A Review on Microbial Products and Their Perspective Application as Antimicrobial Agents
Abstract
:1. Introduction
2. Bacteria
2.1. Ribosomally Synthesized Antimicrobial Peptides (Bacteriocins) and Bacteriocin-Like Inhibitory Substances (BLIS)
Type | Characteristics | Example | Producer | Mode of Action | References | |
---|---|---|---|---|---|---|
Bacteriocin type I | Lantibiotics, very small (<5 kDa) peptides containing lanthionine and β-methyllanthionine | Nisin Z and Q, Enterocin W Nukacin ISK-1 | Lactococcus lactis | Membrane permeabilization forming pore | [33] | |
Bacteriocin type II | Small (<10 kDa), non-lanthionine-containing peptides | |||||
IIa | heat-stable peptides synthesized as a precursor and processed after two glycine residues, antilisterial, bear consensus sequence YGNGV-C at the N-terminal | Enterocin NKR-5-3C, Enterocin A, Leucocin A, Munditicin | Pediococcuspentosaceus, P. Acidilactici and L. sakei | Membrane permeabilization forming pore | [34] | |
IIb | Two-component systems: two different peptides work together and generate an active poration complex | Lactococcin Q, Enterocin NKR-5-3AZ, Enterocin X | L. lactis sub sp. cremoris, L. plantarum | Membrane permeabilization forming pore | [30,35] | |
IIc | N- and C- termini are covalently linked, generating a circular bacteriocin | Lactocyclicin Q, Leucocyclicin Q | L. gasseri,Enterococcusfaecalis, L. garvieae | Membrane permeabilization forming pore | [36] | |
IId | Other class II bacteriocins, including unmodified, sec-dependent bacteriocins and leaderless, non-pediocin-like bacteriocins | Lacticin Q and Z, Weissellicin Y and M, Leucocin Q and N, Bactofencin A, LsbB | L. salivarius, L. lactis Sub sp. Lactis | [30,37] | ||
Bacteriocin type III | Large peptides, sensitive to heat | L. crispatus, L. helveticus, E. faecalis | [38] | |||
IIIa | 27 kDa, heat-labile protein | Lysostaphin and enterolysin A | S. simulans biovar Staphylolyticus, Enterococcus faecalis | Cell-wall degradation | [39] | |
IIIb | Helveticin J | Lactobacillus helveticus | Disrupt membrane potential, which causes ATP efflux | [40] |
2.2. Non-Ribosomal Synthesized Peptides (NRPs) and Polyketides (PKs)
2.3. Lipopeptides (LPs)
Type | Characteristic Features | Molecular Weight | Chemical Structure | Producer | Applicability | References |
---|---|---|---|---|---|---|
Surfactin | Cyclic heptapeptide is an antibiotic with seven amino acids i.e., Glu-Leu-Leu-Val-Asp-LeuLeu (ELLVDLL). A, B, and C types varying according to their amino acid sequences. | ~1.03 kDa | B. subtilis MSH1 and B. amyloliquefaciens ES-2 | Antimicrobial, antifungal, insecticidal, antimycoplasma, hemolysis, and formation of ion channels in lipid membranes. | [58] | |
Iturin | Contains two major parts: a peptide part composed of 7 amino acid residues (Asn-Tyr-Asn-Gln-Pro-Asn-Ser) and 11-12 carbons hydrophobic tail. Example Iturin A, Bacillomycin D, Bacillomycin L, Mycosubtilin | ~1.04 kDa | B. subtilis, B. amyloliquefaciens B128 and B. amyloliquefaciens BUZ-14 | Antimicrobial and antifungal activities. Disrupt the membrane of yeast cells by increasing the electrical conductance of bimolecular lipid membranes. | [59] | |
Fengycin | An array of 10 amino acids with a lactone ring and a ß-hydroxy fatty acid linked to the N-terminus of a decapeptide. Example Plipastatin A and B | 1463.7 g/mol | B. subtilis | Act as bioagents showing hypocholesterolemic activities, immuno-modulators; antibiotics, antiviral, and antitumor agents; toxins; and enzyme inhibitors | [60] |
3. Actinomycetes
Endophytic Actinomycetes | Host | Bioactive Compounds | Structure | Bioactivity | References |
---|---|---|---|---|---|
Streptomyces sp. YIM64018 | Paraboea sinensis | Vinaceuline | - | Antibacterial activity | [87] |
Streptomyces sp. neau-D50 | Glycine max | 3-acetonylidene-7-prenylindolin-2-one, 7-isoprenylindole-3-carboxylic acid | Cytotoxic and antifungal activities | [74] | |
Streptomyces sp. YIM56209 | Drymaria cordata | Bafilomycin D, B1, B2, C1, C2, C1 amide and C2 amide | Antibacterial, antifungal, insecticidal, antihelmintic and cytotoxic activity | [88] | |
Streptomyces diastaticus Sub sp. ardesiacus | Artemisia annua | Diastaphenazines | - | Antibacterial and antifungal activity | [89] |
Streptomyces sp. YIM67086 | Dysophylla stellata | 4-hydroxy-3-methoxybenzoic acid, p-hydroxytruxinic acid | - | Antifungal activity | [78] |
Microbispora sp. LGMB259 | Vochysia divergens | β-carboline or 1-vinyl-β-carboline-3-carboxylic acid | Antibacterial, antifungal and anticancer activity | [90] | |
Streptomyces sp. YIM66017 | Alpinia oxyphylla | Yangjinhualine A and 2,6-dimethoxy terephthalic acid | Radical scavenging activity | [91] | |
Streptomyces albidoflavus 07A-01824 | Bruguiera gymnorrhiza | Antimycin A18 | Antifungal activity | [92] | |
Streptomyces sp. VITMK1 | mangrove soil | Pyrrolopyrazines | - | Antimicrobial | [93] |
Streptomyces sp. | Diketopiperzines | - | Anti-H1N1 activity | [94] |
4. Archaea
Halocin | Producers | Size (kDa) | Origin | Active Against | Mode of Action | References |
---|---|---|---|---|---|---|
HalH1 | Haloferaxmediterranei Xia3 | 31 | Solar salterns, Alicante, Spain | Members of the Halobacteriales | Alter membrane permeability | [99] |
HalH4 | Hfx. mediterranei R4 | 34.9 | Solar salterns, Tunisia | Members of the Halobacteriales, Strains of Sulfolobus sp. | Alter macromolecular synthesis, cell wall conformation, and Na+/H+ antiport inhibitor | [113] |
HalH6 | Hfx. gibbonsii Ma2.39 | 32 | Solar salterns, Alicante, Spain | Members of the Halobacteriales | Alter intracellular osmotic balance, Na +/H+ antiport inhibitor | [99] |
HalS8 | Haloarchaeal strain S8a, Halobacterium salinarum strain ETD5 | 3.58 | Great Salt Lake, (Utah, United States) | Halobacterium salinarum NRC817, Hbt. sp. strain GRB and Hfx. gibbonsii | ND | [104,114] |
HalC8 | Natrinema sp. AS7092 | 7.4 | Chaidan Salt Lake in Qinghai province, China | ND | [111,115] | |
HalR1 | Hbt. salinarum GN101 | 3.8 | Guerrero Negro, Mexico | Members of the Halobacteriales, Strains of Sulfolobus sp., Methanosarcina thermophile | ND | [37,99] |
Sulfolobicins | Sulfolobus Islandicus HEN2/2 | 33.9 proprotein), 3.6 (mature) | Solfataric fields, Iceland | Strains of Sulfolobus sp. | ND | [116] |
5. Fungi
5.1. Endophytic Fungi
5.2. Marine-Derived Fungi
5.3. Mushrooms
5.4. Filamentous Fungi
- (a)
- Secretion of inhibitory proteins,
- (b)
- Production of extracellular protease,
- (c)
- Stimulation of immunoglobulin A,
- (d)
- Procurement and eradication of secreted toxins,
- (e)
- Killer toxins, sulfur dioxide, etc.
6. Microalgae
7. Discussion and Future Prospects
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santajit, S.; Indrawattana, N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res. Int. 2016, 2016, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prevention, C.f.D.C.a. Antibiotic Resistance Threats in the United States. Available online: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pd (accessed on 29 January 2021).
