In Vitro Evaluation of Five Antimicrobial Peptides against the Plant Pathogen Erwinia amylovora
Abstract
:1. Introduction
2. Materials and Methods
2.1. Peptide Synthesis
2.2. Bacterial Strains
2.3. Antibiogram Assay
2.4. Antimicrobial Activity of AMPs
2.5. Evaluation of AMPs Membrane Permeabilization through Flow Cytometry
2.6. Assessment of Colony Forming Units (CFUs)
2.7. Statistical Analysis
3. Results
3.1. Peptide Synthesis
3.2. Antibiogram Assay
3.3. Antimicrobial Activity of AMPs
3.4. Evaluation of AMPs Membrane Permeabilization through Flow Cytometry
3.5. Assessment of Colony Forming Units (CFUs)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vanneste, J.L. What is Fire Blight? Who is Erwinia amylovora? How to Control it? In Fire Blight, The Disease and Its Causative Agent, Erwinia Amylovora; Vanneste, J.L., Ed.; CABI: New York, NY, USA, 2000. [Google Scholar]
- Sundin, G.W. Infectious Diseases. In Compendium of Apple and Pear Diseases and Pests; Sutton, T.B., Aldwinckle, H.S., Agnello, A.M., Walgenbach, J.F., Eds.; American Phytopathological Society: St. Paul, MN, USA, 2014. [Google Scholar]
- Norelli, J.L.; Jones, A.L.; Aldwinckle, H.S. Fire blight management in the twenty first century using new technologies. Plant Dis. 2003, 87, 756–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansfield, J.; Genin, S.; Magori, S.; Citovsky, V.; Sriariyanum, M.; Ronald, P.; Dow, M.; Verdier, V.; Beer, S.V.; Machado, M.A.; et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 614–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EPPO. EPPO A1 and A2 lists of pests recommended for regulation as quarantine pests. PM 1/2(28) English. EPPO Stand. 2019, 1–18. [Google Scholar]
- Halupecki, E.; Bazzi, C.; Jock, S.; Geider, K.; Dermić, D.; Cvjetković, B. Characterization of Erwinia amylovora strains from Croatia. Eur. J. Plant Pathol. 2006, 114, 435–440. [Google Scholar] [CrossRef]
- McGhee, G.; Sundin, G.W. Erwinia amylovora CRISPR elements provide new tools for evaluating strain diversity and for microbial source tracking. PLoS ONE 2012, 7, e41706. [Google Scholar] [CrossRef] [PubMed]
- Végh, A.; Némethy, Z.; Hajagos, L.; Palkovics, L. First report of Erwinia amylovora causing fire blight on plum (Prunus domestica L.) in Hungary. Plant Dis. 2012, 96, 759. [Google Scholar] [CrossRef]
- Rhouma, A.; Helali, F.; Chettaoui, M.; Hajlaoui, M.R. First report of fire blight caused by Erwinia amylovora on pear in Tunisia. Plant Dis. 2014, 98, 158. [Google Scholar] [CrossRef]
- Llorente, I.; Vilardell, P.; Isern, M.; Montesinos, E.; Moragrega, C. Fire blight risk assessment in girona region (Catalonia): Comparison of maryblyt and cougarblight models. J. Plant Pathol. 2017, 99, 75–80. [Google Scholar]
- Doolotkeldieva, T.; Bobushova, S.; Schuster, C.; Konurbaeva, M.; Leclerque, A. Isolation and genetic characterization of Erwinia amylovora bacteria from Kyrgyzstan. Eur. J. Plant Pathol. 2019, 155, 677–686. [Google Scholar] [CrossRef]
- Popović, T.; Jelušić, A.; Živković, L.; Živković, N.; Iličić, R.; Stanisavljević, R.; Stanković, S. Identification, genetic characterization and virulence of Serbian Erwinia amylovora isolates. Eur. J. Plant Pathol. 2020, 157, 857–872. [Google Scholar] [CrossRef]
