Combined Anti-Adipogenic Effects of Hispidulin and p-Synephrine on 3T3-L1 Adipocytes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Network Pharmacology Analysis
2.1.1. Acquisition of Hispidulin, p-Synephrine, and Disease-Related Targets
2.1.2. Acquisition of Potential Targets
2.1.3. Construction and Analysis of Protein–Protein Interaction (PPI) Network
2.1.4. Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Enrichment Analysis
2.1.5. Construction and Analysis of Compound–Target–Pathway (C–T–P) Networks
2.2. Cell Culture and Adipogenic Differentiation
2.3. Measurement of Cell Viability
2.4. Oil Red O Staining
2.5. Western Blot Analysis
2.6. Statistical Analysis
3. Results
3.1. Network Pharmacology Analysis
3.1.1. Target Prediction and Screening of Potential Targets
3.1.2. Construction of PPI Network
3.1.3. KEGG Pathway Enrichment Analysis
3.1.4. Construction and Analysis of Compound–Target–Pathway Networks
3.2. Inhibitory Effects of Hispidulin and p-Synephrine on Adipogenesis in 3T3-L1 Preadipocytes
3.3. Effect of Hispidulin and p-Synephrine on the Expression of Proteins Involved in Adipogenesis in Differentiated 3T3L-1 Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, K.; Yang, X.; Zhao, Q.; Li, Z.; Fu, F.; Zhang, H.; Zheng, M.; Zhang, S. Molecular mechanism of stem cell differentiation into adipocytes and adipocyte differentiation of malignant tumor. Stem Cells Int. 2020, 2020, 8892300. [Google Scholar] [CrossRef] [PubMed]
- Verboven, K.; Wouters, K.; Gaens, K.; Hansen, D.; Bijnen, M.; Wetzels, S.; Stehouwer, C.; Goossens, G.; Schalkwijk, C.; Blaak, E. Abdominal subcutaneous and visceral adipocyte size, lipolysis and inflammation relate to insulin resistance in male obese humans. Sci. Rep. 2018, 8, 4677. [Google Scholar] [CrossRef]
- Vukovic, R.; Dos Santos, T.J.; Ybarra, M.; Atar, M. Children with metabolically healthy obesity: A review. Front. Endocrinol. 2019, 10, 865. [Google Scholar] [CrossRef]
- Suwa, A.; Kurama, T.; Shimokawa, T. Adipocyte hyperplasia and RMI1 in the treatment of obesity. FEBS J. 2011, 278, 565–569. [Google Scholar] [CrossRef] [Green Version]
- Longo, M.; Zatterale, F.; Naderi, J.; Parrillo, L.; Formisano, P.; Raciti, G.A.; Beguinot, F.; Miele, C. Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. Int. J. Mol. Sci. 2019, 20, 2358. [Google Scholar] [CrossRef] [Green Version]
- Kiortsis, D.N. A review of the metabolic effects of controlled-release Phentermine/Topiramate. Hormones 2013, 12, 507–516. [Google Scholar] [CrossRef] [Green Version]
- Arias, H.R.; Santamaría, A.; Ali, S.F. Pharmacological and neurotoxicological actions mediated by bupropion and diethylpropion. Int. Rev. Neurobiol. 2009, 88, 223–255. [Google Scholar] [PubMed]
- Rothman, R.B.; Katsnelson, M.; Vu, N.; Partilla, J.S.; Dersch, C.M.; Blough, B.E.; Baumann, M.H. Interaction of the anorectic medication, phendimetrazine, and its metabolites with monoamine transporters in rat brain. Eur. J. Pharmacol. 2002, 447, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Johnson, W.G.; Hughes, J.R. Mazindol: Its efficacy and mode of action in generating weight loss. Addict. Behav. 1979, 4, 237–244. [Google Scholar] [CrossRef]
- Shin, J.H.; Gadde, K.M. Clinical utility of phentermine/topiramate (Qsymia™) combination for the treatment of obesity. Diabetes Metab. Syndr. Obes. Targets Ther. 2013, 6, 131. [Google Scholar]
- Kang, J.G.; Park, C.-Y. Anti-obesity drugs: A review about their effects and safety. Diabetes Metab. J. 2012, 36, 13–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arya, A.; Nahar, L.; Khan, H.U.; Sarker, S.D. Anti-obesity natural products. Med. Nat. Prod. A Dis. Focused Approach 2020, 55, 411. [Google Scholar]
- Ahn, J.; Lee, H.; Kim, S.; Ha, T. Curcumin-induced suppression of adipogenic differentiation is accompanied by activation of Wnt/β-catenin signaling. Am. J. Physiol. Cell Physiol. 2010, 298, C1510–C1516. [Google Scholar] [CrossRef] [PubMed]
- Baboota, R.K.; Singh, D.P.; Sarma, S.M.; Kaur, J.; Sandhir, R.; Boparai, R.K.; Kondepudi, K.K.; Bishnoi, M. Capsaicin induces “brite” phenotype in differentiating 3T3-L1 preadipocytes. PLoS ONE 2014, 9, e103093. [Google Scholar] [CrossRef] [Green Version]