- Pendleton, J.N.; Gorman, S.P.; Gilmore, B.F. Clinical relevance of the ESKAPE pathogens. Expert. Rev. Anti. Infect. Ther. 2013, 11, 297–308. [Google Scholar] [CrossRef]
- Mulani, M.S.; Kamble, E.E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review. Front. Microbiol. 2019, 10, 1–24. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [Green Version]
- Rani, A.; Saini, K.C.; Bast, F.; Mehariya, S.; Bhatia, S.K.; Lavecchia, R.; Zuorro, A. Microorganisms: A potential source of bioactive molecules for antioxidant applications. Molecules 2021, 26, 1142. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 2012, 75, 311–335. [Google Scholar] [CrossRef] [Green Version]
- Mazzoli, R.; Riedel, K.; Pessione, E. Editorial: Bioactive compounds from microbes. Front. Microbiol. 2017, 8, 392. [Google Scholar] [CrossRef] [PubMed]
- Vestby, L.K.; Grønseth, T.; Simm, R.; Nesse, L.L. Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics 2020, 9, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ting, D.S.J.; Ho, C.S.; Deshmukh, R.; Said, D.G.; Dua, H.S. Infectious keratitis: An update on epidemiology, causative microorganisms, risk factors, and antimicrobial resistance. Eye 2021, 35, 1084–1101. [Google Scholar] [CrossRef] [PubMed]
- Sanseverino, I.; Navarro Cuenca, A.; Loos, R.; Marinov, D.; Lettieri, T. State of the Art on the Contribution of Water to Antimicrobial Resistance; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar] [CrossRef]
- Sumi, C.D.; Yang, B.W.; Yeo, I.-C.; Hahm, Y.T. Antimicrobial peptides of the genus Bacillus: A new era for antibiotics. Can. J. Microbiol. 2015, 61, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Chen, J.; Hu, G.; Yu, J.; Zhu, X.; Lin, Y.; Chen, S.; Yuan, J. Statistical research on the bioactivity of new marine natural products discovered during the 28 years from 1985 to 2012. Mar. Drugs 2015, 13, 202–221. [Google Scholar] [CrossRef]
- Lucas-Elio, P.; Hernandez, P.; Sanchez-Amat, A.; Solano, F. Purification and partial characterization of marinocine, a new broad-spectrum antibacterial protein produced by Marinomonas mediterranea. Biochim. Biophys. Acta Gen. Subj. 2005, 1721, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Ayuningrum, D.; Liu, Y.; Riyanti; Sibero, M.T.; Kristiana, R.; Asagabaldan, M.A.; Wuisan, Z.G.; Trianto, A.; Radjasa, O.K.; Sabdono, A.; et al. Tunicate-associated bacteria show a great potential for the discovery of antimicrobial compounds. PLoS ONE 2019, 14, e0213797. [Google Scholar] [CrossRef]
- Tareq, F.S.; Lee, H.S.; Lee, Y.J.; Lee, J.S.; Shin, H.J. Ieodoglucomide C and Ieodoglycolipid, new glycolipids from a marine-derived bacterium Bacillus licheniformis 09IDYM23. Lipids 2015, 50, 513–519. [Google Scholar] [CrossRef]
- Anjum, K.; Sadiq, I.; Chen, L.; Kaleem, S.; Li, X.-C.; Zhang, Z.; Lian, X.-Y. Novel antifungal janthinopolyenemycins A and B from a co-culture of marine-associated Janthinobacterium spp. ZZ145 and ZZ148. Tetrahedron Lett. 2018, 59, 3490–3494. [Google Scholar] [CrossRef]
- Schulze, C.J.; Donia, M.S.; Siqueira-Neto, J.L.; Ray, D.; Raskatov, J.A.; Green, R.E.; McKerrow, J.H.; Fischbach, M.A.; Linington, R.G. Genome-directed lead discovery: Biosynthesis, structure elucidation, and biological evaluation of two families of polyene macrolactams against Trypanosoma brucei. ACS Chem. Biol. 2015, 10, 2373–2381. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Wang, K.B.; Wang, W.; Bi, S.F.; Mei, Y.N.; Deng, X.Z.; Jiao, R.H.; Tan, R.X.; Ge, H.M. Discovery, biosynthesis, and heterologous production of streptoseomycin, an anti-microaerophilic bacteria macrodilactone. Org. Lett. 2018, 20, 2967–2971. [Google Scholar] [CrossRef]
- Wiese, J.; Abdelmohsen, U.R.; Motiei, A.; Humeida, U.H.; Imhoff, J.F. Bacicyclin, a new antibacterial cyclic hexapeptide from Bacillus sp. strain BC028 isolated from Mytilus edulis. Bioorganic. Med. Chem. Lett. 2018, 28, 558–561. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Kuipers, O.P. Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species. BMC Genomics 2016, 17, 882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caulier, S.; Nannan, C.; Gillis, A.; Licciardi, F.; Bragard, C.; Mahillon, J. Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group. Front. Microbiol. 2019, 10, 302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Praptiwi; Fathoni, A.; Putri, A.L.; Wulansari, D.; Agusta, A. Assessment of Actinomycetes Isolated from Soils on Simeuleu Island as Antibacterial and Antioxidant. In Proceedings of the AIP Conference, Malang, Indonesia, 13–14 March 2019; pp. 1–8. [Google Scholar]
- Hoyt, P.R.; Sizemore, R.K. Competitive dominance by a bacteriocin-producing Vibrio harveyi strain. Appl. Environ. Microbiol. 1982, 44, 653–658. [Google Scholar] [CrossRef] [Green Version]
- Zimina, M.; Babich, O.; Prosekov, A.; Sukhikh, S.; Ivanova, S.; Shevchenko, M.; Noskova, S. Overview of global trends in classification, methods of preparation and application of bacteriocins. Antibiotics 2020, 9, 553. [Google Scholar] [CrossRef]
- Register, F. Nisin preparation: Affirmation of GRAS status as a direct human food ingredient. Fed. Regist. 1988, 53, 11247–11251. [Google Scholar]
- Lozo, J.; Vukasinovic, M.; Strahinic, I.; Topisirovic, L. Characterization and antimicrobial activity of bacteriocin 217 produced by natural isolate Lactobacillus paracasei subsp. paracasei BGBUK2-16. J. Food. Prot. 2004, 67, 2727–2734. [Google Scholar] [CrossRef] [PubMed]
- Drissi, F.; Buffet, S.; Raoult, D.; Merhej, V. Common occurrence of antibacterial agents in human intestinal microbiota. Front. Microbiol. 2015, 6, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leite, J.A.; Tulini, F.L.; Reis-Teixeira, F.B.d.; Rabinovitch, L.; Chaves, J.Q.; Rosa, N.G.; Cabral, H.; De Martinis, E.C.P. Bacteriocin-like inhibitory substances (BLIS) produced by Bacillus cereus: Preliminary characterization and application of partially purified extract containing BLIS for inhibiting Listeria monocytogenes in pineapple pulp. LWT Food Sci. Tech. 2016, 72, 261–266. [Google Scholar] [CrossRef]
- Gradisteanu Pircalabioru, G.; Popa, L.I.; Marutescu, L.; Gheorghe, I.; Popa, M.; Czobor Barbu, I.; Cristescu, R.; Chifiriuc, M.-C. Bacteriocins in the era of antibiotic resistance: Rising to the challenge. Pharmaceutics 2021, 13, 196. [Google Scholar] [CrossRef]
- Jawan, R.; Abbasiliasi, S.; Mustafa, S.; Kapri, M.R.; Halim, M.; Ariff, A.B. In vitro evaluation of potential probiotic strain Lactococcus lactis Gh1 and its bacteriocin-like inhibitory substances for potential use in the food industry. Probiotics Antimicrob. Proteins 2020, 13, 422–440. [Google Scholar] [CrossRef]
- Hyun, W.B.; Kang, H.S.; Lee, J.W.; Abraha, H.B.; Kim, K.P. A newly-isolated Bacillus subtilis BSC35 produces bacteriocin-like inhibitory substance with high potential to control Clostridium perfringens in food. LWT Food Sci. Tech. 2021, 138, 110625. [Google Scholar] [CrossRef]
- Garsa, A.K.; Choudhury, P.K.; Puniya, A.K.; Dhewa, T.; Malik, R.K.; Tomar, S.K. Bovicins: The bacteriocins of streptococci and their potential in methane mitigation. Probiotics Antimicrob. Proteins 2019, 11, 1403–1413. [Google Scholar] [CrossRef]
- Meade, E.; Slattery, M.A.; Garvey, M. Bacteriocins, potent antimicrobial peptides and the fight against multi drug resistant species: Resistance is futile? Antibiotics 2020, 9, 32. [Google Scholar] [CrossRef] [Green Version]
- Shand, R.F.; Price, L.B.; O’Connor, E.M. Halocins: Protein antibiotics from hypersaline environments. In Microbiology and Biogeochemistry of Hypersaline Environments; Oren, A., Ed.; CRC Press: Boca Raton, FL, USA, 1999; pp. 295–306. [Google Scholar]
- Ibrahim, O.O. Classification of antimicrobial peptides bacteriocins, and the nature of some bacteriocins with potential applications in food safety and bio-pharmaceuticals. EC Microbiol. 2019, 15, 591–608. [Google Scholar]