- Song, J.Y.; Yun, Y.H.; Kim, G.; Kim, S.H.; Lee, S.J.; Kim, J.F. Genome analysis of Erwinia amylovora strains responsible for a fire blight outbreak in Korea. Plant Dis. 2020. [Google Scholar] [CrossRef] [PubMed]
- Mendes, R.J.; Luz, J.P.; Santos, C.; Tavares, F. CRISPR genotyping as complementary tool for epidemiological surveillance of Erwinia amylovora outbreaks. PLoS ONE 2021. [Google Scholar] [CrossRef]
- Joos, M.; Hummrich, A.; Voegele, R.T. The effect of phytosanitary measures against fire blight in infected apple orchards. Acta Hortic. 2014, 1056, 77–80. [Google Scholar] [CrossRef]
- Shtienberg, D.; Manulis-Sasson, S.; Zilberstaine, M.; Oppenheim, D.; Shwartz, H. The Incessant Battle against Fire Blight in Pears: 30 Years of Challenges and Successes in Managing the Disease in Israel. Plant Dis. 2015, 99, 1048–1058. [Google Scholar] [CrossRef] [Green Version]
- Mendes, R.J.; Mariz-Ponte, N.; Correia, C.V.; Dias, M.C.; Sousa, M.L.; Tavares, F.; Santos, C. Fire blight management: Physiological assessment of cultural control by pruning in pear orchards. Agriculture 2020, 66, 128–136. [Google Scholar]
- European Commission. Commission Regulation (EC) No 473/2002. Off. J. Eur. Communities 2002. [Google Scholar]
- Lamichhane, J.R.; Osdaghi, E.; Behlau, F.; Köhl, J.; Jones, J.B.; Aubertot, J. Thirteen decades of antimicrobial copper compounds applied in agriculture. A review. Agron. Sustain. Dev. 2018, 38, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Sundin, G.W.; Castiblanco, L.F.; Yuan, X.; Zeng, Q.; Yang, C.H. Bacterial disease management: Challenges, experience, innovation and future prospects: Challenges in bacterial molecular plant pathology. Mol. Plant Pathol. 2016, 17, 1506–1518. [Google Scholar] [CrossRef]
- Sundin, G.W.; Wang, N. Antibiotic Resistance in Plant-Pathogenic Bacteria. Annu. Rev. Phytopathol. 2018, 56, 161–180. [Google Scholar] [CrossRef]
- Buttimer, C.; McAuliffe, O.; Ross, R.P.; Hill, C.; O’Mahony, J.; Coffey, A. Bacteriophages and bacterial plant diseases. Front. Microbiol. 2017, 8, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dagher, F.; Olishevska, S.; Philion, V.; Zheng, J.; Déziel, E. Development of a novel biological control agent targeting the phytopathogen Erwinia amylovora. Heliyon 2020, 6, e05222. [Google Scholar] [CrossRef] [PubMed]
- Mikiciński, A.; Pulawsja, J.; Molzhigitova, A.; Sobiczewski, P. Bacterial species recognized for the first time for its biocontrol activity against fire blight (Erwinia amylovora). Eur. J. Plant Pathol. 2020, 156, 257–272. [Google Scholar] [CrossRef] [Green Version]
- Akhlaghi, M.; Tarighi, S.; Taheri, P. Effects of plant essential oils on growth and virulence factors of Erwinia amylovora. J. Plant Pathol. 2019, 102, 409–419. [Google Scholar] [CrossRef]
- Costa, T.; Luz, J.P.; Amaro, C.; Dias, S.; Ferreira, F.M.; Castro, P.; Galhano, C. Medicinal and aromatic plants (MAP) as potential antibiotics to control fire blight. In Proceedings of the International Congress on Organizational Management, Energy Efficiency and Occupational Health and Safety in Agrifood Industry (+AGRO 2018); CEi: Castelo Branco, Portugal, 2019. [Google Scholar]
- Montesinos, E. Antimicrobial peptides and plant disease control. FEMS Microbiol. Lett. 2007, 270, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Montesinos, E.; Badosa, E.; Cabrefiga, J.; Planas, M.; Feliu, L.; Bardají, E. Antimicrobial peptides for plant disease control. From discovery to application. In Small Wonders: Peptides for Disease Control; Rajasekaran, K., Cary, J., Jaynes, J., Montesinos, E., Eds.; Oxford University Press: Washington, DC, USA, 2012. [Google Scholar]