- Delzenne, N.M.; Neyrinck, A.M.; Bäckhed, F.; Cani, P.D. Targeting gut microbiota in obesity: Effects of prebiotics and probiotics. Nat. Rev. Endocrinol. 2011, 7, 639–646. [Google Scholar] [CrossRef]
- Barde, S.R.; Sakhare, R.S.; Kanthale, S.B.; Chandak, P.G.; Jamkhande, P.G. Marine bioactive agents: A short review on new marine antidiabetic compounds. Asian Pac. J. Trop. Dis. 2015, 5, S209–S213. [Google Scholar] [CrossRef]
- Schmitt, G.C.; Arbo, M.D.; Lorensi, A.L.; Maciel, E.S.; Krahn, C.L.; Mariotti, K.C.; Dallegrave, E.; Leal, M.B.; Limberger, R.P. Toxicological effects of a mixture used in weight loss products: P-synephrine associated with ephedrine, salicin, and caffeine. Int. J. Toxicol. 2012, 31, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Croitoru, M.D.; Fülöp, I.; Zaharia, M.; Modroiu, A.; Zecheru, L.; Fogarasi, E. Presence of declared and undeclared caffeine and ephedrine in weight-loss herbal supplements. FARMACIA 2017, 65, 968–971. [Google Scholar]
- Arbo, M.; Larentis, E.; Linck, V.; Aboy, A.; Pimentel, A.; Henriques, A.; Dallegrave, E.; Garcia, S.; Leal, M.; Limberger, R. Concentrations of p-synephrine in fruits and leaves of Citrus species (Rutaceae) and the acute toxicity testing of Citrus aurantium extract and p-synephrine. Food Chem. Toxicol. 2008, 46, 2770–2775. [Google Scholar] [CrossRef]
- Arbo, M.D.; Franco, M.T.; Larentis, E.R.; Garcia, S.C.; Sebben, V.C.; Leal, M.B.; Dallegrave, E.; Limberger, R.P. Screening for in vivo (anti) estrogenic activity of ephedrine and p-synephrine and their natural sources Ephedra sinica Stapf. (Ephedraceae) and Citrus aurantium L. (Rutaceae) in rats. Arch. Toxicol. 2009, 83, 95–99. [Google Scholar] [CrossRef]
- Arbo, M.D.; Schmitt, G.C.; Limberger, M.F.; Charão, M.F.; Moro, Â.M.; Ribeiro, G.L.; Dallegrave, E.; Garcia, S.C.; Leal, M.B.; Limberger, R.P. Subchronic toxicity of Citrus aurantium L. (Rutaceae) extract and p-synephrine in mice. Regul. Toxicol. Pharmacol. 2009, 54, 114–117. [Google Scholar] [CrossRef]
- Rossato, L.G.; Costa, V.M.; De Pinho, P.G.; Carvalho, F.; de Lourdes Bastos, M.; Remião, F. Structural isomerization of synephrine influences its uptake and ensuing glutathione depletion in rat-isolated cardiomyocytes. Arch. Toxicol. 2011, 85, 929–939. [Google Scholar] [CrossRef]
- Stohs, S.J.; Preuss, H.G.; Keith, S.C.; Keith, P.L.; Miller, H.; Kaats, G.R. Effects of p-synephrine alone and in combination with selected bioflavonoids on resting metabolism, blood pressure, heart rate and self-reported mood changes. Int. J. Med. Sci. 2011, 8, 295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, K.; Patel, D.K. Medicinal importance, pharmacological activities, and analytical aspects of hispidulin: A concise report. J. Tradit. Complement. Med. 2017, 7, 360–366. [Google Scholar] [CrossRef]
- Lv, L.; Zhang, W.; Li, T.; Jiang, L.; Lu, X.; Lin, J. Hispidulin exhibits potent anticancer activity in vitro and in vivo through activating ER stress in non-small-cell lung cancer cells. Oncol. Rep. 2020, 43, 1995–2003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, Y.; Sun, X.; Li, B.; Ma, H.; Wu, P.; Zhang, Y.; Zhu, M.; Li, H.-M.; Qin, M.; Wu, C.-Z. The Effect of Hispidulin, a Flavonoid from Salvia plebeia, on Human Nasopharyngeal Carcinoma CNE-2Z Cell Proliferation, Migration, Invasion, and Apoptosis. Molecules 2021, 26, 1604. [Google Scholar] [CrossRef]
- Gao, H.; Gao, M.-Q.; Peng, J.-J.; Han, M.; Liu, K.-L.; Han, Y.-T. Hispidulin mediates apoptosis in human renal cell carcinoma by inducing ceramide accumulation. Acta Pharmacol. Sin. 2017, 38, 1618–1631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, P.; Xie, J.; Qiu, S.; Liu, Y.; Wang, J.; Xiu, X.; Li, L.; Tang, M. Hispidulin exhibits neuroprotective activities against cerebral ischemia reperfusion injury through suppressing NLRP3-mediated pyroptosis. Life Sci. 2019, 232, 116599. [Google Scholar] [CrossRef]