- O’connor, E.; Shand, R. Halocins and sulfolobicins: The emerging story of archaeal protein and peptide antibiotics. J. Ind. Microbiol. Biotechnol. 2002, 28, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Gutierrez, E.; Mayer, M.J.; Cotter, P.D.; Narbad, A. Gut microbiota as a source of novel antimicrobials. Gut Microbes 2019, 10, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Newstead, L.L.; Varjonen, K.; Nuttall, T.; Paterson, G.K. Staphylococcal-produced bacteriocins and antimicrobial peptides: Their potential as alternative treatments for Staphylococcus aureus Infections. Antibiotics 2020, 9, 40. [Google Scholar] [CrossRef] [Green Version]
- Negash, A.W.; Tsehai, B.A. Current applications of bacteriocin. Int. J. Microbiol. 2020, 2020, 4374891. [Google Scholar] [CrossRef]
- Małaczewska, J.; Kaczorek-Łukowska, E. Nisin—A lantibiotic with immunomodulatory properties: A review. Peptides 2021, 137, 170479. [Google Scholar] [CrossRef]
- Yu, X.; Lu, N.; Wang, J.; Chen, Z.; Chen, C.; Mac Regenstein, J.; Zhou, P. Effect of N-terminal modification on the antimicrobial activity of nisin. Food Control 2020, 114, 107227. [Google Scholar] [CrossRef]
- Peng, X.; Zhu, L.; Wang, Z.; Zhan, X. Enhanced stability of the bactericidal activity of nisin through conjugation with gellan gum. Int. J. Biol. Macromol. 2020, 148, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Field, D.; Seisling, N.; Cotter, P.D.; Ross, R.P.; Hill, C. Synergistic nisin-polymyxin combinations for the control of pseudomonas biofilm formation. Front. Microbiol. 2016, 7, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves, F.C.B.; Albano, M.; Andrade, B.F.M.T.; Chechi, J.L.; Pereira, A.F.M.; Furlanetto, A.; Rall, V.L.M.; Fernandes, A.A.H.; Dos Santos, L.D.; Barbosa, L.N. Comparative proteomics of methicillin-resistant Staphylococcus aureus subjected to synergistic effects of the lantibiotic nisin and oxacillin. Microb. Drug Resist. 2020, 26, 179–189. [Google Scholar] [CrossRef]
- El-Kazzaz, S.S.; Abou El-Khier, N.T. Effect of the lantibiotic nisin on inhibitory and bactericidal activities of antibiotics used against vancomycin-resistant enterococci. J. Glob. Antimicrob. Resist. 2020, 22, 263–269. [Google Scholar] [CrossRef]
- Webber, J.L.; Namivandi-Zangeneh, R.; Drozdek, S.; Wilk, K.A.; Boyer, C.; Wong, E.H.H.; Bradshaw-Hajek, B.H.; Krasowska, M.; Beattie, D.A. Incorporation and antimicrobial activity of nisin Z within carrageenan/chitosan multilayers. Sci. Rep. 2021, 11, 1690. [Google Scholar] [CrossRef] [PubMed]
- Kjos, M.; Salehian, Z.; Nes, I.F.; Diep, D.B. An extracellular loop of the mannose phosphotransferase system component IIC is responsible for specific targeting by class IIa bacteriocins. J. Bacteriol. 2010, 192, 5906–5913. [Google Scholar] [CrossRef] [Green Version]
- Lozo, J.; Topisirovic, L.; Kojic, M. Natural bacterial isolates as an inexhaustible source of new bacteriocins. Appl. Microbiol. Biotechnol. 2021, 105, 477–492. [Google Scholar] [CrossRef] [PubMed]
- Perez, R.H.; Perez, M.T.M.; Elegado, F.B. Bacteriocins from lactic acid bacteria: A review of biosynthesis, mode of action, fermentative production, uses, and prospects. Int. J. Phil. Sci. Tech. 2015, 8, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Da Costa, R.J.; Voloski, F.L.; Mondadori, R.G.; Duval, E.H.; Fiorentini, Â.M. Preservation of meat products with bacteriocins produced by lactic acid bacteria isolated from meat. J. Food Qual. 2019, 2019, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Shindo, K.; Takenaka, A.; Noguchi, T.; Hayakawa, Y.; Seto, H. Thiazostatin A and thiazostatin B, new antioxidants produced by Streptomyces tolurosus. J. Antibiot. 1989, 42, 1526–1529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarez-Sieiro, P.; Montalbán-López, M.; Mu, D.; Kuipers, O.P. Bacteriocins of lactic acid bacteria: Extending the family. Appl. Microbiol. Biotechnol. 2016, 100, 2939–2951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Fewer, D.P.; Holm, L.; Rouhiainen, L.; Sivonen, K. Atlas of nonribosomal peptide and polyketide biosynthetic pathways reveals common occurrence of nonmodular enzymes. Proc. Natl. Acad. Sci. USA 2014, 111, 9259–9264. [Google Scholar] [CrossRef] [Green Version]
- Aleti, G.; Sessitsch, A.; Brader, G. Genome mining: Prediction of lipopeptides and polyketides from Bacillus and related Firmicutes. Comput. Struct. Biotechnol. J. 2015, 13, 192–203. [Google Scholar] [CrossRef]
- Perez, K.J.; Viana, J.d.S.; Lopes, F.C.; Pereira, J.Q.; dos Santos, D.M.; Oliveira, J.S.; Velho, R.V.; Crispim, S.M.; Nicoli, J.R.; Brandelli, A.; et al. Bacillus spp. isolated from puba as a source of biosurfactants and antimicrobial lipopeptides. Front. Microbiol. 2017, 8, 61–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kourmentza, K.; Gromada, X.; Michael, N.; Degraeve, C.; Vanier, G.; Ravallec, R.; Coutte, F.; Karatzas, K.A.; Jauregi, P. Antimicrobial activity of lipopeptide biosurfactants against foodborne pathogen and food spoilage microorganisms and their cytotoxicity. Front. Microbiol. 2021, 11, 3398–3412. [Google Scholar] [CrossRef] [PubMed]
- Isa, M.H.M.; Shannaq, M.A.-H.F.; Mohamed, N.; Hassan, A.R.; Al-Shorgani, N.K.N.; Hamid, A.A. Antibacterial activity of surfactin produced by Bacillus subtilis MSH1. Trans. Sci. Tech. 2017, 4, 402–407. [Google Scholar]
- Calvo, H.; Mendiara, I.; Arias, E.; Blanco, D.; Venturini, M. The role of iturin A from B. amyloliquefaciens BUZ-14 in the inhibition of the most common postharvest fruit rots. Food Microbiol. 2019, 82, 62–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sur, S.; Romo, T.D.; Grossfield, A. Selectivity and mechanism of fengycin, an antimicrobial lipopeptide, from molecular dynamics. J. Phys. Chem. B 2018, 122, 2219–2226. [Google Scholar] [CrossRef]
- Meena, K.; Sharma, A.; Kanwar, S. Microbial lipopeptides and their medical applications. Ann. Pharmacol. Pharm. 2017, 2, 1126. [Google Scholar]
- Qi, G.; Zhu, F.; Du, P.; Yang, X.; Qiu, D.; Yu, Z.; Chen, J.; Zhao, X. Lipopeptide induces apoptosis in fungal cells by a mitochondria-dependent pathway. Peptides 2010, 31, 1978–1986. [Google Scholar] [CrossRef] [PubMed]
- Inès, M.; Dhouha, G. Lipopeptide surfactants: Production, recovery and pore forming capacity. Peptides 2015, 71, 100–112. [Google Scholar] [CrossRef]
- Straus, S.K.; Hancock, R.E. Mode of action of the new antibiotic for Gram-positive pathogens daptomycin: Comparison with cationic antimicrobial peptides and lipopeptides. Biochim. Biophys. Acta Biomembr. BBA-Biomembr. 2006, 1758, 1215–1223. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Zhang, S.; Sun, K.; Hu, J. Identification and characterization of a cyclic lipopeptide iturin A from a marine-derived Bacillus velezensis 11-5 as a fungicidal agent to Magnaporthe oryzae in rice. J. Plant. Dis. Prot. 2020, 127, 15–24. [Google Scholar] [CrossRef]
- Touré, Y.; Ongena, M.; Jacques, P.; Guiro, A.; Thonart, P. Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J. Appl. Microbiol. 2004, 96, 1151–1160. [Google Scholar] [CrossRef] [PubMed]
- Solecka, J.; Zajko, J.; Postek, M.; Rajnisz, A. Biologically active secondary metabolites from Actinomycetes. Open Life Sci. 2012, 7, 373–390. [Google Scholar] [CrossRef]
- Dholakiya, R.N.; Kumar, R.; Mishra, A.; Mody, K.H.; Jha, B. Antibacterial and antioxidant activities of novel actinobacteria strain isolated from Gulf of Khambhat, Gujarat. Front. Microbiol. 2017, 8, 2420. [Google Scholar] [CrossRef]
- Siddharth, S.; Vittal, R.R. Evaluation of antimicrobial, enzyme inhibitory, antioxidant and cytotoxic activities of partially purified volatile metabolites of marine Streptomyces sp. S2A. Microorganisms 2018, 6, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhakal, D.; Sohng, J.K.; Pandey, R.P. Engineering actinomycetes for biosynthesis of macrolactone polyketides. Micro. Cell Fact. 2019, 18, 137. [Google Scholar] [CrossRef] [PubMed]
