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Abstract: Numerous studies have confirmed that microRNAs play a crucial role in the research of
complex human diseases. Identifying the relationship between miRNAs and diseases is important
for improving the treatment of complex diseases. However, traditional biological experiments are
not without restrictions. It is an urgent necessity for computational simulation to predict unknown
miRNA-disease associations. In this work, we combine Q-learning algorithm of reinforcement
learning to propose a RFLMDA model, three submodels CMF, NRLMF, and LapRLS are fused via
Q-learning algorithm to obtain the optimal weight S. The performance of RFLMDA was evaluated
through five-fold cross-validation and local validation. As a result, the optimal weight is obtained as S
(0.1735, 0.2913, 0.5352), and the AUC is 0.9416. By comparing the experiments with other methods, it
is proved that RFLMDA model has better performance. For better validate the predictive performance
of RFLMDA, we use eight diseases for local verification and carry out case study on three common
human diseases. Consequently, all the top 50 miRNAs related to Colorectal Neoplasms and Breast
Neoplasms have been confirmed. Among the top 50 miRNAs related to Colon Neoplasms, Gastric
Neoplasms, Pancreatic Neoplasms, Kidney Neoplasms, Esophageal Neoplasms, and Lymphoma, we
confirm 47, 41, 49, 46, 46 and 48 miRNAs respectively.

Keywords: laplacian regularized least squares; neighborhood regularized logistic matrix factoriza-
tion; Q-learning; collaborative matrix factorization; human microRNA-disease association

1. Introduction

MicroRNA (miRNA) is a type of single-stranded endogenous non-coding RNA. It
is composed of approximately 20~25 nucleotides [1] and mainly acts as a key regulator
of genes expressed at the post-transcriptional level. It mainly exerts its biological func-
tions by influencing the expression of target genes, if miRNA induces messenger RNA
degradation, translation inhibition, or other morphological regulation mechanisms, the
expression of target genes to be inhibited. Researchers have found that miRNAs exist in
various eukaryotes and prokaryotes, they are involved in regulating many life processes
of organisms, including a series of biological life processes, for example cell growth and
development and the formation of vital organs. The abnormal modulation of miRNAs
can lead to the development of numerous complex human diseases [2–6], such as cancer.
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Therefore, Studying the relationship between miRNAs and diseases is crucial to improve
the treatment of complex diseases.

miRNA as a pathogenic factor for many complex diseases has the ability to accurately
and efficiently identify miRNA-disease associations, which will help people to understand
the pathogenesis of complex diseases and provide useful help for disease prevention and
treatment. In the early stages, researchers mostly carried out miRNA-disease association
prediction by biological experiments. But traditional biological experiments have some
drawbacks such as the small scale, the large investment in manpower and material re-
sources, the long experiment period, and the existence of limitations [7]. Due to the rapid
advances in biotechnology, massive data has been generated in the field of biology. The
computational method of bioinformatics come into being [8]. It not only points out the
direction of traditional experiments to a certain extent, but also further reduces the cost of
traditional biological experiments.

So far, predecessors have proposed many methods [9–12] to forecast miRNA-disease
associations. In 2010, Jiang et al. [13] proposed a method. They fused data from multiple
sources through a naive Bayesian model, via disease-gene association and miRNA-target
gene association, they predicted the similarity score between the disease and each miRNA.
The highest scoring miRNAs were those associated with the disease. Chen et al. [14]
proposed a model in 2012, which is RWRMDA. However, their consideration is insufficient,
the prediction performance is poor. In 2013, Xuan et al. [15] proposed HDMP, which is a
computational model via weighted K nearest neighbors, but it did not predict unknown
diseases which are involved with miRNAs. In this year, Shi et al. [16] used disease-
gene associations and miRNA-target gene associations to perform random walks on the
protein-protein interaction (PPI) network. In this way, they can get predicted results.
Subsequently, Chen et al. [17] proposed a predictive method called RLSMDA in 2014, it is
a novel approach and a semi-supervised globalization model, yet it did not consider the
topological information of the miRNA-disease association network. In 2016, Liu et al. [18]
built a more complete heterogeneous network by fusing multiple data sources, in predicting
the correlation between miRNAs and diseases, they used a random walk algorithm. Via the
same data, Chen et al. [19,20] successively proposed two methods to predict miRNA-disease
associations in 2016. First, they proposed WBSMDA model, which calculates the Gaussian
similarity score between miRNA and disease and uses it as miRNA-disease association
prediction scores. Later, The HGIMDA method is proposed. It constructs a heterogeneous
network and iterative updates are performed using optimization functions. In this way,
they predicted the unknown connection between miRNAs and diseases. Comparing these
two methods, the latter has faster and more effective characteristics. Based on a biological
hypothesis that the functional similarity of miRNAs is positively correlated with similar
phenotypes of diseases, a distribution model for hypergeometric computation is proposed
in 2017. Jiang et al. [21] construct a miRNA functional similarity network and a known
miRNA-disease association network, disease phenotypic similarity was used to express
disease similarity, and disease-associated miRNAs were predicted by a hypergeometric
distribution scoring system. But there is a limit to the amount of information that can
be used to build a network. In 2018, Jiang et al. [22] proposed the FKL-Spa-LapRLS
model, it learns through the Fast Kernel Learning (FKL) model, which is a combination of
miRNA similarity kernels and disease similarity kernels, next then noise is removed by
sparse kernels (Spa), finally LapRLS is used to find miRNA-disease associations. In 2020,
Ding et al. [23] proposed a new model to predict miRNA-disease association through a
hypergraph regularized bipartite local model (HGBLM) based on a hypergraph embedded
Laplacian support vector machine (LapSVM).