- Dabaghi-Barbosa, P.; Mariante Rocha, A.; da Cruz, F.L.A.; de Oliveira, H.B. Hispidulin: Antioxidant properties and effect on mitochondrial energy metabolism. Free Radic. Res. 2005, 39, 1305–1315. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Wang, Z.; Ma, C. Hispidulin exerts anti-osteoporotic activity in ovariectomized mice via activating AMPK signaling pathway. Cell Biochem. Biophys. 2014, 69, 311–317. [Google Scholar] [CrossRef]
- Ashaq, A.; Maqbool, M.F.; Maryam, A.; Khan, M.; Shakir, H.A.; Irfan, M.; Qazi, J.I.; Li, Y.; Ma, T. Hispidulin: A novel natural compound with therapeutic potential against human cancers. Phytother. Res. 2021, 35, 771–789. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Wang, H.; Peng, J. Hispidulin induces apoptosis through mitochondrial dysfunction and inhibition of P13k/Akt signalling pathway in HepG2 cancer cells. Cell Biochem. Biophys. 2014, 69, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Gao, H.; Peng, J.; Han, Y.; Chen, X.; Jiang, Q.; Wang, C. Hispidulin prevents hypoxia-induced epithelial-mesenchymal transition in human colon carcinoma cells. Am. J. Cancer Res. 2015, 5, 1047. [Google Scholar]
- Guo, L.X.; Chen, G.; Yin, Z.Y.; Zhang, Y.H.; Zheng, X.X. p-Synephrine exhibits anti-adipogenic activity by activating the Akt/GSK3β signaling pathway in 3T3-L1 adipocytes. J. Food Biochem. 2019, 43, e13033. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.G.; Kim, J.S.; Min, K.; Kwon, T.K.; Nam, J.-O. Hispidulin inhibits adipogenesis in 3T3-L1 adipocytes through PPARγ pathway. Chem. Biol. Interact. 2018, 293, 89–93. [Google Scholar] [CrossRef]
- Tian, J.; Dang, H.N.; Yong, J.; Chui, W.-S.; Dizon, M.P.; Yaw, C.K.; Kaufman, D.L. Oral treatment with γ-aminobutyric acid improves glucose tolerance and insulin sensitivity by inhibiting inflammation in high fat diet-fed mice. PLoS ONE 2011, 6, e25338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kavvadias, D.; Sand, P.; Youdim, K.A.; Qaiser, M.Z.; Rice-Evans, C.; Baur, R.; Sigel, E.; Rausch, W.D.; Riederer, P.; Schreier, P. The flavone hispidulin, a benzodiazepine receptor ligand with positive allosteric properties, traverses the blood–brain barrier and exhibits anticonvulsive effects. Br. J. Pharmacol. 2004, 142, 811–820. [Google Scholar] [CrossRef] [PubMed]
- Haller, C.A.; Benowitz, N.L.; Jacob, P., III. Hemodynamic effects of ephedra-free weight-loss supplements in humans. Am. J. Med. 2005, 118, 998–1003. [Google Scholar] [CrossRef]
- Zhang, Z.; Jia, P.; Zhang, X.; Zhang, Q.; Yang, H.; Shi, H.; Zhang, L. LC–MS/MS determination and pharmacokinetic study of seven flavonoids in rat plasma after oral administration of Cirsium japonicum DC. extract. J. Ethnopharmacol. 2014, 158, 66–75. [Google Scholar] [CrossRef]
- Hopkins, A.L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol. 2008, 4, 682–690. [Google Scholar] [CrossRef]
- Li, S.; Fan, T.-P.; Jia, W.; Lu, A.; Zhang, W. Network pharmacology in traditional Chinese medicine. Evid.-Based Complement. Altern. Med. 2014, 2014, 138460. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yao, Y.; Fu, Y.; Yuan, Z.; Wu, X.; Wang, T.; Hong, Z.; Yang, Y.; Wu, H. Inhibition Effect of Oxyepiberberine isolated from Coptis chinensis Franch. on Non-small cell lung cancer Based on a Network Pharmacology Approach and Experimental Validation. J. Ethnopharmacol. 2021, 278, 114267. [Google Scholar] [CrossRef]
- Cui, S.; Chen, S.; Wu, Q.; Chen, T.; Li, S. A network pharmacology approach to investigate the anti-inflammatory mechanism of effective ingredients from Salvia miltiorrhiza. Int. Immunopharmacol. 2020, 81, 106040. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. Swiss Target Prediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019, 47, W357–W364. [Google Scholar] [CrossRef] [Green Version]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y. The GeneCards suite: From gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinform. 2016, 54, 1.30.1–1.30.33. [Google Scholar] [CrossRef]
- Oliveros, J.V. An Interactive Tool for Comparing Lists with Venn’s Diagrams. 2007–2015. 2016. Available online: http://bioinfogp.cnb.csic.es/tools/venny/index.html (accessed on 19 August 2021).