- Pacios-Michelena, S.; Aguilar González, C.N.; Alvarez-Perez, O.B.; Rodriguez-Herrera, R.; Chávez-González, M.; Arredondo Valdés, R.; Ascacio Valdés, J.A.; Govea Salas, M.; Ilyina, A. Application of Streptomyces antimicrobial compounds for the control of phytopathogens. Front. Sustain. Food Syst. 2021, 5, 310–324. [Google Scholar] [CrossRef]
- Widowati, I.; Zainuri, M.; Kusumaningrum, H.P.; Susilowati, R.; Hardivillier, Y.; Leignel, V.; Bourgougnon, N.; Mouget, J.L. Antioxidant Activity of Three Microalgae Dunaliella Salina, Tetraselmis chuii and Isochrysis galbana Clone Tahiti. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Bali, Indonesia, 19–22 October 2017; IOP Publishing: Bristol, UK, 2017; p. 012067. [Google Scholar]
- McArthur, K.A.; Mitchell, S.S.; Tsueng, G.; Rheingold, A.; White, D.J.; Grodberg, J.; Lam, K.S.; Potts, B.C. Lynamicins a−e, chlorinated bisindole pyrrole antibiotics from a novel marine actinomycete. J. Nat. Prod. 2008, 71, 1732–1737. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, J.-D.; Liu, C.-X.; Yuan, J.-H.; Wang, X.-J.; Xiang, W.-S. A new prenylated indole derivative from endophytic actinobacteria Streptomyces sp. neau-D50. Nat. Prod. Res. 2014, 28, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Djinni, I.; Defant, A.; Kecha, M.; Mancini, I. Metabolite profile of marine-derived endophytic Streptomyces sundarbansensis WR 1 L 1 S 8 by liquid chromatography–mass spectrometry and evaluation of culture conditions on antibacterial activity and mycelial growth. J. Appl. Microbiol. 2014, 116, 39–50. [Google Scholar] [CrossRef]
- Sebak, M.; Saafan, A.E.; Abdelghani, S.; Bakeer, W.; Moawad, A.S.; El-Gendy, A.O. Isolation and optimized production of putative antimicrobial compounds from Egyptian soil isolate Streptomyces sp. MS. 10. Beni-Suef Univ. J. Basic Appl. Sci. 2021, 10, 8. [Google Scholar] [CrossRef]
- Qureshi, K.A.; Bholay, A.D.; Rai, P.K.; Mohammed, H.A.; Khan, R.A.; Azam, F.; Jaremko, M.; Emwas, A.-H.; Stefanowicz, P.; Waliczek, M.; et al. Isolation, characterization, anti-MRSA evaluation, and in-silico multi-target anti-microbial validations of actinomycin X2 and actinomycin D produced by novel Streptomyces smyrnaeus UKAQ_23. Sci. Rep. 2021, 11, 14539. [Google Scholar] [CrossRef]
- Yang, X.; Peng, T.; Yang, Y.; Li, W.; Xiong, J.; Zhao, L.; Ding, Z. Antimicrobial and antioxidant activities of a new benzamide from endophytic Streptomyces sp. YIM 67086. Natl. Prod. Res. 2015, 29, 331–335. [Google Scholar] [CrossRef]
- Ding, W.-J.; Zhang, S.-Q.; Wang, J.-H.; Lin, Y.-X.; Liang, Q.-X.; Zhao, W.-J.; Li, C.-Y. A new di-O-prenylated flavone from an actinomycete Streptomyces sp. MA-12. J. Asian Nat. Prod. Res. 2013, 15, 209–214. [Google Scholar] [CrossRef]
- Lee, L.-H.; Zainal, N.; Azman, A.-S.; Eng, S.-K.; Goh, B.-H.; Yin, W.-F.; Ab Mutalib, N.-S.; Chan, K.-G. Diversity and antimicrobial activities of actinobacteria isolated from tropical mangrove sediments in Malaysia. Sci. World J. 2014, 2014, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaroszewicz, W.; Bielańska, P.; Lubomska, D.; Kosznik-Kwaśnicka, K.; Golec, P.; Grabowski, Ł.; Wieczerzak, E.; Dróżdż, W.; Gaffke, L.; Pierzynowska, K. Antibacterial, antifungal and anticancer activities of compounds produced by newly isolated Streptomyces strains from the Szczelina Chochołowska cave (Tatra Mountains, Poland). Antibiotics 2021, 10, 1212. [Google Scholar] [CrossRef] [PubMed]
- Prado-Alonso, L.; Pérez-Victoria, I.; Malmierca, M.G.; Montero, I.; Rioja-Blanco, E.; Martín, J.; Reyes, F.; Méndez, C.; Salas, J.A.; Olano, C. Colibrimycins, novel halogenated hybrid PKS-NRPS compounds produced by Streptomyces sp. CS147. Appl. Environ. Microbiol. 2021. [Google Scholar] [CrossRef]
- Veilumuthu, P.; Siva, R.; Godwin Christopher, J. Extraction and Characterization of Antibiotic Compounds produced by Streptomyces spp. VITGV01 against Selected Human Pathogens. 2021. Available online: https://www.researchsquare.com/article/rs-321054/v1 (accessed on 20 April 2021).
- Kang, H.-K.; Hyun, C.G. Anti-inflammatory effect of d-(+)-cycloserine through inhibition of NF-κB and MAPK signaling pathways in LPS-induced RAW 264.7 macrophages. Nat. Prod. Commun. 2020, 15, 1–11. [Google Scholar] [CrossRef]
- Robertsen, H.L.; Musiol-Kroll, E.M. Actinomycete-derived polyketides as a source of antibiotics and lead structures for the development of new antimicrobial drugs. Antibiotics 2019, 8, 157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hug, J.J.; Bader, C.D.; Remškar, M.; Cirnski, K.; Müller, R. Concepts and methods to access novel antibiotics from actinomycetes. Antibiotics 2018, 7, 44. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Yang, Y.; Peng, T.; Yang, F.; Zhou, H.; Zhao, L.; Xu, L.; Ding, Z. A new cyclopeptide from endophytic Streptomyces sp. YIM 64018. Nat. Prod. Commun. 2013, 8, 1753–1754. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Zhao, L.-X.; Jiang, C.-L.; Duan, Y.; Wong, L.; Carver, K.C.; Schuler, L.A.; Shen, B. Bafilomycins produced by an endophytic actinomycete Streptomyces sp. YIM56209. J. Antibiot. 2011, 64, 159–162. [Google Scholar] [CrossRef]
- Li, Y.; Han, L.; Rong, H.; Li, L.; Zhao, L.; Wu, L.; Xu, L.; Jiang, Y.; Huang, X. Diastaphenazine, a new dimeric phenazine from an endophytic Streptomyces diastaticus subsp. ardesiacus. J. Antibiot. 2015, 68, 210–212. [Google Scholar] [CrossRef] [PubMed]
- Savi, D.C.; Shaaban, K.A.; Vargas, N.; Ponomareva, L.V.; Possiede, Y.M.; Thorson, J.S.; Glienke, C.; Rohr, J. Microbispora sp. LGMB259 endophytic actinomycete isolated from Vochysia divergens (Pantanal, Brazil) producing β-carbolines and indoles with biological activity. Curr. Microbiol. 2015, 70, 345–354. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, Y.; Peng, T.; Li, W.; Zhao, L.; Xu, L.; Ding, Z. Metabolites of Streptomyces sp., an endophytic actinomycete from Alpinia oxyphylla. Nat. Prod. Res. 2014, 28, 265–267. [Google Scholar] [CrossRef]
- Yan, L.-L.; Han, N.-N.; Zhang, Y.-Q.; Yu, L.-Y.; Chen, J.; Wei, Y.-Z.; Li, Q.-P.; Tao, L.; Zheng, G.-H.; Yang, S.-E. Antimycin A 18 produced by an endophytic Streptomyces albidoflavus isolated from a mangrove plant. J. Antibiot. 2010, 63, 259–261. [Google Scholar] [CrossRef]
- Manimaran, M.; Gopal, J.V.; Kannabiran, K. Antibacterial activity of Streptomyces sp. VITMK1 isolated from mangrove Soil of pichavaram, Tamil Nadu, India. Proc. Natl. Acad. Sci. USA India Sect. B Biol. Sci. 2017, 87, 499–506. [Google Scholar] [CrossRef]
- Wang, P.; Xi, L.; Liu, P.; Wang, Y.; Wang, W.; Huang, Y.; Zhu, W. Diketopiperazine derivatives from the marine-derived actinomycete Streptomyces sp. FXJ7.328. Mar. Drugs 2013, 11, 1035–1049. [Google Scholar] [CrossRef] [Green Version]
- Bulut, N.; Kocyigit, U.M.; Gecibesler, I.H.; Dastan, T.; Karci, H.; Taslimi, P.; Durna Dastan, S.; Gulcin, I.; Cetin, A. Synthesis of some novel pyridine compounds containing bis-1, 2, 4-triazole/thiosemicarbazide moiety and investigation of their antioxidant properties, carbonic anhydrase, and acetylcholinesterase enzymes inhibition profiles. J. Biochem. Mol. Toxicol. 2018, 32, e22006. [Google Scholar] [CrossRef] [PubMed]
- Gulcin, İ. Antioxidants and antioxidant methods: An updated overview. Arch. Toxicol. 2020, 94, 651–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Valera, F.; Juez, G.; Kushner, D. Halocins: Salt-dependent bacteriocins produced by extremely halophilic rods. Can. J. Microbiol. 1982, 28, 151–154. [Google Scholar] [CrossRef]