In this paper, we combined Q-learning algorithm of reinforcement learning to propose
RFLMDA model. The three sub-models were used, namely CMF [24], NRLMF [25], and
LapRLS [26], which were fused via Q-learning algorithm to obtain the optimal weight S.
The performance of RFLMDA was evaluated through five-fold cross-validation and local
validation. As a result, the optimal weight was obtained as S (0.1735, 0.2913, 0.5352), and
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the AUC was 0.9416. By comparing the experiments with other methods, it is proved that
RFLMDA model has better performance.

In order to further validate the predictive performance of RFLMDA, we use eight
diseases for local verification and perform case study on three common human diseases.
Consequently, all the top 50 miRNAs associated with Breast Neoplasms and Colorectal
Neoplasms have been confirmed. Among the top 50 miRNAs related to Pancreatic Neo-
plasms, Colon Neoplasms, Gastric Neoplasms, Kidney Neoplasms, Esophageal Neoplasms
and Lymphoma, we confirm 49, 47, 41, 46, 46, and 48 miRNAs respectively.

2. Materials and Methods
2.1. Human miRNA-Disease Associations

This paper downloads the required data from HMDD v2.0 (http://www.cuilab.cn/
hmdd, accessed date on 15 October 2021) database, which [27] is a manual collection of
human miRNA-disease association database. Human miRNA-disease related information
has been experimentally confirmed. The detailed data are indicated in Table 1.

Table 1. Statistics of associated information.

Type of Data Quantity

MiRNAs 495
Diseases 383

MiRNA-Disease association 5430

We construct the adjacency matrix Y ∈ Rp×q, which is composed of disease di(1 ≤ i ≤ p)
and miRNA mj(1 ≤ j ≤ q), the matrix Y ∈ Rp×q is defined as Equation (1):

Y
(
di, mj

)
=

{
1 Disease di is related to miRNA mj
−1 Disease di is not related to miRNA mj

(1)

2.2. MiRNA Functional Similarity

There are interactions between miRNAs, which will affect various biological processes.
Wang et al. [28] use the MISIM method to determine the functional similarity scores of
miRNAs. We construct a miRNA functional similarity adjacency matrix with 495 rows and
495 columns. Each element in the matrix indicates the functional similarity score between
two miRNAs.

2.3. Disease Semantic Similarity

The U.S. National Library of Medicine’s MeSH (http://www.ncbi.nlm.nih.gov/, ac-
cessed date on 15 October 2021) provides the disease semantic similarity information.
MeSH [29] has so far collected more than 18,000 medical keywords, which are divided
into 16 categories. Among them, category C has a strict classification of diseases, which
is more conducive for future research on the diseases. Each disease is represented by a
directed acyclic graph (DAG), where the dots in the DAG represent a disease, and the
edges represent the relationship between diseases.

According to the hypothesis, the similarity of the two disease is associated with the
shared items, so based on the DAG of diseases, Wang et al. [28] proposed a method to
calculate the semantic similarity of diseases, which is defined as follows:

Dd(i)(t) =

{
1 i f t = d(i)
max

{
∆ ∗ Dd(i)(t′)

∣∣∣t′ ε chidren o f t
}

i f t 6= d(i)
(2)

DV(d(i)) = ∑tεTd(i)
Dd(i)(t) (3)

http://www.cuilab.cn/hmdd
http://www.cuilab.cn/hmdd
http://www.ncbi.nlm.nih.gov/
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Equation (2) demonstrates the semantic score of disease t, Td(j) is the node set, Ed(i) is
the corresponding link set.

We usually use ∆ to denote the semantic contribution factor, and specific scores are
calculated using Equation (3) for the semantic score of disease d(i), where the contribution
of disease d(i) to its own semantic value is 1, and other ancestral diseases gradually
decrease their contribution to the semantic value of disease d(i) as their distance from
disease d(i) increases.

Therefore, the semantic similarity between the two diseases d(i) and d(j) can be
calculated by Equation (4):

Kd,sem(d(i), d(j)) =
∑tεTd(i)∩Td(j)

(Dd(i)(t) + Dd(j)(t))

DV(d(i)) + DV(d(j))
(4)

View reference Ding et al. [23], where we can see more details about above equation.

2.4. Method Models
2.4.1. Collaborative Matrix Factorization

The first sub-model used in the experiments is Collaborative matrix factorization
(CMF) model [24] which is a classic baseline, it is often used for comparison in recommen-
dation system related studies such as rating prediction and cold-start recommendations.
The formulas of the CMF model are as follows:

Y ≈ ABT (5)

Then minimize the squared error of our objective function:

argmin
A,B
‖ Y− ABT ‖2

F , (6)

Sm ≈ AAT , Sd ≈ BBT (7)

where ‖ . ‖F is Frobenius norm, matrix A is the matrix of miRNAs features and matrix B is
the matrix of diseases features. Finally, the matrix of predicted miRNA-disease interactions
F is calculated by Equation (8).