- Cabrefiga, J.; Montesinos, E. Lysozyme enhances the bactericidal effect of BP100 peptide against Erwinia amylovora, the causal agent of fire blight of rosaceous plants. BMC Microbiol. 2017, 17, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilyas, H.; Datta, A.; Bhunia, A. An approach towards structure based antimicrobial peptide design for use in development of transgenic plants: A strategy for plant disease management. Curr. Med. Chem. 2017, 24, 1350–1364. [Google Scholar] [CrossRef]
- Glossop, H.D.; De Zoysa, G.H.; Pilkington, L.I.; Barker, D.; Sarojini, V. Fluorinated O-phenylserine residues enhance the broad-spectrum antimicrobial activity of ultrashort cationic lipopeptides. J. Fluor. Chem. 2021, 241, 109685. [Google Scholar] [CrossRef]
- Ageitos, J.M.; Sánchez-Pérez, A.; Calo-Mata, P.; Villa, T.G. Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochem. Pharmacol. 2017, 133, 117–138. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, Y.; Xue, Z.; Jia, Y.; Li, R.; He, C.; Chen, H. The structure-mechanism relationship and mode of actions of antimicrobial peptides: A review. Trends Food Sci. Tech. 2021, 109, 103–115. [Google Scholar] [CrossRef]
- Brogden, K.A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 2005, 3, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Matsuzaki, K. Control of cell selectivity of antimicrobial peptides. Biochim. Biophys. Acta 2009, 1788, 1687–1692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arouri, A.; Dathe, M.; Blume, A. Peptide induced demixing in PG/PE lipid mixtures: A mechanism for the specificity of antimicrobial peptides towards bacterial membranes? Biochim. Biophys. Acta Biomembr. 2009, 1788, 650–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monroc, S.; Badosa, E.; Besalú, E.; Planas, M.; Bardají, E.; Montesinos, E.; Feliu, L. Improvement of cyclic decapeptides against plant pathogenic bacteria using a combinatorial chemistry approach. Peptides 2006, 27, 2575–2584. [Google Scholar] [CrossRef] [PubMed]
- Ali, G.S.; Reddy, A.S. Inhibition of fungal and bacterial plant pathogens by synthetic peptides: In vitro growth inhibition, interaction between peptides and inhibition of disease progression. Mol. Plant Microbe. Interact 2000, 13, 847–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dash, R.; Bhattacharjya, S. Thanatin: An emerging host defense antimicrobial peptide with multiple modes of action. Int. J. Mol. Sci. 2021, 22, 1522. [Google Scholar] [CrossRef]
- Baró, A.; Badosa, E.; Montesinos, L.; Feliu, L.; Planas, M.; Montesinos, E.; Bonaterra, A. Screening and identification of BP100 peptide conjugates active against Xylella fastidiosa using a viability-qPCR method. BMC Microbiol. 2020, 20, 229. [Google Scholar] [CrossRef]
- Datta, A.; Ghosh, A.; Airoldi, C.; Sperandeo, P.; Mroue, K.H.; Jiménez-Barbero, J.; Kundu, P.; Ramamoorthy, A.; Bhunia, A. Antimicrobial Peptides: Insights into Membrane Permeabilization, Lipopolysaccharide Fragmentation and Application in Plant Disease Control. Sci. Rep. 2015, 5, 11951. [Google Scholar] [CrossRef] [Green Version]