- Gaglione, R.; Pirone, L.; Farina, B.; Fusco, S.; Smaldone, G.; Aulitto, M.; Dell’Olmo, E.; Roscetto, E.; Del Gatto, A.; Fattorusso, R.; et al. Insights into the anticancer properties of the first antimicrobial peptide from Archaea. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 2155–2164. [Google Scholar] [CrossRef] [Green Version]
- Besse, A.; Peduzzi, J.; Rebuffat, S.; Carré-Mlouka, A. Antimicrobial peptides and proteins in the face of extremes: Lessons from archaeocins. Biochimie 2015, 118, 344–355. [Google Scholar] [CrossRef]
- Platas, G.; Meseguer, I.; Amils, R. Purification and biological characterization of halocin H1 from Haloferax mediterranei M2a. Int. Microbiol. 2002, 5, 15–19. [Google Scholar] [CrossRef]
- Meseguer, I.; Rodriguez-Valera, F. Production and purification of halocin H4. FEMS Microbiol. Lett. 1985, 28, 177–182. [Google Scholar] [CrossRef]
- Torreblanca, M.; Meseguer, I.; Rodríguez-Valera, F. Halocin H6, a bacteriocin from Haloferax gibbonsii. Microbiology 1989, 135, 2655–2661. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Xiang, H.; Liu, J.; Zhou, M.; Tan, H. Purification and biological characterization of halocin C8, a novel peptide antibiotic from Halobacterium strain AS7092. Extremophiles 2003, 7, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Price, L.B.; Shand, R.F. Halocin S8: A 36-amino-acid microhalocin from the haloarchaeal strain S8a. J. Bacteriol. 2000, 182, 4951–4958. [Google Scholar] [CrossRef] [Green Version]
- Ebert, K.; Goebel, W.; Rdest, U.; Surek, B. Genes and genome structures in the archaebacteria. Syst. Appl. Microbiol. 1986, 7, 30–35. [Google Scholar] [CrossRef]
- Pašić, L.; Velikonja, B.H.; Ulrih, N.P. Optimization of the culture conditions for the production of a bacteriocin from halophilic archaeon Sech7a. Prep. Biochem. Biotechnol. 2008, 38, 229–245. [Google Scholar] [CrossRef] [PubMed]
- Shand, R.F.; Leyva, K.J. Peptide and protein antibiotics from the domain Archaea: Halocins and sulfolobicins. In Bacteriocins: Ecology and Evolution; Riley, M.A., Chavan, M.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 93–109. [Google Scholar]
- Karthikeyan, P.; Bhat, S.G.; Chandrasekaran, M. Halocin SH10 production by an extreme haloarchaeon Natrinema sp. BTSH10 isolated from salt pans of South India. Saudi J. Biol. Sci. 2013, 20, 205–212. [Google Scholar] [CrossRef] [Green Version]
- Wali, A.F.; Al Dhaheri, Y.; Ramakrishna Pillai, J.; Mushtaq, A.; Rao, P.G.; Rabbani, S.A.; Firdous, A.; Elshikh, M.S.; Farraj, D.A.A. Lc-ms phytochemical screening, in vitro antioxidant, antimicrobial and anticancer activity of microalgae Nannochloropsis oculata extract. Separations 2020, 7, 54. [Google Scholar] [CrossRef]
- Tan, L.T.-H.; Chan, K.-G.; Khan, T.M.; Bukhari, S.I.; Saokaew, S.; Duangjai, A.; Pusparajah, P.; Lee, L.-H.; Goh, B.-H. Streptomyces sp. MUM212 as a source of antioxidants with radical scavenging and metal chelating properties. Front. Pharmacol. 2017, 8, 276–293. [Google Scholar] [CrossRef]
- de Castro, I.; Mendo, S.; Caetano, T. Antibiotics from Haloarchaea: What can we learn from comparative genomics? Mar. Biotechnol. 2020, 22, 308–316. [Google Scholar] [CrossRef]
- Sahli, K.; Gomri, M.A.; Esclapez, J.; Gómez-Villegas, P.; Ghennai, O.; Bonete, M.J.; León, R.; Kharroub, K. Bioprospecting and characterization of pigmented halophilic archaeal strains from Algerian hypersaline environments with analysis of carotenoids produced by Halorubrum sp. BS2. J. Basic Microbiol. 2020, 60, 624–638. [Google Scholar] [CrossRef]
- Ghanmi, F.; Carré-Mlouka, A.; Vandervennet, M.; Boujelben, I.; Frikha, D.; Ayadi, H.; Peduzzi, J.; Rebuffat, S.; Maalej, S. Antagonistic interactions and production of halocin antimicrobial peptides among extremely halophilic prokaryotes isolated from the solar saltern of Sfax, Tunisia. Extremophiles 2016, 20, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Ghanmi, F.; Carré-Mlouka, A.; Zarai, Z.; Mejdoub, H.; Peduzzi, J.; Maalej, S.; Rebuffat, S. The extremely halophilic archaeon Halobacterium salinarum ETD5 from the solar saltern of Sfax (Tunisia) produces multiple halocins. Res. Microbiol. 2020, 171, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Besse, A.; Vandervennet, M.; Goulard, C.; Peduzzi, J.; Isaac, S.; Rebuffat, S.; Carré-Mlouka, A. Halocin C8: An antimicrobial peptide distributed among four halophilic archaeal genera: Natrinema, Haloterrigena, Haloferax, and Halobacterium. Extremophiles 2017, 21, 623–638. [Google Scholar] [CrossRef] [PubMed]
- Quehenberger, J.; Shen, L.; Albers, S.-V.; Siebers, B.; Spadiut, O. Sulfolobus—A potential key organism in future biotechnology. Front. Microbiol. 2017, 8, 2474–2485. [Google Scholar] [CrossRef]
- Roscetto, E.; Contursi, P.; Vollaro, A.; Fusco, S.; Notomista, E.; Catania, M.R. Antifungal and anti-biofilm activity of the first cryptic antimicrobial peptide from an archaeal protein against Candida spp. clinical isolates. Sci. Rep. 2018, 8, 17570. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.A.; Tiwari, S.K. Halocin HA1: An archaeocin produced by the haloarchaeon Haloferax larsenii HA1. Process Biochem. 2017, 61, 202–208. [Google Scholar] [CrossRef]
- Quadri, I.; Hassani, I.I.; l’Haridon, S.; Chalopin, M.; Hacène, H.; Jebbar, M. Characterization and antimicrobial potential of extremely halophilic archaea isolated from hypersaline environments of the Algerian Sahara. Microbiol. Res. 2016, 186–187, 119–131. [Google Scholar] [CrossRef]
- Photolo, M.M.; Mavumengwana, V.; Sitole, L.; Tlou, M.G. Antimicrobial and antioxidant properties of a bacterial endophyte, Methylobacterium radiotolerans MAMP 4754, isolated from Combretum erythrophyllum seeds. Int. J. Microbiol. 2020, 2020, 9483670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayyanna, R.; Ankaiah, D.; Arul, V. Anti-inflammatory and antioxidant properties of probiotic bacterium Lactobacillus mucosae AN1 and Lactobacillus fermentum SNR1 in Wistar Albino rats. Front. Microbiol. 2018, 9, 3063–3075. [Google Scholar] [CrossRef]
- Revilla, G.; Ramos, F.; López-Nieto, M.; Alvarez, E.; Martin, J. Glucose represses formation of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine and isopenicillin N synthase but not penicillin acyltransferase in Penicillium chrysogenum. J. Bacteriol. 1986, 168, 947–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanca, D.M.; Martin, J.F. Carbon catabolite regulation of the conversion of penicillin N into cephalosporin C. J. Antibiot. 1983, 36, 700–708. [Google Scholar] [CrossRef] [Green Version]
- Malve, H. Exploring the ocean for new drug developments: Marine pharmacology. J. Pharm. Bioallied. Sci. 2016, 8, 83. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lan, N.; Xu, L.; Yue, Q. Biosynthesis of pneumocandin lipopeptides and perspectives for its production and related echinocandins. Appl. Microbiol. Biotechnol. 2018, 102, 9881–9891. [Google Scholar] [CrossRef]
- Huang, Z.; Cai, X.; Shao, C.; She, Z.; Xia, X.; Chen, Y.; Yang, J.; Zhou, S.; Lin, Y. Chemistry and weak antimicrobial activities of phomopsins produced by mangrove endophytic fungus Phomopsis sp. ZSU-H76. Phytochemistry 2008, 69, 1604–1608. [Google Scholar] [CrossRef] [PubMed]
- Strobel, G.; Daisy, B. Bioprospecting for microbial endophytes and their natural products. Microbiol. Mol. Biol. Rev. 2003, 67, 491–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Yan, C.; Li, C.; You, T.; She, Z. Naphthoquinone derivatives with anti-inflammatory activity from mangrove-derived endophytic fungus Talaromyces sp. SK-S009. Molecules 2020, 25, 576. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.-L.; Zheng, B.-Q.; Lao, J.-P.; Mao, L.-J.; Chen, S.-Y.; Kubicek, C.P.; Lin, F.-C. Clavatol and patulin formation as the antagonistic principle of Aspergillus clavatonanicus, an endophytic fungus of Taxus mairei. Appl. Microbiol. Biotechnol. 2008, 78, 833–840. [Google Scholar] [CrossRef]