- Piñero, J.; Ramírez-Anguita, J.M.; Saüch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, L.I. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 2019, 48, D845–D855. [Google Scholar] [CrossRef] [Green Version]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
- Lee, S.R.; Kang, H.; Yoo, M.J.; Yu, J.S.; Lee, S.; Yi, S.A.; Beemelmanns, C.; Lee, J.; Kim, K.H. Anti-adipogenic pregnane steroid from a Hydractinia-associated fungus, Cladosporium sphaerospermum SW67. Nat. Prod. Sci. 2020, 26, 230–235. [Google Scholar]
- Kim, H.; Choi, P.; Kim, T.; Kim, Y.; Song, B.G.; Park, Y.-T.; Choi, S.-J.; Yoon, C.H.; Lim, W.-C.; Ko, H. Ginsenosides Rk1 and Rg5 inhibit transforming growth factor-β1-induced epithelial-mesenchymal transition and suppress migration, invasion, anoikis resistance, and development of stem-like features in lung cancer. J. Ginseng Res. 2021, 45, 134–148. [Google Scholar] [CrossRef]
- Yi, S.A.; Lee, J.; Park, S.K.; Kim, J.Y.; Park, J.W.; Lee, M.G.; Nam, K.H.; Park, J.H.; Oh, H.; Kim, S. Fermented ginseng extract, BST204, disturbs adipogenesis of mesenchymal stem cells through inhibition of S6 kinase 1 signaling. J. Ginseng Res. 2020, 44, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Ryu, Y.S.; Hyun, J.W.; Chung, H.S. Fucoidan induces apoptosis in A2058 cells through ROS-exposed activation of MAPKs signaling pathway. Nat. Prod. Sci. 2020, 26, 191–199. [Google Scholar]
- Rodrigues, F.A. Network centrality: An introduction. In A Mathematical Modeling Approach from Nonlinear Dynamics to Complex Systems; Macau, E.E.N., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 177–196. [Google Scholar]
- Hansen, D.L.; Shneiderman, B.; Smith, M.A.; Himelboim, I. Twitter: Information flows, influencers, and organic communities. In Analyzing Social Media Networks with NodeXL; Morgan Kaufmann: San Mateo, CA, USA, 2020; pp. 161–178. [Google Scholar]
- Golbeck, J. Network structure and measures. In Analyzing the Social Web; Newnes: Oxford, UK, 2013; pp. 25–44. [Google Scholar]
- Yeung, F.; Ramírez, C.M.; Mateos-Gomez, P.A.; Pinzaru, A.; Ceccarini, G.; Kabir, S.; Fernández-Hernando, C.; Sfeir, A. Nontelomeric role for Rap1 in regulating metabolism and protecting against obesity. Cell Rep. 2013, 3, 1847–1856. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Liu, G.; Guo, J.; Su, Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int. J. Biol. Sci. 2018, 14, 1483. [Google Scholar] [CrossRef] [Green Version]
- Le, J.A.; Wilson, H.M.; Shehu, A.; Devi, Y.S.; Aguilar, T.; Gibori, G. Prolactin activation of the long form of its cognate receptor causes increased visceral fat and obesity in males as shown in transgenic mice expressing only this receptor subtype. Horm. Metab. Res. 2011, 43, 931–937. [Google Scholar] [CrossRef] [Green Version]
- Newbold, R.R.; Padilla-Banks, E.; Jefferson, W.N. Environmental estrogens and obesity. Mol. Cell Endocrinol. 2009, 304, 84–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muzzin, P.; Revelli, J.; Kuhne, F.; Gocayne, J.; McCombie, W.; Venter, J.; Giacobino, J.; Fraser, C. An adipose tissue-specific beta-adrenergic receptor. Molecular cloning and down-regulation in obesity. J. Biol. Chem. 1991, 266, 24053–24058. [Google Scholar] [CrossRef]