- Mariz-Ponte, N.; Regalado, L.; Gimranov, E.; Tassi, N.; Moura, L.; Gomes, P.; Tavares, F.; Santos, C.; Teixeira, C. A Synergic Potential of Antimicrobial Peptides against Pseudomonas syringae pv. actinidiae. Molecules 2021, 26, 1461. [Google Scholar] [CrossRef]
- Bhattacharjya, S. NMR structures and interactions of antimicrobial peptides with Lipopolysaccharide: Connecting structures to functions. Curr. Top. Med. Chem. 2016, 16, 4–15. [Google Scholar] [CrossRef]
- Badosa, E.; Ferre, R.; Planas, M.; Feliu, L.; Besaluâ, E.; Cabrefiga, J.; Bardají, E.; Montesinos, E. A library of linear undecapeptides with bactericidal activity against phytopathogenic bacteria. Peptides 2007, 28, 2276–2285. [Google Scholar] [CrossRef]
- Badosa, E.; Ferre, R.; Franceâs, J.; Bardajõâ, E.; Feliu, L.; Planas, M.; Montesinos, E. Sporicidal activity of synthetic antifungal undecapeptides and control of Penicillium rot of apples. Appl. Environ. Microbiol. 2009, 75, 5563–5569. [Google Scholar] [CrossRef] [Green Version]
- Güell, I.; Cabrefiga, J.; Badosa, E.; Ferre, R.; Talleda, M.; Bardají, E.; Planas, M.; Feliu, L.; Montesinos, E. Improvement of the efficacy of linear undecapeptides against plant-pathogenic bacteria by incorporation of D-amino acids. App Environ. Microbiol. 2011, 77, 2667–2675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torcato, I.M.; Huang, Y.H.; Franquelim, H.G.; Gaspar, D.; Craik, D.J.; Castanho, M.A.R.B.; Troeira, H.S. Design and characterization of novel antimicrobial peptides, R-BP100 and RW-BP100, with activity against Gram-negative and Gram-positive bacteria. BBA Biomembr. 2013, 1828, 944–955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saugar, J.M.; Rodríguez-Hernández, M.J.; Torre, B.G.; Pachón-Ibañez, M.E.; Fernández-Reyes, M.; Andreu, D.; Pachón, J.; Rivas, L. Activity of cecropin A-melittin hybrid peptides against colistin-resistant clinical strains of Acinetobacter baumannii: Molecular basis for the differential mechanisms of action. Antimicrob. Agents Chemother. 2006, 50, 1251–1256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Rojas, R.; Docobo-Pérez, F.; Pachón-Ibáñez, M.E.; De La Torre, B.G.; Fernández-Reyes, M.; March, C.; Bengoechea, J.A.; Andreu, D.; Rivas, L.; Pachón, J. Efficacy of cecropin A-melittin peptides on a sepsis model of infection by pan-resistant Acinetobacter baumannii. Eur. J. Clin. Microbiol. 2011, 20, 1391–1398. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.J.; Won, H.S.; Choi, W.S.; Lee, B.J. De novo generation of antimicrobial LK peptides with a single tryptophan at the critical amphipathic interface. J. Pept. Sci. 2009, 15, 583–588. [Google Scholar] [CrossRef] [PubMed]
- Gomes, A.S.M.; Bessa, L.J.; Fernandes, I.; Ferraz, R.; Mateus, N.; Gameiro, P.; Teixeira, C.; Gomes, P. Turning a collagene-sis-inducing peptide into a potent antibacterial and antibiofilm agent against multidrug-resistant Gram-negative bacteria. Front. Microb. 2019, 10, 1915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajasekaran, K.; Stromberg, K.D.; Cary, J.W.; Cleveland, T.E. Broad-Spectrum Antimicrobial Activity in vitro of the Synthetic Peptide D4E1. J. Agric. Food Chem. 2001, 49, 2799–2803. [Google Scholar] [CrossRef]
- Faber, C.; Hoogendoorn, R.J.W.; Stallmann, H.P.; Lyaruu, D.M.; van Nieuw Amerongen, A.; Wuisman, P.I.J.M. In vitro comparison of Dhvar-5 and gentamicin in an MRSA osteomyelitis prevention model. J. Antimicrob. Chem. 2004, 54, 1078–1084. [Google Scholar] [CrossRef] [Green Version]