- Wu, S.-H.; Chen, Y.-W.; Shao, S.-C.; Wang, L.-D.; Li, Z.-Y.; Yang, L.-Y.; Li, S.-L.; Huang, R. Ten-membered lactones from Phomopsis sp., an endophytic fungus of Azadirachta indica. J. Nat. Prod. 2008, 71, 731–734. [Google Scholar] [CrossRef] [PubMed]
- Toghueo, R.M.K.; Sahal, D.; Boyom, F.F. Recent advances in inducing endophytic fungal specialized metabolites using small molecule elicitors including epigenetic modifiers. Phytochemistry 2020, 174, 112338. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Mándi, A.; Li, X.-M.; Meng, L.-H.; Kurtán, T.; Wang, B.-G. Peniciadametizine a, a dithiodiketopiperazine with a unique spiro (furan-2, 7’-pyrazino (1, 2-b)(1,2) oxazine) skeleton, and a related analogue, peniciadametizine B, from the marine sponge-derived fungus Penicillium adametzioides. Mar. Drugs 2015, 13, 3640–3652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, L.-H.; Zhang, P.; Li, X.-M.; Wang, B.-G. Penicibrocazines A–E, five new sulfide diketopiperazines from the marine-derived endophytic fungus Penicillium brocae. Mar. Drugs 2015, 13, 276–287. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Wiese, J.; Labes, A.; Kramer, A.; Schmaljohann, R.; Imhoff, J.F. Lindgomycin, an unusual antibiotic polyketide from a marine fungus of the Lindgomycetaceae. Mar. Drugs 2015, 13, 4617–4632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, S.-S.; Li, X.-M.; Du, F.-Y.; Li, C.-S.; Proksch, P.; Wang, B.-G. Secondary metabolites from a marine-derived endophytic fungus Penicillium chrysogenum QEN-24S. Mar. Drugs 2011, 9, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Tang, S.; Cao, S. Antimicrobial compounds from marine fungi. Phytochem. Rev. 2020, 20, 1–33. [Google Scholar] [CrossRef]
- Li, X.; Li, X.-M.; Zhang, P.; Wang, B.-G. A new phenolic enamide and a new meroterpenoid from marine alga-derived endophytic fungus Penicillium oxalicum EN-290. J. Asian Nat. Prod. Res. 2015, 17, 1204–1212. [Google Scholar] [CrossRef]
- Liu, H.; Li, X.-M.; Liu, Y.; Zhang, P.; Wang, J.-N.; Wang, B.-G. Chermesins A–D: Meroterpenoids with a drimane-type spirosesquiterpene skeleton from the marine algal-derived endophytic fungus Penicillium chermesinum EN-480. J. Nat. Prod. 2016, 79, 806–811. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.-S.; Li, X.-M.; Zhang, Y.; Li, C.-S.; Cui, C.-M.; Wang, B.-G. Comazaphilones A-F, azaphilone derivatives from the marine sediment-derived fungus Penicillium commune QSD-17. J. Nat. Prod. 2011, 74, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.-H.; Li, X.-M.; Liu, Y.; Wang, B.-G. Penicibilaenes A and B, sesquiterpenes with a tricyclo (6.3. 1.01, 5) dodecane skeleton from the marine isolate of Penicillium bilaiae MA-267. Org. Lett. 2014, 16, 6052–6055. [Google Scholar] [CrossRef]
- Fukuda, T.; Kurihara, Y.; Kanamoto, A.; Tomoda, H. Terretonin G, a new sesterterpenoid antibiotic from marine-derived Aspergillus sp. OPMF00272. J. Antibiot. 2014, 67, 593–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prompanya, C.; Dethoup, T.; Bessa, L.J.; Pinto, M.M.; Gales, L.; Costa, P.M.; Silva, A.; Kijjoa, A. New isocoumarin derivatives and meroterpenoids from the marine sponge-associated fungus Aspergillus similanensis sp. nov. KUFA 0013. Mar. Drugs 2014, 12, 5160–5173. [Google Scholar] [CrossRef]
- Ding, L.; Li, T.; Liao, X.; He, S.; Xu, S. Asperitaconic acids A–C, antibacterial itaconic acid derivatives produced by a marine-derived fungus of the genus Aspergillus. J. Antibiot. 2018, 71, 902–904. [Google Scholar] [CrossRef]
- Peng, X.; Wang, Y.; Zhu, T.; Zhu, W. Pyrazinone derivatives from the coral-derived Aspergillus ochraceus LCJ11-102 under high iodide salt. Arch. Pharm. Res. 2018, 41, 184–191. [Google Scholar] [CrossRef]
- Wang, R.; Guo, Z.K.; Li, X.M.; Chen, F.X.; Zhan, X.F.; Shen, M.H. Spiculisporic acid analogues of the marine-derived fungus, Aspergillus candidus strain HDf2, and their antibacterial activity. Antonie Van Leeuwenhoek 2015, 108, 215–219. [Google Scholar] [CrossRef]
- Zhu, F.; Chen, G.; Chen, X.; Huang, M.; Wan, X. Aspergicin, a new antibacterial alkaloid produced by mixed fermentation of two marine-derived mangrove epiphytic fungi. Chem. Nat. Compd. 2011, 47, 767–769. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Li, X.-M.; Cui, C.-M.; Feng, C.; Wang, B.-G. New sphingolipids with a previously unreported 9-methyl-C 20-sphingosine moiety from a marine algous endophytic fungus Aspergillus niger EN-13. Lipids 2007, 42, 759–764. [Google Scholar] [CrossRef]
- Yang, G.; Sandjo, L.; Yun, K.; Leutou, A.S.; Kim, G.-D.; Choi, H.D.; Kang, J.S.; Hong, J.; Son, B.W. Flavusides A and B, antibacterial cerebrosides from the marine-derived fungus Aspergillus flavus. Chem. Pharm. Bull. 2011, 59, 1174–1177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawas, U.W.; El-Beih, A.A.; El-Halawany, A.M. Bioactive anthraquinones from endophytic fungus Aspergillus versicolor isolated from red sea algae. Arch. Pharm. Res. 2012, 35, 1749–1756. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-L.; Li, X.-M.; Yang, S.-Q.; Cao, J.; Li, Y.-H.; Wang, B.-G. Induced terreins production from marine red algal-derived endophytic fungus Aspergillus terreus EN-539 co-cultured with symbiotic fungus Paecilomyces lilacinus EN-531. J. Antibiot. 2020, 73, 108. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.; Yang, M.-Y.; Zhang, Y.-H.; Shao, C.-L.; Wang, C.-Y.; Hu, L.-D.; Cao, F.; Zhu, H.-J. Absolute configurations of 14, 15-hydroxylated prenylxanthones from a marine-derived Aspergillus sp. fungus by chiroptical methods. Sci. Rep. 2018, 8, 1–10. [Google Scholar]
- Liu, Z.; Dong, Z.; Qiu, P.; Wang, Q.; Yan, J.; Lu, Y.; Wasu, P.-a.; Hong, K.; She, Z. Two new bioactive steroids from a mangrove-derived fungus Aspergillus sp. Steroids 2018, 140, 32–38. [Google Scholar] [CrossRef]
- Pruksakorn, P.; Arai, M.; Kotoku, N.; Vilchèze, C.; Baughn, A.D.; Moodley, P.; Jacobs Jr, W.R.; Kobayashi, M. Trichoderins, novel aminolipopeptides from a marine sponge-derived Trichoderma sp., are active against dormant mycobacteria. Bioorg. Med. Chem. Lett. 2010, 20, 3658–3663. [Google Scholar] [CrossRef]
- Pang, X.; Lin, X.; Yang, J.; Zhou, X.; Yang, B.; Wang, J.; Liu, Y. Spiro-phthalides and isocoumarins isolated from the marine-sponge-derived fungus Setosphaeria sp. SCSIO41009. J. Nat. Prod. 2018, 81, 1860–1868. [Google Scholar] [CrossRef]
- Song, T.; Chen, M.; Chai, W.; Zhang, Z.; Lian, X.-Y. New bioactive pyrrospirones C− I from a marine-derived fungus Penicillium sp. ZZ380. Tetrahedron 2018, 74, 884–891. [Google Scholar] [CrossRef]
- Song, T.; Chen, M.; Ge, Z.-W.; Chai, W.; Li, X.-C.; Zhang, Z.; Lian, X.-Y. Bioactive penicipyrrodiether A, an adduct of GKK1032 analogue and phenol A derivative, from a marine-sourced fungus Penicillium sp. ZZ380. J. Org. Chem. 2018, 83, 13395–13401. [Google Scholar] [CrossRef]
- Shen, H.-S.; Shao, S.; Chen, J.-C.; Zhou, T. Antimicrobials from mushrooms for assuring food safety. Compr. Rev. Food Sci. Food Saf. 2017, 16, 316–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thu, Z.M.; Myo, K.K.; Aung, H.T.; Clericuzio, M.; Armijos, C.; Vidari, G. Bioactive phytochemical constituents of wild edible mushrooms from Southeast Asia. Molecules 2020, 25, 1972. [Google Scholar] [CrossRef]
- Mygind, P.H.; Fischer, R.L.; Schnorr, K.M.; Hansen, M.T.; Sönksen, C.P.; Ludvigsen, S.; Raventós, D.; Buskov, S.; Christensen, B.; De Maria, L.; et al. Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 2005, 437, 975–980. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.H.; Ng, T.B.; Wang, H.; Sze, S.C.W.; Zhang, K.Y.; Li, Q.; Lu, X. Cordymin, an antifungal peptide from the medicinal fungus Cordyceps militaris. Phytomedicine 2011, 18, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Gebreyohannes, G.; Nyerere, A.; Bii, C.; Sbhatu, D.B. Investigation of antioxidant and antimicrobial activities of different extracts of Auricularia and Termitomyces species of mushrooms. Sci. World J. 2019, 2019, 1–10. [Google Scholar] [CrossRef]