- Collins, S.; Daniel, K.W.; Rohlfs, E.M.; Ramkumar, V.; Taylor, I.L.; Gettys, T.W. Impaired expression and functional activity of the beta 3-and beta 1-adrenergic receptors in adipose tissue of congenitally obese (C57BL/6J ob/ob) mice. Mol. Endocrinol. 1994, 8, 518–527. [Google Scholar]
- Lowell, B.B.; Flier, J.S. Brown adipose tissue, β3-adrenergic receptors, and obesity. Ann. Rev. Med. 1997, 48, 307–316. [Google Scholar] [CrossRef] [Green Version]
- Pramme-Steinwachs, I.; Jastroch, M.; Ussar, S. Extracellular calcium modulates brown adipocyte differentiation and identity. Sci. Rep. 2017, 7, 8888. [Google Scholar] [CrossRef] [Green Version]
- He, Y.-H.; He, Y.; Liao, X.-L.; Niu, Y.-C.; Wang, G.; Zhao, C.; Wang, L.; Tian, M.-J.; Li, Y.; Sun, C.-H. The calcium-sensing receptor promotes adipocyte differentiation and adipogenesis through PPARγ pathway. Mol. Cell. Biochem. 2012, 361, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Huo, J.; Ding, X.; Yang, M.; Li, L.; Dai, J.; Hosoe, K.; Kubo, H.; Mori, M.; Higuchi, K. Coenzyme Q10 improves lipid metabolism and ameliorates obesity by regulating CaMKII-mediated PDE4 inhibition. Sci. Rep. 2017, 7, 8253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, W.; Uchida, K.; Suzuki, Y.; Zhou, Y.; Kim, M.; Takayama, Y.; Takahashi, N.; Goto, T.; Wakabayashi, S.; Kawada, T. Lack of TRPV 2 impairs thermogenesis in mouse brown adipose tissue. EMBO Rep. 2016, 17, 383–399. [Google Scholar] [CrossRef] [PubMed]
- Ornellas, T.; Chavez, B. Naltrexone SR/Bupropion SR (Contrave): A new approach to weight loss in obese adults. Pharm. Ther. 2011, 36, 255. [Google Scholar]
- Park, H.; Ju, U.; Park, J.-W.; Song, J.; Shin, D.; Lee, K.; Jeong, L.; Yu, J.; Lee, H.; Cho, J.Y. PPAR γ neddylation essential for adipogenesis is a potential target for treating obesity. Cell Death Differ. 2016, 23, 1296–1311. [Google Scholar] [CrossRef] [Green Version]
- Rosen, E.D.; Hsu, C.-H.; Wang, X.; Sakai, S.; Freeman, M.W.; Gonzalez, F.J.; Spiegelman, B.M. C/EBPα induces adipogenesis through PPARγ: A unified pathway. Genes Dev. 2002, 16, 22–26. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Li, X.; Tang, Q.-Q. Transcriptional regulation of adipocyte differentiation: A central role for CCAAT/enhancer-binding protein (C/EBP) β. J. Biol. Chem. 2015, 290, 755–761. [Google Scholar] [CrossRef] [Green Version]
- Leiva, M.; Matesanz, N.; Pulgarín-Alfaro, M.; Nikolic, I.; Sabio, G. Uncovering the role of p38 family members in adipose tissue physiology. Front. Endocrinol. 2020, 11, 572089. [Google Scholar] [CrossRef]
- Ambele, M.A.; Dhanraj, P.; Giles, R.; Pepper, M.S. Adipogenesis: A complex interplay of multiple molecular determinants and pathways. Int. J. Mol. Sci. 2020, 21, 4283. [Google Scholar] [CrossRef]
- Li, X.; Kim, J.W.; Grønborg, M.; Urlaub, H.; Lane, M.D.; Tang, Q.-Q. Role of cdk2 in the sequential phosphorylation/activation of C/EBPβ during adipocyte differentiation. Proc. Natl. Acad. Sci. USA 2007, 104, 11597–11602. [Google Scholar] [CrossRef] [Green Version]