F = ABT (8)

2.4.2. Neighborhood Regularized Logistic Matrix Factorization

The second sub-model is Neighborhood Regularized Logistic Matrix Factorization
(NRLMF) [25], which is a common approach in machine learning. It predicts associations
by combining logistic matrix factorization (LMF) and domain regularization. Some of the
equations that will be used in the model are as follows:

min
U,V

m

∑
i=1

n

∑
j=1

(
1 + cyij − yij

)
ln
[
1 + exp

(
uivT

j

)]
− cyijuivT

j +
1
2

tr
[
UT
(

λd I + αLd
)

U
]
+

1
2

tr
[
VT(λt I + βLt)V] (9)

where P ∈ Rm×n, In the algorithm, the objective function of Equation (9) is denoted
by L, and the partial gradients with respect to U and V are listed in the following equation:

∂L
∂U

= PV + (c− 1)(Y� P)V − cYV +
(

λd I + αLd
)

U (10)

∂L
∂V

= PTU + (c− 1)
(

YT � PT
)

U − cYTU +
(
λt I + βLt)V (11)

where the (i, j) element is Pij, � denotes the Hadamard product of two matrices.
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2.4.3. Laplacian Regularized Least Squares

The third sub-model used in the experiments is Laplacian Regularized Least Squares
(LapRLS) [26], which is a common prediction model in machine learning and it belongs
to semi-supervised learning methods. We build the flow model via building a nearest
neighborhood graph. Then by introducing the Laplacian graph in the least square loss
function coefficients to achieve the regularization purpose. Some of the equations that will
be used are as follows:

F∗d = min
Fd

J(Fd) = ‖ Y− Fd ‖2
F + βdTrace

(
FT

d LdFd

)
(12)

F∗d = Wdα∗d (13)

The next step is to tell the derivative of the objective function, which will vanish at the
minimization.

−Wd(Y−Wdαd) + βdαT
d WdLdWdαd = 0 (14)

Then we can obtain the following equation:

α∗d = (Wd + βdLdWd)
−1Y (15)

In the end, we can get:

F∗d = Wd(Wd + βdLdWd)
−1Y (16)

F∗m = Wm(Wm + βmLmWm)
−1YT (17)

F∗ =
F∗d + F∗mT

2
(18)

Wd is the weight of the disease and Wm is the weight of the miRNA, This helps us to
calculate the results later.

It is used because it is simple and its performance is comparable to that of Laplacian
regularized support vector machines. LapRLS depends on the regularization term of the
data being a normalized Laplacian operation on the graphs.

2.4.4. Reinforcement Learning

Nowadays, machine learning has become a common computational method in research,
and reinforcement learning plays an essential role in machine learning. In reinforcement
learning, we use four main elements: agent, reward, environment state and action. Agent
manipulates the environment by taking action and moving from this moment state to the next
state. If the task is finished, the agent is given a positive reward. If not, it is given a negative
reward. The purpose of reinforcement learning is to gain cumulative more rewards.

In reinforcement learning, Q-learning algorithm is a commonly used algorithm that
is value-based, where the Markov problem will be solved with Bellman′s equation and
off-policy learning by using the time difference method. Q is Q(s, a), that is, in a certain
state, doing an action a, an immediate reward r will be given back, and the environment
will also give the corresponding rewards depending on the agent’s action. Therefore, the
algorithm stores Q-values by constructing a Q-table of states and actions, then chooses the
action that will yield the maximum benefit upon the Q-values.

2.4.5. RFLMDA

We perform association prediction based on reinforcement learning, we divide the
dataset into training set, validation set and test set in the ratio of 8:1:1 and validate the
performance with five-fold cross-validation. First, three sub-models are used, namely
CMF [24], NRLMF [25] and LapRLS [26], which are trained on the training set, and then the
three sub-models are fused with models via the Q-learning algorithm. In the Q-learning
section, the weights occupied by the three sub-models themselves are set as the state space
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S, and the weight change values of the weights occupied by the three sub-models are set
as the action space A. F∗ is iteratively updated on the verification set, and each round
generates a new AUC. We use the difference of AUC as the reward benchmark, if the value
of the difference between the next state′s and this state′s AUC is larger than 0, we will give
a reward of plus 1. Otherwise, give a reward of minus 1. With continuous iterative training,
the Q values converge continuously and the three parameters approach the optimal solution.
Finally tested in the test set, we obtained the weight value S (0.1735, 0.2913, 0.5352) and
the AUC’s value (0.9416). Therefore, the RFLMDA model gets better results.

Pseudocode for RFLMDA algorithm is list in Algorithm 1. The pseudocode for Q-
learning is listed in Algorithm 2. Overall flow chart of RFLMDA is shown in Figure 1.

Algorithm 1: Pseudocode for RFLMDA algorithm.

Require: Action space A, state space S, reward value R, sub-models CMF, NRLMF and LapRLS.
Ensure: The predicted results of F∗;
1: Processing the dataset and training sub-models, namely CMF, NRLMF and LapRLS,
respectively;
2: Calculation of the weights for models F1, F2 and F3 via Pseudocode for Q-learning algorithm,
respectively;
3: Combining F1, F2, F3 and S(a, b, c) by F∗ = a ∗ F1 + b ∗ F2 + c ∗ F3.