- Poompouang, S.; Suksomtip, M. Isolation and characterization of an antifungal peptide from fruiting bodies of edible mushroom Lentinus squarrosulus Mont. Malays. J. Microbiol. 2016, 12, 43–49. [Google Scholar] [CrossRef]
- Irshad, A.; Sarwar, N.; Sadia, H.; Malik, K.; Javed, I.; Irshad, A.; Afzal, M.; Abbas, M.; Rizvi, H. Comprehensive facts on dynamic antimicrobial properties of polysaccharides and biomolecules-silver nanoparticle conjugate. Int. J. Biol. Macromol. 2020, 145, 189–196. [Google Scholar] [CrossRef]
- Hamamoto, E.; Kimura, N.; Nishino, S.; Ishihara, A.; Otani, H.; Osaki-Oka, K. Antimicrobial activity of the volatile compound 3,5-dichloro-4-methoxybenzaldehyde, produced by the mushroom Porostereum spadiceum, against plant-pathogenic bacteria and fungi. J. App. Microbiol. 2021, 131, 1431–1439. [Google Scholar] [CrossRef]
- Subrata, G.; Gunjan, B.; Prakash, P.; Mandal, S.C.; Krishnendu, A. Antimicrobial activities of basidiocarps of wild edible mushrooms of West Bengal, India. Int. J. Pharmtech. Res. 2012, 4, 1554–1560. [Google Scholar]
- Sevindi, M. Phenolic content, antioxidant and antimicrobial potential of Melanoleuca melaleuca edible mushroom. J. Anim. Plant Sci. 2021, 31, 824–830. [Google Scholar]
- Endo, H.; Niioka, M.; Kobayashi, N.; Tanaka, M.; Watanabe, T. Butyrate-producing probiotics reduce nonalcoholic fatty liver disease progression in rats: New insight into the probiotics for the gut-liver axis. PLoS ONE 2013, 8, e63388. [Google Scholar]
- Fakruddin, M.; Hossain, M.N.; Ahmed, M.M. Antimicrobial and antioxidant activities of Saccharomyces cerevisiae IFST062013, a potential probiotic. BMC Complement. Altern. Med. 2017, 17, 64. [Google Scholar] [CrossRef] [Green Version]
- Breinig, F.; Sendzik, T.; Eisfeld, K.; Schmitt, M.J. Dissecting toxin immunity in virus-infected killer yeast uncovers an intrinsic strategy of self-protection. Proc. Nat. Acad. Sci. USA 2006, 103, 3810–3815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muccilli, S.; Wemhoff, S.; Restuccia, C.; Meinhardt, F. Exoglucanase-encoding genes from three Wickerhamomyces anomalus killer strains isolated from olive brine. Yeast 2013, 30, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Gao, Z.; Zhu, G. Antioxidant effects of Lactobacillus plantarum via activation of transcription factor Nrf2. Food Funct. 2013, 4, 982–989. [Google Scholar] [CrossRef]
- Diao, Y.; Xin, Y.; Zhou, Y.; Li, N.; Pan, X.; Qi, S.; Qi, Z.; Xu, Y.; Luo, L.; Wan, H. Extracellular polysaccharide from Bacillus sp. strain LBP32 prevents LPS-induced inflammation in RAW 264.7 macrophages by inhibiting NF-κB and MAPKs activation and ROS production. Int. Immunopharmacol. 2014, 18, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Riccio, G.; Lauritano, C. Microalgae with immunomodulatory activities. Mar. Drugs 2020, 18, 2. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Garcia, L.; Adjallé, K.; Barnabé, S.; Raghavan, G. Microalgae biomass production for a biorefinery system: Recent advances and the way towards sustainability. Renew. Sustain. Energy Rev. 2017, 76, 493–506. [Google Scholar] [CrossRef]
- Desbois, A.P.; Mearns-Spragg, A.; Smith, V.J. A fatty acid from the diatom Phaeodactylum tricornutum is antibacterial against diverse bacteria including multi-resistant Staphylococcus aureus (MRSA). Mar. Biotechnol. 2009, 11, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Arguelles, E. Proximate analysis, antibacterial activity, total phenolic content and antioxidant capacity of a green microalga Scenedesmus quadricauda (Turpin) Brébisson. Asian J. Microbiol. Biotechnol. Environ. Sci. 2018, 20, 150–158. [Google Scholar]
- Maadane, A.; Merghoub, N.; Mernissi, N.E.; Ainane, T.; Amzazi, S.; El Arroussi, H.; Benhima, R.; Amzazi, S.; Bakri, Y.; Wahby, I. Antioxidant activity of some Moroccan marine microalgae: Pufa profiles, carotenoids and phenolic content. J. Biotechnol. 2015, 215, 13–19. [Google Scholar] [CrossRef]
- Zielinski, D.; Fraczyk, J.; Debowski, M.; Zielinski, M.; Kaminski, Z.J.; Kregiel, D.; Jacob, C.; Kolesinska, B. Biological activity of hydrophilic extract of Chlorella vulgaris grown on post-fermentation leachate from a biogas plant supplied with stillage and maize silage. Molecules 2020, 25, 1790. [Google Scholar] [CrossRef] [Green Version]
- Alsenani, F.; Tupally, K.R.; Chua, E.T.; Eltanahy, E.; Alsufyani, H.; Parekh, H.S.; Schenk, P.M. Evaluation of microalgae and cyanobacteria as potential sources of antimicrobial compounds. Saudi Pharm. J. 2020, 28, 1834–1841. [Google Scholar] [CrossRef] [PubMed]
- Maadane, A.; Merghoub, N.; Mernissi, N.E.; Ainane, T.; Amzazi, S.; Bakri, I.W. Antimicrobial activity of marine microalgae isolated from Moroccan coastlines. J. Microbiol. Biotechnol. Food Sci. 2021, 2021, 1257–1260. [Google Scholar] [CrossRef] [Green Version]
- Washida, K.; Koyama, T.; Yamada, K.; Kita, M.; Uemura, D. Karatungiols A and B, two novel antimicrobial polyol compounds, from the symbiotic marine dinoflagellate Amphidinium sp. Tetrahedron Lett. 2006, 47, 2521–2525. [Google Scholar] [CrossRef]
- Ghaidaa, H.; Neihaya, H.; Nada, Z.M.; Amna, M. The Biofilm Inhibitory Potential of Compound Produced from Chlamydomonas reinhardtii Against Pathogenic Microorganisms. Baghdad Sci. J. 2020, 17, 34–41. [Google Scholar]
- Pratt, R.; Daniels, T.; Eiler, J.J.; Gunnison, J.; Kumler, W.; Oneto, J.F.; Strait, L.A.; Spoehr, H.; Hardin, G.; Milner, H. Chlorellin, an antibacterial substance from Chlorella. Science 1944, 99, 351–352. [Google Scholar] [CrossRef]
- Bancalari, E.; Martelli, F.; Bernini, V.; Neviani, E.; Gatti, M. Bacteriostatic or bactericidal? Impedometric measurements to test the antimicrobial activity of Arthrospira platensis extract. Food Control 2020, 118, 107380. [Google Scholar] [CrossRef]
- Guzmán, F.; Wong, G.; Román, T.; Cárdenas, C.; Alvárez, C.; Schmitt, P.; Albericio, F.; Rojas, V. Identification of antimicrobial peptides from the microalgae Tetraselmis suecica (Kylin) Butcher and bactericidal activity improvement. Mar. Drugs 2019, 17, 453. [Google Scholar] [CrossRef] [Green Version]
- Mendiola, J.A.; Torres, C.F.; Toré, A.; Martín-Álvarez, P.J.; Santoyo, S.; Arredondo, B.O.; Señoráns, F.J.; Cifuentes, A.; Ibáñez, E. Use of supercritical CO2 to obtain extracts with antimicrobial activity from Chaetoceros muelleri microalga. A correlation with their lipidic content. Eur. Food Res. Technol. 2007, 224, 505–510. [Google Scholar] [CrossRef]
- Kokou, F.; Makridis, P.; Kentouri, M.; Divanach, P. Antibacterial activity in microalgae cultures. Aquac. Res. 2012, 43, 1520–1527. [Google Scholar] [CrossRef]
- Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2015, 32, 116–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, E.; Salin, V.; Williams, G. Nisin and the Market for Commericial Bacteriocins; Texas Agribusiness Market Research Center (TAMRC) Consumer and Product Research Report No; Texas A&M University: College Station, TX, USA, 2005. [Google Scholar]
- Soltani, S.; Hammami, R.; Cotter, P.D.; Rebuffat, S.; Said, L.B.; Gaudreau, H.; Bédard, F.; Biron, E.; Drider, D.; Fliss, I. Bacteriocins as a new generation of antimicrobials: Toxicity aspects and regulations. FEMS Microbiol. Rev. 2021, 45, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Xing, L.; Westphal, A. Inhibition of Fusarium virgulifomre by prokaryotes in vitro. Subtrop. Plant. Sci. 2007, 59, 24–29. [Google Scholar]
- Sauermann, R.; Rothenburger, M.; Graninger, W.; Joukhadar, C. Daptomycin: A review 4 years after first approval. Pharmacology 2008, 81, 79–91. [Google Scholar] [CrossRef]
