. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; He, J.; Qi, L.; Wan, L.; Wang, W.; Tu, C.; Li, Z. Diagnostic and prognostic significance of dysregulated expression of circular RNAs in osteosarcoma. Expert Rev. Mol. Diagn. 2021, 21, 235–244. [Google Scholar] [CrossRef]
- Yang, F.; Liu, D.Y.; Guo, J.T.; Ge, N.; Zhu, P.; Liu, X.; Wang, S.; Wang, G.X.; Sun, S.Y. Circular RNA circ-LDLRAD3 as a biomarker in diagnosis of pancreatic cancer. World J. Gastroenterol. 2017, 23, 8345. [Google Scholar] [CrossRef]
- Xu, K.; Qiu, Z.; Xu, L.; Qiu, X.; Hong, L.; Wang, J. Increased levels of circulating circular RNA (hsa_circ_0013587) may serve as a novel biomarker for pancreatic cancer. Biomark. Med. 2021, 15, 977–985. [Google Scholar] [CrossRef]
- Lin, J.; Cai, D.; Li, W.; Yu, T.; Mao, H.; Jiang, S.; Xiao, B. Plasma circular RNA panel acts as a novel diagnostic biomarker for colorectal cancer. Clin. Biochem. 2019, 74, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Sand, M.; Bechara, F.G.; Sand, D.; Gambichler, T.; Hahn, S.A.; Bromba, M.; Stockfleth, E.; Hessam, S. Circular RNA expression in basal cell carcinoma. Epigenomics 2016, 8, 619–632. [Google Scholar] [CrossRef] [PubMed]
Cancer Type | circRNAs (No) | circRNAs Downregulated (No) | circRNAs Upregulated (No) | circRNAs N/A |
---|---|---|---|---|
Acute Lymphoblastic Leukaemia | 1 | - | - | 1 |
Acute myeloid leukaemia | 11 | 4 | 5 | 2 |
Basal cell carcinoma | 18 | 7 | 10 | 1 |
Bladder cancer | 19 | 9 | 10 | - |
Breast cancer | 82 | 18 | 28 | 36 |
Cervical cancer/carcinoma | 18 | - | 17 | 1 |
Cholangiocarcinoma | 1 | 1 | - | - |
Clear cell renal cell carcinoma | 2 | 2 | - | - |
Kidney clear cell carcinoma | 1 | - | 1 | - |
Colon cancer | 6 | 5 | - | 1 |
Colorectal cancer | 42 | 18 | 20 | 4 |
Cutaneous squamous cell carcinoma | 5 | 2 | 3 | - |
Endometrial cancer | 2 | - | 2 | - |
Epithelial Ovarian carcinoma | 3 | - | - | 3 |
Oesophageal cancer | 7 | 4 | 3 | - |
Oesophageal squamous cell carcinoma | 34 | 12 | 22 | - |
Gastric cancer | 78 | 41 | 27 | 10 |
Glioblastoma | 46 | 19 | 8 | 3/16 * |
Hepatoblastoma | 17 | 9 | 8 | - |
Hepatocellular carcinoma | 22 | 13 | 4 | 5 |
Hypopharyngeal squamous cell carcinoma | 6 | 3 | 3 | - |
Laryngeal squamous cell cancer tissues | 4 | 1 | 1 | 2 |
Liver cancer | 5 | - | 3 | 2 |
Lung adenocarcinoma | 4 | 1 | 3 | - |
Lung cancer | 8 | 3 | 4 | 1 |
Non-small cell lung cancer | 9 | 1 | 6 | 2 |
Malignant melanoma | 1 | - | - | 1 |
Oral squamous cell carcinoma | 9 | 1 | 1 | 7 |
Osteosarcoma | 11 | 1 | 7 | 3 |
Pancreatic cancer | 4 | 1 | 3 | - |
Pancreatic ductal adenocarcinoma | 12 | 5 | 7 | - |
Papillary thyroid carcinoma | 17 | 3 | 13 | 1 |
Prostate adenocarcinoma | 1 | 1 | - | - |
Prostate cancer | 1 | - | 1 | - |
Cancer Type | circRNAs | AUC | References |
---|---|---|---|
Acute Lymphoblastic Leukaemia | hsa_circ_0012152 | 0.8625 | [64] |
hsa_circ_0001857 | 0.909 | ||
Acute myeloid leukaemia | hsa_circ_0004277 | 0.957 | [65] |
Bladder cancer | hsa_circ_0018069 | 0.709 | [66] |
circASXL1 | 0.77 | ||
hsa_circ_0077837 | 0.775 | ||
hsa_circ_0004826 | 0.79 | ||
circ0006332 | 0.86 | ||
circ_0137439 | 0.89 | ||