Algorithm 2: Pseudocode for Q-learning algorithm.

Biomolecules 2021, 11, 1835 6 of 13 
 

state space S, and the weight change values of the weights occupied by the three sub-
models are set as the action space A. 𝐹∗ is iteratively updated on the verification set, and 
each round generates a new AUC. We use the difference of AUC as the reward 
benchmark, if the value of the difference between the next state′s and this state′s AUC is 
larger than 0, we will give a reward of plus 1. Otherwise, give a reward of minus 1. With 
continuous iterative training, the Q values converge continuously and the three 
parameters approach the optimal solution. Finally tested in the test set, we obtained the 
weight value 𝑆  (0.1735, 0.2913, 0.5352) and the AUC’s value (0.9416). Therefore, the 
RFLMDA model gets better results. 

Pseudocode for RFLMDA algorithm is list in Algorithm 1. The pseudocode for Q-
learning is listed in Algorithm 2. Overall flow chart of RFLMDA is shown in Figure 1. 

Algorithm 1: Pseudocode for RFLMDA algorithm. 
Require: Action space A, state space S, reward value R, sub-models CMF, NRLMF and 
LapRLS. 
Ensure: The predicted results of 𝐹∗; 
1: Processing the dataset and training sub- models, namely CMF, NRLMF and LapRLS, 

respectively; 
2: Calculation of the weights for models 𝐹ଵ，𝐹ଶ 𝑎𝑛𝑑 𝐹ଷ  via Pseudocode for Q-learning 

algorithm, respectively; 
3: Combining 𝐹ଵ，𝐹ଶ , 𝐹ଷ and 𝑆(𝑎, 𝑏, 𝑐) by  𝐹∗ = 𝑎 ∗ 𝐹ଵ + 𝑏 ∗ 𝐹ଶ + 𝑐 ∗ 𝐹ଷ. 

 

Algorithm 2: Pseudocode for Q-learning algorithm. 
Require: Action space 𝐴 (𝑚, 𝑛, −𝑚 − 𝑛), State space 𝑆 (𝑎, 𝑏, 𝑐), discount rate γ, reward 

value 𝑅, learn rate α. 

Ensure: Prediction of 𝑆(𝑎, 𝑏, 𝑐) and 𝑄 (𝑠, 𝑎); 
1:   Initialize 𝑄 (𝑠, 𝑎)   randomly 
2:   repeat (for each episode in the iterative training process): 
3:       Initialize 𝑠 
4:       repeat (for each step of in the iterative training process episode): 
5:            by policy derived from Q(e.g.，ε-greedy), choose 𝑎 from 𝑠 
6:            calculation of the AUC via  𝐹∗ = 𝑎 ∗ 𝐹ଵ + 𝑏 ∗ 𝐹ଶ + 𝑐 ∗ 𝐹ଷ 
7:            take action 𝑎, observe  𝑠ᇱ, 𝑅 

8:            𝑄(𝑠, 𝑎)       𝑄(𝑠, 𝑎)  + 𝛼[𝑟 +  𝛾𝑚𝑎𝑥𝑎’𝑄(𝑠′ , 𝑎′)  − 𝑄(𝑠, 𝑎)] 

9:            𝑠           𝑠’   
10.      until s is terminal 
11:   until 𝑄(𝑠, 𝑎) convergence 
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3. Results
3.1. Evaluation Measurements

The area under the PR curve is called AUPR (area under the PR curve). The PR curve
(precision recall curve) is a curve derived from the concepts of Precision check accuracy
rate and Recall check completeness, with Recall on the X-axis and Precision on the Y-axis.

AUC (Area Under Curve) is the area of the plane graph enclosed by the ROC curve
and the abscissa axis, and its value is between 0 and 1. When it is equal to 0.5, the
evaluation is the lowest and there is no use value. As it gets closer to 1, the better the model
is. In practical applications, the performance advantages and disadvantages of different
statistical models can be compared by comparing the AUC values of the ROC curves of
different statistical classification models.

We use AUC and AUPR as evaluation measurements, and compare the performance
of RFLMDA with Mean weighted, CMF [24], NRLMF [25], and LapRLS [26]. The Mean
Weighted method is to assign 1/3 of the weight value to all three submodels, Mean
Weighted in order to compare with reinforcement learning methods. Observe the change of
experimental results of three submodels under the same weight. In this way, we verify the
necessity of applying reinforcement learning algorithm. By the five-fold cross-validation,
RLFMDA, Mean Weighted, CMF, NRLMF and LapRLS obtained AUC values of 0.9416,
0.9383, 0.9091, 0.9315, 0.9367 respectively. Figure 2 is the obtained result graph.
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3.2. Comparison with Other Methods

To further validate the model performance, we conducted a comparison experiment.
We compare the RFLMDA model with other 12 methods, including CMF [24], NRLMF [25],
LapRLS [25], PBMDA [30], MCMDA [31], MaxFlow, NCPMDA [32], WBSMDA [19],
HDMP [15], RLSMDA [18], LRSSLMDA [33], Mean weighted. The comparative results are
shown in Figure 4. The weight obtained by the experiment is S (0.1735, 0.2913, 0.5352).
The AUC of RFLMDA is 0.9416, which is better than other methods. It can be seen that
RLFMDA has the best effect.
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4. Case Study

In this section, we perform a case study, to further evaluate the model RFLMDA
prediction performance. The case study method can objectively and effectively evaluate
the predictive performance of statistical models in a more in-depth manner.