- Han, L.; Wang, B.; Wang, R.; Gong, S.; Chen, G.; Xu, W. The shift in the balance between osteoblastogenesis and adipogenesis of mesenchymal stem cells mediated by glucocorticoid receptor. Stem Cell Res. Ther. 2019, 10, 377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.-J.; Pramyothin, P.; Karastergiou, K.; Fried, S.K. Deconstructing the roles of glucocorticoids in adipose tissue biology and the development of central obesity. Biochim. Biophys. Acta Mol. Basis Dis. 2014, 1842, 473–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camp, H.S.; Tafuri, S.R.; Leff, T. c-Jun N-terminal kinase phosphorylates peroxisome proliferator-activated receptor-γ1 and negatively regulates its transcriptional activity. Endocrinology 1999, 140, 392–397. [Google Scholar] [CrossRef]
- Lee, J.; Jung, E.; Lee, J.; Huh, S.; Kim, Y.-S.; Kim, Y.-W.; Kim, Y.S.; Park, D. Anti-adipogenesis by 6-thioinosine is mediated by downregulation of PPAR γ through JNK-dependent upregulation of iNOS. Cell. Mol. Life Sci. 2010, 67, 467–481. [Google Scholar] [CrossRef]
- Park, J.; Lee, H.; Shin, B.C.; Lee, M.S.; Kim, B.; Kim, J.I. Pharmacopuncture in Korea: A systematic review and meta-analysis of randomized controlled trials. Evid. Based Complement. Alternat. Med. 2016, 2016, 4683121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No. | Uniprot ID | Gene | Relevance Score | Target | Protein Class |
---|---|---|---|---|---|
1 | P18031 | PTPN1 | 12.186 | protein tyrosine phosphatase non-receptor type 1 | - |
2 | P31749 | AKT1 | 11.022 | AKT serine/threonine kinase 1 | Kinase |
3 | P14679 | TYR | 10.667 | tyrosinase | Enzyme |
4 | P03372 | ESR1 | 10.026 | estrogen receptor 1 | Nuclear receptor |
5 | P11511 | CYP19A1 | 9.307 | cytochrome P450 family 19 subfamily A member 1 | Enzyme |
6 | P14416 | DRD2 | 8.109 | dopamine receptor D2 | G-protein coupled receptor |
7 | P08069 | IGF1R | 7.564 | insulin-like growth factor 1 receptor | Kinase |
8 | P00734 | F2 | 6.902 | coagulation factor II, thrombin | Enzyme |
9 | P14780 | MMP9 | 6.393 | matrix metallopeptidase 9 | Enzyme |
10 | P10275 | AR | 5.830 | androgen receptor | Nuclear receptor |
11 | P21397 | MAOA | 5.226 | monoamine oxidase A | - |
12 | P09917 | ALOX5 | 5.000 | arachidonate 5-lipoxygenase | Enzyme |
13 | O14746 | TERT | 4.864 | telomerase reverse transcriptase | Enzyme |
14 | P05177 | CYP1A2 | 4.092 | cytochrome P450 family 1 subfamily A member 2 | Enzyme |
15 | P12931 | SRC | 4.045 | SRC proto-oncogene, non-receptor tyrosine kinase | Kinase |
16 | P11474 | ESRRA | 3.994 | estrogen-related receptor alpha | Nuclear receptor |
17 | P08253 | MMP2 | 3.992 | matrix metallopeptidase 2 | Enzyme |
18 | P30542 | ADORA1 | 3.818 | adenosine A1 receptor | G-protein coupled receptor |
19 | P15121 | AKR1B1 | 3.658 | aldo-keto reductase family 1 member B | Enzyme |
20 | P00533 | EGFR | 3.653 | epidermal growth factor receptor | Kinase |
21 | P14061 | HSD17B1 | 3.553 | hydroxysteroid 17-beta dehydrogenase 1 | Enzyme |
22 | P35869 | AHR | 3.423 | aryl hydrocarbon receptor | Transcription factor |
23 | P35372 | OPRM1 | 3.300 | opioid receptor mu 1 | G-protein coupled receptor |
24 | P35228 | NOS2 | 3.298 | nitric oxide synthase 2 | - |