Breast cancer | hsa_circ_103110 | 0.63 | [67,68,69] |
hsa_circ_104689 | 0.61 | ||
hsa_circ_104821 | 0.60 | ||
hsa_circ_006054 | 0.71 | ||
hsa_circ_100219 | 0.78 | ||
hsa_circ_406697 | 0.64 | ||
hsa_circ_0001785 | 0.771 | ||
hsa_circ_0104824 | 0.823 | ||
Cholangiocarcinoma | hsa_circ_0000673 | 0.85 | [70,71] |
Cdr1as | 0.740 | ||
Clear cell renal cell carcinoma | circEHD2 | 0.757 | [72] |
circNETO2 | 0.705 | ||
circEGLN3 | 0.879 | ||
Colorectal cancer | circ_0001178 | 0.945 | [73] |
circCDC66 | 0.884 | ||
circITGA7 | 0.879 | ||
circ_0000567 | 0.865 | ||
circ_0001649 | 0.857 | ||
circ_0003906 | 0.818 | ||
circ_0000826 | 0.816 | ||
circ_0000711 | 0.810 | ||
circ_001988 | 0.788 | ||
Endometrial cancer | circ_0001776 | 0.7389 | [74] |
Epithelial Ovarian carcinoma | circBNC2 | 0.923 | [75] |
Oesophageal squamous cell cancer | hsa_circ_0001946 | 0.894 | [76] |
hsa_circ_0062459 | 0.836 | ||
Gastric cancer | hsa_circ_0007507 | 0.832 | [77,78,79] |
hsa_circ_0000190 | 0.75 | ||
hsa_circ_0000096 | 0.82 | ||
Glioblastoma | circFOXO3 | 0.870 | [80,81] |
circ_0029426 | 0.730 | ||
circ-SHPRH | 0.960 | ||
circHIPK3 | 0.855 | ||
circSMARCA5 | 0.823 | ||
Hepatoblastoma | circHMGCS1 | 0.8971 | [82] |
Hepatocellular carcinoma | exo_circ_0006602 | 0.907 | [79,83,84] |
circSMARCA5 | 0.938 | ||
hsa_circ_0005075 | 0.94 | ||
Hypopharyngeal squamous cell carcinoma | circMORC3 | 0.767 | [85] |
Laryngeal squamous cell cancer tissues | hsa_circ_0036722 | 0.838 | [85] |
Liver cancer | circZFR | 0.7069 | [86] |
circFUT8 | 0.7575 | ||
circIPO11 | 0.7103 | ||
Lung adenocarcinoma | hsa_circ_0005962 | 0.73 | [87,88,89] |
hsa_circ_0086414 | 0.78 | ||
hsa_circ_0013958 | 0.815 | ||
hsa_circ_0000729 | 0.815 | ||
Lung cancer | circ_102231 | 0.9 | [90] |
Non-small cell lung cancer | circFARSA | 0.71 | [90,91] |
circ_0079530 | 0.76 | ||
circRNA-FOXO3 | 0.78 | ||
circ_0014130 | 0.89 | ||
circ_0047921 | 0.757 | ||
circ_0056285 | 0.625 | ||
circ_0007761 | 0.750 | ||
Oral squamous cell carcinoma | hsa_circ_0001874 | 0.922 | [92] |
hsa_circ_0001971 | 0.922 | ||
circ-MMP9 | 0.91 | ||
circMAN1A2 | 0.799 | ||
circSPATA6 | 0.7748 | ||
Osteosarcoma | circ_0000190 | 0.889 | [93] |
circ_0000885 | 0.783 | ||
circ_HIPK3 | 0.783 | ||
circPVT1 | 0.871 | ||
circ_0081001 | 0.898 | ||
Pancreatic cancer | circ-LDLRAD3 | 0.67 | [94,95] |
hsa_circ_0013587 | 0.6995 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caba, L.; Florea, L.; Gug, C.; Dimitriu, D.C.; Gorduza, E.V. Circular RNA—Is the Circle Perfect? Biomolecules 2021, 11, 1755. https://doi.org/10.3390/biom11121755
Caba L, Florea L, Gug C, Dimitriu DC, Gorduza EV. Circular RNA—Is the Circle Perfect? Biomolecules. 2021; 11(12):1755. https://doi.org/10.3390/biom11121755
Chicago/Turabian StyleCaba, Lavinia, Laura Florea, Cristina Gug, Daniela Cristina Dimitriu, and Eusebiu Vlad Gorduza. 2021. "Circular RNA—Is the Circle Perfect?" Biomolecules 11, no. 12: 1755. https://doi.org/10.3390/biom11121755
APA StyleCaba, L., Florea, L., Gug, C., Dimitriu, D. C., & Gorduza, E. V. (2021). Circular RNA—Is the Circle Perfect? Biomolecules, 11(12), 1755. https://doi.org/10.3390/biom11121755