Therefore, we select 8 common diseases for local verification to predict unknown
miRNA-disease associations in HMDD via known miRNA-disease associations contained
in HMDD. Two independent databases (i.e., dbDEMC [34] and miR2Disease [35]) were
used as benchmarks. The prediction results are verified by this dataset. The verification
results of the top 50 lists are summarized in Table 2.

Table 2. The Top-50 prediction list of 8 common human diseases.

Disease Name Top-50 Prediction List

Colon Neoplasms 47
Kidney Neoplasms 46

Pancreatic Neoplasms 49
Esophageal Neoplasms 46

Breast Neoplasms 50
Gastric Neoplasms 41

Lymphoma 48
Colorectal Neoplasms 50

All the top 50 miRNAs associated with Colorectal Neoplasms and Breast Neoplasms
have been confirmed. We used every known miRNA-disease association as a test sample,
and the training samples were other known miRNA-disease associations. In the absence
of any evidence of a known association, the test samples were classified as candidate
miRNA-disease associations. Among the top 50 miRNAs related to Gastric Neoplasms,
Colon Neoplasms, Pancreatic Neoplasms, Esophageal Neoplasms, Kidney Neoplasms and
Lymphoma, we confirm 41, 47, 49, 46, 46, and 48 miRNAs respectively.

Next, we also conduct a detailed analysis of Colorectal Neoplasms, Breast Neoplasms
and Lymphoma.

4.1. Colorectal Neoplasms

Colorectal Neoplasms is common malignant tumors. Because of abnormal production
of cells, it may attack or spread to other body parts. Most of them develop in the lining of the
intestine and rectum, usually starting as polyps. These polyps are benign growths and most
are harmless, but if they remain undetected, they may become cancerous. In Singapore,
colorectal Neoplasms is the most prevalent cancer in men, and the most prevalent in people
over 50 years of age.
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The validation results are in Table 3. From the confirmed results, we can see that
among the top 20 miRNAs related to colorectal Neoplasms, all of them have been confirmed
in the dbDEMC or HMDD dataset.

Table 3. Top 20 miRNAs predicted by the RLFMDA model to be associated with Colorectal Neo-
plasms.

Disease Rank Name Evidence Rank Name Evidence

Colorectal
Neoplasms 1 mir-21 D 11 mir-7 D

2 mir-145 D 12 mir-218 D
3 mir-210 D 13 mir-148a D
4 mir-182 D 14 mir-27a H
5 mir-196a D 15 mir-133a D
6 mir-126 D 16 mir-143 D
7 mir-30a D 17 mir-31 D
8 mir-34a D 18 mir-200c D
9 mir-183 D 19 mir-34b D

10 mir-146b H 20 mir-7 D
In the table, HMDD is represented by H and dbDEMC is represented by D.

4.2. Breast Neoplasms

Breast Neoplasms is a tumor that occurs in breast tissue, and accounts for about 2/3 of
breast diseases. Malignant breast neoplasms are usually called breast cancer, 99% of which
occur in women, which is now a common disease that endangers the health of women
worldwide. It is predicted that most women are diagnosed in the advanced stage of breast
cancer. Therefore, in order to treat the disease in the early stage, it is urgent to further
decipher the pathogenesis of breast neoplasms.

In previous studies, it can be known that miRNAs are closely associated with Breast
Neoplasms. For example, the let-7 family was mainly a Neoplasms suppressor that inhibits
the development and migration of breast cancer. In the evaluation of breast Neoplasms,
the top 20 alternate miRNAs were potentially related to breast Neoplasms were selected,
all of which are confirmed by the dataset. The validation results are in Table 4.

Table 4. Top 20 miRNAs predicted by the RLFMDA model to be associated with Breast Neoplasms.

Disease Rank Name Evidence Rank Name Evidence

Breast
Neoplasms

1 let-7f D 11 mir-10b D

2 mir-30c D 12 mir-19a D
3 mir-22 D 13 mir-302b D
4 mir-17 D 14 mir-200c D
5 mir-34c H 15 let-7g D
6 mir-18a D 16 mir-29a D
7 let-7a D 17 mir-191 D
8 mir-20a D 18 mir-125a D
9 mir-218 D 19 mir-151a H

10 mir-34b H 20 mir-200b D
In the table, HMDD is represented by H and dbDEMC is represented by D.

4.3. Lymphoma

Lymphoma is the most prevalent type of blood cancer and it originates from the
lymphopoietic system, and it usually refers to the rapid and uncontrolled growth of
abnormal lymphocytes. Lymph is an immune organ that spreads all over the body. Once
it becomes cancerous, the impact on human life and health is quite serious. Around the
world, about 1000 people are diagnosed with lymphoma every day.
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We performed local validation for lymphoma and obtained the predicted results
shown in Table 5. In the top 20 predicted miRNAs, all of them have been confirmed in the
dbDEMC or HMDD dataset.

Table 5. Top 20 miRNAs predicted by the RLFMDA model to be associated with lymphoma.