- Behrendt, R.; White, P.; Offer, J. Advances in Fmoc solid-phase peptide synthesis. J. Pept. Sci. 2016, 22, 4–27. [Google Scholar] [CrossRef] [Green Version]
- Oddo, A.; Thomsen, T.T.; Kjelstrup, S.; Gorey, C.; Franzyk, H.; Frimodt-Møller, N.; Løbner-Olesen, A.; Hansen, P.R. An amphipathic undecapeptide with all D-amino acids shows promising activity against colistin-resistant strains of Acinetobacter baumannii and a dual mode of action. Antimicrob. Agents Chemother. 2016, 60, 592–599. [Google Scholar] [CrossRef] [Green Version]
- Costa, F.M.T.A.; Maia, S.R.; Gomes, P.A.C.; Martins, M.C.L. Dhvar5 antimicrobial peptide (AMP) chemoselective covalent immobilization results on higher antiadherence effect than simple physical adsorption. Biomaterials 2015, 52, 531–538. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Koh, J.J.; Liu, S.; Lakshminarayanan, R.; Verma, C.S.; Beuerman, R.W. Membrane active antimicrobial peptides: Translating mechanistic insights to design. Front. Neurosci. Switz. 2017, 11, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.W. Action of antimicrobial peptides: Two-state model. Biochemistry 2000, 39, 8347–8352. [Google Scholar] [CrossRef]
- Badosa, E.; Montesinos, L.; Montesinos, E.; Feliu, L.; Planas, M.; Bardají, E. Prospects and limitations of synthetic antimicrobial peptides for fire blight control. Acta Hortic. 2014, 1056, 111–116. [Google Scholar] [CrossRef]
- Moghaddam, M.M.; Abolhassani, F.; Babavalian, H.; Mirnejad, R.; Barjini, K.A.; Amani, J. Comparison of in vitro antibacterial activities of two cationic peptides CM15 and CM11 against five pathogenic bacteria: Pseudomonas aeruginosa, Staphylococcus aureus, Vibrio cholerae, Acinetobacter baumannii, and Escherichia coli. Probiotics Antimicrob. 2012, 4, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Agbale, C.M.; Sarfo, J.K.; Galyuon, I.K.; Juliano, S.A.; Silva, G.G.O.; Buccini, D.F.; Cardoso, M.H.; Torres, M.D.T.; Angeles-Boza, A.M.; De La Fuente-Nunez, C.; et al. Antimicrobial and Antibiofilm Activities of Helical Antimicrobial Peptide Sequences Incorporating Metal-Binding Motifs. Biochemistry 2019, 58, 3802–3812. [Google Scholar] [CrossRef]
- Bizani, D.; Morrissy, J.A.C.; Dominguez, A.P.M.; Brandelli, A. Inhibition of Listeria monocytogenes in dairy products using the bacteriocin-like peptide cerein 8A. Int. J. Food Microbiol. 2008, 121, 229–233. [Google Scholar] [CrossRef]
- Mejía-Argueta, E.L.; Santillán-Benítez, J.G.; Ortiz-Reynos, M. Antimicrobial peptides, an alternative to combat bacterial resistance. Acta Biol. Colomb. 2020, 25, 294–302. [Google Scholar] [CrossRef]
- Hammond, K.; Hoogenboom, B.W.; Ryadnov, M.G. Membrane disrupting peptides: Mechanistic elucidation of antimicrobial activity. Amino Acids Pept. Prot. 2021, 43, 115–139. [Google Scholar]
- Chitarra, L.G.; Breeuwer, P.; Abee, T.; Bulk, R.W. The use of fluorescent probes to assess viability of the plant pathogenic bacterium Clavibacter michiganensis subsp. michiganensis by flow cytometry. Fitopatol. Bras. 2006, 31, 349–356. [Google Scholar] [CrossRef]
- Ambriz-Avina, V.; Contreras-Garduno, J.A.; Pedraza-Reyes, M. Applications of Flow Cytometry to Characterize Bacterial Physiological Responses. BioMed. Res. Int. 2014, 2014, 1–14. [Google Scholar] [CrossRef]