25 | P35354 | PTGS2 | 3.209 | prostaglandin-endoperoxide synthase 2 | Enzyme |
26 | P08581 | MET | 3.161 | MET proto-oncogene, receptor tyrosine kinase | Kinase |
27 | Q92731 | ESR2 | 3.099 | estrogen receptor 2 | Nuclear receptor |
28 | P48736 | PIK3CG | 2.973 | phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma | Kinase |
29 | P51955 | NEK2 | 2.886 | NIMA related kinase 2 | Kinase |
30 | P22748 | CA4 | 2.821 | carbonic anhydrase 4 | - |
31 | Q9UNQ0 | ABCG2 | 2.640 | ATP binding cassette subfamily G member 2 (Junior blood group) | Transporter |
32 | P05089 | ARG1 | 2.614 | arginase 1 | Enzyme |
33 | P08183 | ABCB1 | 2.514 | ATP binding cassette subfamily B member 1 | Transporter |
34 | P49841 | GSK3B | 2.512 | glycogen synthase kinase 3 beta | Kinase |
35 | P22303 | ACHE | 2.449 | acetylcholinesterase (Cartwright blood group) | Enzyme |
36 | O95271 | TNKS | 2.335 | tankyrase | - |
37 | P04798 | CYP1A1 | 2.319 | cytochrome P450 family 1 subfamily A member 1 | Enzyme |
38 | P02766 | TTR | 2.317 | transthyretin | Transporter |
39 | P35968 | KDR | 2.128 | kinase insert domain receptor | Kinase |
40 | P05067 | APP | 2.119 | amyloid beta precursor protein | Enzyme modulator |
41 | P14555 | PLA2G2A | 2.057 | phospholipase A2 group IIA | Enzyme |
42 | Q16875 | PFKFB3 | 1.902 | 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 | Kinase |
43 | P47989 | XDH | 1.866 | xanthine dehydrogenase | Enzyme |
44 | P04745 | AMY1A | 1.716 | amylase alpha 1A | - |
45 | P39900 | MMP12 | 1.685 | matrix metallopeptidase 12 | Enzyme |
46 | P27338 | MAOB | 1.649 | monoamine oxidase B | - |
47 | Q00534 | CDK6 | 1.574 | cyclin dependent kinase 6 | Kinase |
48 | P36888 | FLT3 | 1.567 | fms-related receptor tyrosine kinase 3 | Kinase |
49 | Q96S37 | SLC22A12 | 1.554 | solute carrier family 22 member 12 | Transporter |
50 | Q16790 | CA9 | 1.553 | carbonic anhydrase 9 | - |
51 | P16050 | ALOX15 | 1.520 | arachidonate 15-lipoxygenase | Enzyme |
52 | P30530 | AXL | 1.459 | AXL receptor tyrosine kinase | Kinase |
53 | P00918 | CA2 | 1.444 | carbonic anhydrase 2 | - |
No. | Uniprot ID | Gene | Relevance Score | Target | Protein Class |
---|---|---|---|---|---|
1 | P18031 | PTPN1 | 12.186 | protein tyrosine phosphatase non-receptor type 1 | - |
2 | P31749 | AKT1 | 11.022 | AKT serine/threonine kinase 1 | Kinase |
3 | P14679 | TYR | 10.667 | tyrosinase | Enzyme |
4 | P03372 | ESR1 | 10.026 | estrogen receptor 1 | Nuclear receptor |
5 | P11511 | CYP19A1 | 9.307 | cytochrome P450 family 19 subfamily A member 1 | Enzyme |
6 | P14416 | DRD2 | 8.109 | dopamine receptor D2 | G-protein coupled receptor |
7 | P08069 | IGF1R | 7.564 | insulin-like growth factor 1 receptor | Kinase |
8 | P00734 | F2 | 6.902 | coagulation factor II, thrombin | Enzyme |
9 | P14780 | MMP9 | 6.393 | matrix metallopeptidase 9 | Enzyme |
10 | P10275 | AR | 5.830 | androgen receptor | Nuclear receptor |
11 | P21397 | MAOA | 5.226 | monoamine oxidase A | - |
12 | P09917 | ALOX5 | 5.000 | arachidonate 5-lipoxygenase | Enzyme |
13 | O14746 | TERT | 4.864 | telomerase reverse transcriptase | Enzyme |
14 | P05177 | CYP1A2 | 4.092 | cytochrome P450 family 1 subfamily A member 2 | Enzyme |