Disease Rank Name Evidence Rank Name Evidence

Lymphoma 1 mir-17 D 11 mir-146a D
2 mir-20a D 12 mir-34a D
3 mir-19b D 13 mir-125b D
4 mir-92a D 14 mir-126 D
5 mir-18a D 15 mir-145 D
6 mir-21 D 16 mir-181a D
7 mir-19a D 17 mir-24 D
8 mir-155 D 18 mir-29b D
9 mir-16 D 19 mir-101 D
10 mir-15a D 20 mir-150 D

In the table, HMDD is represented by H and dbDEMC is represented by D.

In conclusion, it shows that our method plays a role in predicting association infor-
mation between miRNAs and human diseases, and which is a trustworthy model for
association prediction.

5. Conclusions and Discussion

In this work, we combine Q-learning algorithm of reinforcement learning to propose
a RFLMDA model, fusing three submodels CMF [24], NRLMF [25] and LapRLS [26] are
fused via Q-learning algorithm. Then multiple rounds of iterative updates are performed
to obtain the optimal weight S. The performance of RFLMDA was evaluated via five-fold
cross-validation and local validation. As a result, the optimal weight is obtained as S
(0.1735,0.2913,0.5352), and the AUC is 0.9416. By comparing the experiments with other
methods, it is proved that RFLMDA model has better performance.

In order to further validate the predictive performance of RFLMDA, we use eight
diseases for local verification and conducted case study on three common human dis-
eases. As a result, all the top 50 miRNAs related to Colorectal Neoplasms and Breast
Neoplasms have been confirmed. Among the top 50 miRNAs related to Gastric Neoplasms,
Colon Neoplasms, Pancreatic Neoplasms, Esophageal Neoplasms, Kidney Neoplasms, and
Lymphoma, we confirm 41, 47, 49, 46, 46, and 48 miRNAs respectively.

The above results suggest that our proposed RFLMDA is a reliable model and can
provide high-confidence miRNA candidates for biological experiments. In our future work,
we hope that further improvements will be made to the existing algorithm and expect
better prediction results.

In comparison to existing technology, our methodological improvement is to optimize
the performance and program running speed of miRNA-disease association prediction.
The potential benefit is to provide a new direction for future miRNA-disease association
prediction accuracy, which could advance the development of human disease therapy
and gene pharmaceuticals. In the future, we will consider other optimization algorithms
in reinforcement learning to build related models to see if we can further improve the
performance of miRNA-disease association prediction.

Author Contributions: L.C., Y.L. and H.W.: conception. L.C.: experiment and analysis of data. L.C.,
J.S., X.X. and Q.F.: preparation of the manuscript. J.C.: supervision. All authors contributed to the
article and approved the submitted version. All authors have read and agreed to the published
version of the manuscript.



Biomolecules 2021, 11, 1835 12 of 13

Funding: This work was financially supported by Primary Research and Development Plan of China
(No.2020YFC2006602), National Natural Science Foundation of China (No. 62072324, No.61876217,
No.61876121, No.61772357), University Natural Science Foundation of Jiangsu Province (No.21KJA520005),
Primary Research and Development Plan of Jiangsu Province (No.BE2020026), Natural Science Foundation
of Jiangsu Province (No. BK20190942).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data and code can be requested from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shi, H.; Zhang, G.; Zhou, M.; Cheng, L.; Yang, H.; Wang, J.; Sun, J.; Wang, Z. Integration of Multiple Genomic and Phenotype

Data to Infer Novel miRNA-Disease Associa-tions. PLoS ONE 2016, 11, e0148521.
2. Sredni, S.T.; Huang, C.-C.; Bonaldo, M.D.F.; Tomita, T. MicroRNA expression profiling for Molecular Classification of pediatric

brain tumors. Pediatr. Blood Cancer 2011, 57, 183–184. [CrossRef] [PubMed]
3. Claudia, B.; Fiedler, J.A.N.; Thum, T. Cardiovascular importance of the microRNA-23/27/24 family. Microcirculation 2012, 19,

208–214.
4. Lumayag, S.; Haldin, C.E.; Corbett, N.J.; Wahlin, K.J.; Cowan, C.; Turturro, S.; Larsen, P.E.; Kovacs, B.; Witmer, P.D.; Valle, D.; et al.

Inactivation of the microRNA-183/96/182 cluster results in syndromic retinal degeneration. Proc. Natl. Acad. Sci. USA 2013, 110,
E507–E516. [CrossRef]

5. van Schooneveld, E.; Wildiers, H.; Vergote, I.; Vermeulen, P.B.; Dirix, L.Y.; Van Laere, S.J. Dysregulation of microRNAs in breast
cancer and their potential role as prognostic and predictive biomarkers in patient management. Breast Cancer Res. 2015, 17, 21.
[CrossRef]

6. Zhao, W.; Zhao, S.P.; Zhao, Y.H. MicroRNA-143/-145 in cardiovascular diseases. BioMed Res. Int. 2015, 2015, 531740. [CrossRef]
7. Zeng, X.; Zhang, X.; Zou, Q. Integrative approaches for predicting microRNA function and prioritizing disease-related mi-croRNA

using biological interaction networks. Brief Bioinform. 2016, 17, 192–203. [CrossRef]
8. Mørk, S.; Pletscher-Frankild, S.; Palleja Caro, A.; Gorodkin, J.; Jensen, L.J. Protein-driven inference of miRNA-disease associations.