- Fazle Rabbee, M.; Baek, K.-H. Antimicrobial activities of lipopeptides and polyketides of Bacillus velezensis for agricultural applications. Molecules 2020, 25, 4973. [Google Scholar] [CrossRef]
- Karim, A.; Brown, E.A. Isolation and identification of novel sulfur-containing metabolites of spironolactone (Aldactone®). Steroids 1972, 20, 41–62. [Google Scholar] [CrossRef]
Compound | Chemical Structure | Producer | Active Against | Host | References |
---|---|---|---|---|---|
e 1, 4-naphthoquinone derivatives | - | Talaromyces sp. SK-S009 | Pseudomonas sp. | Kandelia obovata | [128] |
Clavatol | Aspergillus clavatonanicus, Aspergillus elegans KUFA0015 | Botrytiscinerea, Didymella bryoniae, Fusarium oxysporum f. sp. cucumerinum, Rhizoctonia solani, and Pythium ultimum | Taxus mairei, Monanchora unguiculate (Marine sponge) | [129] | |
Lactones | Phomopsis sp. YM 311483 | A. niger, Botrytis cinere, and Fusarium | Azadirachta indica | [130] | |
Jesterone | Pestalotiopsis jesteri | Pythium ultimum, Phytophthora citrophthora, Rhizoctonia solani and Sclerotinia sclerotiorum | Fragraea bodenii | [131] | |
Peniciadametizine A | Penicillium adametzioides AS-53, Penicillium janthinellum strain HDN13-309 | Alternaria brassica | Sponge collected at the Hainan Island of China, roots of Sonneratia caseolaris | [132] |
Compounds | Structure | Producer | Active Against | Environment Source | References |
---|---|---|---|---|---|
Penicisteroid A | Penicillium chrysogenum QEN-24S | A. niger and Alternaria brassicae | Marine algae associated Penicillium sp. | [135] | |
Arisugacin K | P. echinulatum | E. coli | Marine alga Chondrus ocellatus. | [136] | |
Methyl (Z)-3-(3, 4-dihydroxyphenyl)-2- Formamidoacrylate | P. oxalicum EN- 290 | S. aureus | Marine algae associated Penicillium | [137] | |
Chermesins A and B | P. chermesinum EN-480, | C. albicans, E. coli, M. luteus, and V. alginolyticus | Marine algae associated Penicillium | [138] | |
Comazaphilones C (C–E) | P. commune QSD-17 | Antibacterial | Penicillium sp. from marine sediments | [139] | |
Penicibilaenes A | - | P. bilaiae MA-267 | Colletotrichum gloeosporioides | Rhizospheric soil of Lumnitzera racemosa | [140] |
Xylarinonericin D and E | Penicillium sp. H1 | Fusarium oxysporum f. sp. Cubense (antifungal) | Beibu Gulf nearby Guangxi | [136] | |
Terretonin G | Aspergillus sp. OPMF00272 | S. aureus FDA209P, Bacillus subtillis PCI219 and Micrococus luteus (ATCC9341) | Ishigaki island | [141] | |
Schevalone E | - | A. similanensis sp. nov. | MRSA | Sponge Rhabdermia sp. from the coral reef of the Similan Island | [142] |
Asperitaconic acids A–C | - | A. niger LS11 | S. aureus | Sponges-associated Aspergillus sp. | [143] |
Ochramide B | A. ochraceus LCJ11-102 | Enterobacter aerogenes | Marine sponge Dichotella gemmacea | [144] | |
Spiculisporic acids F and G | - | A. candidus HDf2 | P. solanacearum and S. aureus | Marine animals associated Aspergillus sp. | [145] |
Aspergicin | Aspergillus sp. FSY-01 and Aspergillus sp. FSW-02 | S. aureus, S. epidermidis, B. subtilis, B. dysenteriae, B. proteus and E. coli, | Mangrove Avicennia marina in Guangdong. | [146] | |
Asperamide | A. niger EN-13 | C. albicans | Marine algae associated Aspergillus sp. | [147] | |
Flavusides A and B | A. flavus | S. aureus and MRSA | Marine algae associated Aspergillus sp. | [148] | |
Isorhodoptilometrin- 1-methyl ether | A. versicolor | B. subtilis, B. cereus and S. aureus | Marine algae associated Aspergillus sp. | [149] | |
Asperterrein | Paecilomyces lilacinus EN-531 and A. terreus EN-539 | Alternaria brassicae, E. coli, Edwardsiella tarda, Physalospora piricola, and S. aureus | Marine algae associated Aspergillus sp. | [150] | |
Speradine A | A. tamarii M143 | Mycrococcus luteus | driftwood in Okinawa | [136] | |
Versiperol A | A. versicolor MCCC 3A00080 | S. aureus | seawater-associated Aspergillus sp. | [151] | |
Ergosterdiacids A and B | Aspergillus sp. | M. tuberculosis | Marine sediments associated Aspergillus sp. | [152] | |
Heptapeptide RHM1 | - | Acremonium sp. HM1 | S. epidermidis | Marine sponges- associated fungi | |
Trichoderins A | Trichoderma sp. 05FI48 | M. smegmatis | Marine sponges- associated fungi | [153] | |
Botryorhodines I and J | - | Setosphaeria sp. SCSIO 41009 | Colletotrichum asianum | Marine sponge Callyspongia sp. | [154] |
Microalgae | Target Microorganism | Active Extract | References |
---|---|---|---|
Scenedesmus quadricauda | S. aureus and P. aeruginosa | Methanolic extract | [176] |
Tetraselmis sp. | E. coli, P. aeruginosa, and S. aureus | Ethanolic extract | [177] |
Phaeodactylum tricornutum | Listonella anguillarum, Lactococcus garvieae, Vibrio spp. and MRSA | Eicosapentaenoic acid | [175] |
C. vulgaris | Steinernema feltiae | Hydrophilic extracts | [178] |
Skeletonema costatum | Listeria monocytogenes | Extra-metabolites | |
S. costatum | Vibrio spp., Pseudomonas sp. and Listeria monocytogenes | Unsaturated, saturated long-chain fatty acids | [179] |
Haematococcus pluvialis | E. coli, S. aureus, Candida albicans | Short-chain fatty acids (butanoic acid and methyl lactate), Astaxanthin | [180] |
Amphidinium sp. | A. niger, Trichomonas foetus | Karatungiols | [181] |
Chlamydomonas reinhardtii | A. niger, A. fumigatus, C. albicans, S. aureus and E. coli | Methanolic extracts | [182] |
Compounds | Brand Name | Company Name | Country | Uses | References |
---|---|---|---|---|---|
Nisin | Nisaplin® | Danisco | Denmark | Used as a food preservative | [189] |
Nisin | Novasin™ | Danisco | Denmark | Used as a food preservative | [189] |
Nisin | Delvo®Nis | DSM | Netherlands | Used as a food preservative | [190] |
Nisin | Chrisin® | Chris Hansen | Denmark | Used as a food preservative | [190] |
Nisin | - | Duke Thomson’s International | India | Used as a food preservative | [191] |
Nisin | - | Ecobio Biotech Co. Ltd. | China | Used as a food preservative | [191] |
Delvocid-Natamycin | - | Duke Thomson’s International | India | Used as a food preservative | [191] |
Natamycin | Delvocid™ | DSM | Netherlands | Used as a food preservative | [191] |
Daptomycin | Cubicin | Novartis India Ltd. | India | Used to treat bacterial infections | [192] |
Lipopeptides | RhizoVital® | ABiTEP, GmbH | Germany | Biological control in agriculture | [191] |
Lipopeptides | Kodiak™ | Gustafson Inc. | USA | Biological control in agriculture | [191] |
Lipopeptides | Taegro® | Novozymes | USA | Biological control in agriculture | [191] |
Lipopeptides | Serenade® | AgraQuest Inc. | USA | Biological control in agriculture | [191] |
Lipopeptides | Botrybel | Agricaldes | Spain | Biological control in agriculture | [193] |
Spironolactone | Aldactone® | Pfizer Medical | USA | To treat various diseases | [194] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rani, A.; Saini, K.C.; Bast, F.; Varjani, S.; Mehariya, S.; Bhatia, S.K.; Sharma, N.; Funk, C. A Review on Microbial Products and Their Perspective Application as Antimicrobial Agents. Biomolecules 2021, 11, 1860. https://doi.org/10.3390/biom11121860
Rani A, Saini KC, Bast F, Varjani S, Mehariya S, Bhatia SK, Sharma N, Funk C. A Review on Microbial Products and Their Perspective Application as Antimicrobial Agents. Biomolecules. 2021; 11(12):1860. https://doi.org/10.3390/biom11121860
Chicago/Turabian StyleRani, Alka, Khem Chand Saini, Felix Bast, Sunita Varjani, Sanjeet Mehariya, Shashi Kant Bhatia, Neeta Sharma, and Christiane Funk. 2021. "A Review on Microbial Products and Their Perspective Application as Antimicrobial Agents" Biomolecules 11, no. 12: 1860. https://doi.org/10.3390/biom11121860
APA StyleRani, A., Saini, K. C., Bast, F., Varjani, S., Mehariya, S., Bhatia, S. K., Sharma, N., & Funk, C. (2021). A Review on Microbial Products and Their Perspective Application as Antimicrobial Agents. Biomolecules, 11(12), 1860. https://doi.org/10.3390/biom11121860