15 | P12931 | SRC | 4.045 | SRC proto-oncogene, non-receptor tyrosine kinase | Kinase |
16 | P11474 | ESRRA | 3.994 | estrogen-related receptor alpha | Nuclear receptor |
17 | P08253 | MMP2 | 3.992 | matrix metallopeptidase 2 | Enzyme |
18 | P30542 | ADORA1 | 3.818 | adenosine A1 receptor | G-protein coupled receptor |
19 | P15121 | AKR1B1 | 3.658 | aldo-keto reductase family 1 member B | Enzyme |
20 | P00533 | EGFR | 3.653 | epidermal growth factor receptor | Kinase |
21 | P14061 | HSD17B1 | 3.553 | hydroxysteroid 17-beta dehydrogenase 1 | Enzyme |
22 | P35869 | AHR | 3.423 | aryl hydrocarbon receptor | Transcription factor |
23 | P35372 | OPRM1 | 3.300 | opioid receptor mu 1 | G-protein coupled receptor |
No. | Uniprot ID | Gene | Degree | Betweenness Centrality | Closeness Centrality |
---|---|---|---|---|---|
1 | P12931 | SRC | 12 | 0.277 | 0.875 |
2 | P31749 | AKT1 | 10 | 0.167 | 0.778 |
3 | P00533 | EGFR | 10 | 0.126 | 0.778 |
4 | P10275 | AR | 6 | 0.047 | 0.636 |
5 | P03372 | ESR1 | 6 | 0.025 | 0.636 |
6 | P14780 | MMP9 | 5 | 0.025 | 0.609 |
7 | P18031 | PTPN1 | 5 | 0.017 | 0.609 |
8 | P08069 | IGF1R | 5 | 0.008 | 0.609 |
9 | P35354 | PTGS2 | 4 | 0.007 | 0.560 |
10 | Q92731 | ESR2 | 4 | 0.000 | 0.583 |
11 | P05067 | APP | 3 | 0.010 | 0.560 |
12 | P49841 | GSK3B | 3 | 0.007 | 0.538 |
13 | P35228 | NOS2 | 3 | 0.004 | 0.560 |
14 | P35968 | KDR | 3 | 0.003 | 0.538 |
15 | P35869 | AHR | 3 | 0.002 | 0.538 |
No. | Uniprot ID | Gene | Degree | Betweenness Centrality | Closeness Centrality |
---|---|---|---|---|---|
1 | P14416 | DRD2 | 5 | 0.256 | 0.647 |
2 | P23975 | SLC6A3 | 5 | 0.211 | 0.611 |
3 | P31645 | SLC6A4 | 5 | 0.120 | 0.611 |
4 | P46098 | HTR3A | 5 | 0.159 | 0.611 |
5 | Q05586 | GRIN1 | 4 | 0.188 | 0.550 |
6 | P08908 | HTR1A | 4 | 0.053 | 0.579 |
7 | P28223 | HTR2A | 4 | 0.053 | 0.579 |
8 | Q13224 | GRIN2B | 3 | 0.006 | 0.524 |
9 | P07550 | ADRB2 | 3 | 0.667 | 1.000 |
10 | P21917 | DRD4 | 3 | 0.029 | 0.458 |
11 | P08913 | SLC6A2 | 3 | 0.017 | 0.500 |
12 | P13945 | ADRB3 | 2 | 0.000 | 0.750 |
13 | P08588 | ADRB1 | 2 | 0.000 | 0.750 |
14 | P35462 | DRD3 | 2 | 0.000 | 0.423 |
15 | P35368 | ADRA1B | 1 | 0.000 | 0.600 |
16 | P35372 | OPRM1 | 1 | 0.000 | 0.367 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.; Kwak, H.J.; Kim, B.H.; Kim, S.H.; Kim, D.-W.; Kang, K.S. Combined Anti-Adipogenic Effects of Hispidulin and p-Synephrine on 3T3-L1 Adipocytes. Biomolecules 2021, 11, 1764. https://doi.org/10.3390/biom11121764
Lee D, Kwak HJ, Kim BH, Kim SH, Kim D-W, Kang KS. Combined Anti-Adipogenic Effects of Hispidulin and p-Synephrine on 3T3-L1 Adipocytes. Biomolecules. 2021; 11(12):1764. https://doi.org/10.3390/biom11121764
Chicago/Turabian StyleLee, Dahae, Hee Jae Kwak, Byoung Ha Kim, Seung Hyun Kim, Dong-Wook Kim, and Ki Sung Kang. 2021. "Combined Anti-Adipogenic Effects of Hispidulin and p-Synephrine on 3T3-L1 Adipocytes" Biomolecules 11, no. 12: 1764. https://doi.org/10.3390/biom11121764
APA StyleLee, D., Kwak, H. J., Kim, B. H., Kim, S. H., Kim, D. -W., & Kang, K. S. (2021). Combined Anti-Adipogenic Effects of Hispidulin and p-Synephrine on 3T3-L1 Adipocytes. Biomolecules, 11(12), 1764. https://doi.org/10.3390/biom11121764