Bioinformatics 2014, 30, 392–397. [CrossRef]
9. Zhou, H.; Wang, H.; Ding, Y.; Tang, J. Multivariate information fusion for identifying antifungal peptides with Hilbert-Schmidt

Independence Criterion. Curr. Bioinform. 2021, 16, 1. [CrossRef]
10. Zou, Y.; Wu, H.; Guo, X.; Peng, L.; Ding, Y.; Tang, J.; Guo, F. MK-FSVM-SVDD: A Multiple Kernel-based Fuzzy SVM Model for

Predicting DNA-binding Proteins via Support Vector Data Description. Curr. Bioinform. 2021, 16, 274–283. [CrossRef]
11. Qian, Y.; Meng, H.; Lu, W.; Liao, Z.; Ding, Y.; Wu, H. Identification of DNA-binding proteins via Hypergraph based Laplacian

Support Vector Machine. Curr. Bioinform. 2021, 16, 1. [CrossRef]
12. Ding, Y.; Tang, J.; Guo, F. Identification of drug-target interactions via multi-view graph regularized link propagation model.

Neurocomputing 2021, 461, 618–631. [CrossRef]
13. Jiang, Q.; Hao, Y.; Wang, G.; Juan, L.; Zhang, T.; Teng, M.; Liu, Y.; Wang, Y. Prioritization of disease microRNAs through a human

phenome-microRNAome network. BMC Syst. Biol. 2010, 4 (Suppl. 1), S2. [CrossRef]
14. Xing, C.; Liu, M.X.; Yan, G.Y. RWRMDA: Predicting novel human microRNA—Disease associations. Mol. Biosyst. 2012, 8,

2792–2798.
15. Xuan, P.; Han, K.; Guo, M.; Guo, Y.; Li, J.; Ding, J.; Liu, Y.; Dai, Q.; Li, J.; Teng, Z.; et al. Prediction of microRNAs Associated with

Human Diseases Based on Weighted k Most Similar Neighbors. PLoS ONE 2013, 8, e70204. [CrossRef]
16. Shi, H.; Xu, J.; Zhang, G.; Xu, L.; Li, C.; Wang, L.; Zhao, Z.; Jiang, W.; Guo, Z.; Li, X. Walking the interactome to identify human

miRNA-disease associations through the functional link between miRNA targets and disease genes. BMC Syst. Biol. 2013, 7, 101.
[CrossRef]

17. Chen, X.; Yan, G.Y. Semi-supervised learning for potential human microRNA-disease associations inference. Sci. Rep. 2014, 4,
5501. [CrossRef]

18. Liu, Y.; Zeng, X.; He, Z.; Zou, Q. Inferring MicroRNA-Disease Associations by Random Walk on a Heterogeneous Network with
Multiple Data Sources. IEEE/ACM Trans. Comput. Biol. Bioinform. 2016, 14, 905–915. [CrossRef] [PubMed]

19. Chen, X.; Yan, C.; Zhang, X.; You, Z.; Deng, L.; Liu, Y.; Zhang, Y.; Dai, Q. WBSMDA: Within and Between Score for MiRNA-Disease
Association prediction. Sci. Rep. 2016, 6, 21106. [CrossRef] [PubMed]

20. Chen, X.; Yan, C.C.; Zhang, X.; You, Z.H.; Huang, Y.A.; Yan, G.Y. HGIMDA: Heterogeneous graph inference for miRNA-disease
association prediction. Oncotarget 2016, 7, 65257. [CrossRef] [PubMed]

21. Luo, J.; Xiao, Q. A novel approach for predicting microRNA-disease associations by unbalanced bi-random walk on heteroge-
neous network. J. Biomed. Inform. 2017, 66, 194–203. [CrossRef] [PubMed]

22. Jiang, L.; Xiao, Y.; Ding, Y.; Tang, J.; Guo, F. FKL-Spa-LapRLS: An accurate method for identifying human microRNA-disease
association. BMC Genom. 2018, 19, 11–25. [CrossRef]

http://doi.org/10.1002/pbc.23105
http://www.ncbi.nlm.nih.gov/pubmed/21425446
http://doi.org/10.1073/pnas.1212655110
http://doi.org/10.1186/s13058-015-0526-y
http://doi.org/10.1155/2015/531740
http://doi.org/10.1093/bib/bbv033
http://doi.org/10.1093/bioinformatics/btt677
http://doi.org/10.2174/1574893616666210727161003
http://doi.org/10.2174/1574893615999200607173829
http://doi.org/10.2174/1574893616666210806091922
http://doi.org/10.1016/j.neucom.2021.05.100
http://doi.org/10.1186/1752-0509-4-S1-S2
http://doi.org/10.1371/annotation/a076115e-dd8c-4da7-989d-c1174a8cd31e
http://doi.org/10.1186/1752-0509-7-101
http://doi.org/10.1038/srep05501
http://doi.org/10.1109/TCBB.2016.2550432
http://www.ncbi.nlm.nih.gov/pubmed/27076459
http://doi.org/10.1038/srep21106
http://www.ncbi.nlm.nih.gov/pubmed/26880032
http://doi.org/10.18632/oncotarget.11251
http://www.ncbi.nlm.nih.gov/pubmed/27533456
http://doi.org/10.1016/j.jbi.2017.01.008
http://www.ncbi.nlm.nih.gov/pubmed/28104458
http://doi.org/10.1186/s12864-018-5273-x


Biomolecules 2021, 11, 1835 13 of 13

23. Ding, Y.; Jiang, L.; Tang, J.; Guo, F. Identification of human microRNA-disease association via hypergraph embedded bipartite
local model. Comput. Biol. Chem. 2020, 89, 107369. [CrossRef]

24. Zheng, X.; Ding, H.; Mamitsuka, H.; Zhu, S. Collaborative matrix factorization with multiple similarities for predicting drug-target
interactions. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
Chicago, IL, USA, 11–14 August 2013; pp. 1025–1033.

25. Liu, Y.; Wu, M.; Miao, C.; Zhao, P.; Li, X.L. Neighborhood Regularized Logistic Matrix Factorization for Drug-Target Interaction
Prediction. PLoS Comput. Biol. 2016, 12, e1004760. [CrossRef]

26. Xia, Z.; Wu, L.Y.; Zhou, X.; Wong, S.T. Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces.
BMC Syst. Biol. 2010, 4, S6. [CrossRef]

27. Li, Y.; Qiu, C.; Tu, J.; Geng, B.; Yang, J.; Jiang, T.; Cui, Q. HMDD v2.0: A database for experimentally supported human microRNA
and disease associations. Nucleic Acids Res. 2014, 42, D1070–D1074. [CrossRef]

28. Wang, D.; Wang, J.; Lu, M.; Song, F.; Cui, Q. Inferring the human microRNA functional similarity and functional network based
on mi-croRNA-associated diseases. Bioinformatics 2010, 26, 1644–1650. [CrossRef] [PubMed]

29. Lowe, H.J.; Barnett, G.O. Understanding and using the medical subject headings (MeSH) vocabulary to perform literature
searches. JAMA 1994, 271, 1103–1108. [CrossRef] [PubMed]

30. You, Z.H.; Huang, Z.A.; Zhu, Z.; Yan, G.Y.; Li, Z.W.; Wen, Z.; Chen, X. PBMDA: A novel and effective path-based computational
model for miRNA-disease asso-ciation prediction. PLoS Comput. Biol. 2017, 13, e1005455. [CrossRef] [PubMed]

31. Li, J.Q.; Rong, Z.H.; Chen, X.; Yan, G.Y.; You, Z.H. MCMDA: Matrix completion for MiRNA-disease association prediction.
Oncotarget 2017, 8, 21187. [CrossRef]

32. Gu, C.; Liao, B.; Li, X.; Li, K. Network Consistency Projection for Human miRNA-Disease Associations Inference. Sci. Rep. 2016,
6, 36054. [CrossRef] [PubMed]

33. Chen, X.; Huang, L.; Wang, E. LRSSLMDA: Laplacian Regularized Sparse Subspace Learning for MiRNA-Disease Association
prediction. PLoS Comput. Biol. 2017, 13, e1005912. [CrossRef] [PubMed]

34. Yang, Z.; Wu, L.; Wang, A.; Tang, W.; Zhao, Y.; Zhao, H.; Teschendorff, A.E. dbDEMC 2.0: Updated database of differentially
expressed miRNAs in human cancers. Nucleic Acids Res. 2017, 45, D812–D818. [CrossRef]

35. Jiang, Q.; Wang, Y.; Hao, Y.; Juan, L.; Teng, M.; Zhang, X.; Liu, Y. miR2Disease: A manually curated database for microRNA
deregulation in human disease. Nucleic Acids Res. 2009, 37, D98–D104. [CrossRef] [PubMed]

http://doi.org/10.1016/j.compbiolchem.2020.107369
http://doi.org/10.1371/journal.pcbi.1004760
http://doi.org/10.1186/1752-0509-4-S2-S6
http://doi.org/10.1093/nar/gkt1023
http://doi.org/10.1093/bioinformatics/btq241
http://www.ncbi.nlm.nih.gov/pubmed/20439255
http://doi.org/10.1001/jama.1994.03510380059038
http://www.ncbi.nlm.nih.gov/pubmed/8151853
http://doi.org/10.1371/journal.pcbi.1005455
http://www.ncbi.nlm.nih.gov/pubmed/28339468
http://doi.org/10.18632/oncotarget.15061
http://doi.org/10.1038/srep36054
http://www.ncbi.nlm.nih.gov/pubmed/27779232
http://doi.org/10.1371/journal.pcbi.1005912
http://www.ncbi.nlm.nih.gov/pubmed/29253885
http://doi.org/10.1093/nar/gkw1079
http://doi.org/10.1093/nar/gkn714
http://www.ncbi.nlm.nih.gov/pubmed/18927107

	Introduction 
	Materials and Methods 
	Human miRNA-Disease Associations 
	MiRNA Functional Similarity 
	Disease Semantic Similarity 
	Method Models 
	Collaborative Matrix Factorization 
	Neighborhood Regularized Logistic Matrix Factorization 
	Laplacian Regularized Least Squares 
	Reinforcement Learning 
	RFLMDA 


	Results 
	Evaluation Measurements 
	Comparison with Other Methods 

	Case Study 
	Colorectal Neoplasms 
	Breast Neoplasms 
	Lymphoma 

	Conclusions and Discussion 
	References