- Shapiro, H.M. Microbial Cytometry: What It Was, Is, and May Be. In Flow Cytometry in Microbiology: Technology and Applications; Martin, G., Ed.; Caister Academic Press: Norfolk, UK, 2016. [Google Scholar]
- O’Brien-Simpson, N.M.; Pantarat, N.; Attard, T.J.; Walsh, K.A.; Reynolds, E.C. A rapid and quantitative flow cytometry method for the analysis of membrane disruptive antimicrobial activity. PLoS ONE 2016, 11, e0151694. [Google Scholar] [CrossRef] [Green Version]
- Rakowska, P.D.; Jiang, H.; Ray, S.; Pyne, A.; Lamarre, B.; Carr, M.; Judge, P.J.; Ravi, J.; Gerling, U.I.M.; Koksch, B.; et al. Nanoscale imaging reveals laterally expanding antimicrobial pores in lipid bilayers. Proc. Natl. Acad. Sci. USA 2013, 110, 8918–8923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanson, M.A.; Dostálová, A.; Ceroni, C.; Poidevin, M.; Kondo, S.; Lemaitre, B. Synergy and remarkable specificity of antimicrobial peptides in vivo using a systematic knockout approach. eLife 2019, 8, e44341. [Google Scholar] [CrossRef]
- Zharkova, M.S.; Orlov, D.S.; Golubeva, O.Y.; Chakchir, O.B.; Eliseev, I.E.; Grinchuk, T.M.; Shamova, O.V. Application of antimicrobial peptides of the innate immune system in combination with conventional antibiotics-a novel way to combat antibiotic resistance? Front. Cell Infect. Microbiol. 2019, 9, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazzaro, B.P.; Zasloff, M.; Rolff, J. Antimicrobial peptides: Application informed by evolution. Science 2020, 368, eaau5480. [Google Scholar] [CrossRef]
- Wade, D.; Andreu, D.; Mitchell, S.A.; Silveira, A.M.; Boman, A.; Boman, H.G.; Merrifield, R.B. Antibacterial peptides designed as analogs or hybrids of cecropins and melittin. Int. J. Pept. Protein. Res. 1992, 40, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Moore, A.J.; Beazley, W.D.; Bibby, M.C.; Devine, D.A. Antimicrobial activity of cecropins. J. Antimicrob. Chemother. 1996, 37, 1077–1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Peptide | Sequence | Net Charge 1 | MW (Da) 2 |
---|---|---|---|
BP100 | KKLFKKILKYL-NH2 | +6 | 1419.9 |
RW-BP100 | RRLFRRILRWL-NH2 | +6 | 1583.0 |
CA-M | KWKLFKKIGAVLKVL-NH2 | +6 | 1769.2 |
D4E1 | FKLRAKIKVRLRAKIKL-NH2 | +9 | 2079.4 |
3.1 | KKLLKWLLKLL-NH2 | +5 | 1393.9 |
Dhvar-5 | LLLFLLKKRKKRKY-NH2 | +8 | 1845.3 |
Strain | Host | Isolated From | Geographic Origin | Year | |
---|---|---|---|---|---|
Species | Cultivar | ||||
Ea 230 | Pear | ‘Rocha’ | Exudate | Alcobaça | 2010 |
Ea 240 | Pear | ‘Rocha’ | Exudate | Alcobaça | 2010 |
Ea 250 | Pear | ‘Rocha’ | Branch | Alcobaça | 2010 |
Ea 260 | Pear | ‘Rocha’ | Branch | Alcobaça | 2010 |
Ea 270 | Pear | ‘Passe Crassane’ | Branch | Alcobaça | 2010 |
Ea 280 | Pear | ‘Rocha’ | Exudate | Alcobaça | 2011 |
Ea 310 | Pear | ‘Rocha’ | Exudate | Alcobaça | 2011 |
Ea 320 | Pear | ‘Rocha’ | Branch | Alcobaça | 2011 |
Ea 340 | Pear | ‘Rocha’ | Branch | Alcobaça | 2011 |
Ea 350 | Pear | ‘Rocha’ | Branch | Alcobaça | 2011 |
Ea 390 | Apple | ‘Royal Gala’ | Necrotic fruit | Alcobaça | 2011 |
Ea 410 | Apple | ‘Royal Gala’ | Semi-necrotic fruit | Alcobaça | 2011 |
Ea 430 | Apple | ‘Royal Gala’ | Semi-necrotic fruit | Alcobaça | 2011 |
Ea 450 | Pear | ‘Rocha’ | Exudate | Alenquer | 2015 |
Ea 460 | Pear | ‘Rocha’ | Exudate | Alenquer | 2015 |
Ea 470 | Pear | ‘Rocha’ | Exudate | Alenquer | 2015 |
Ea 480 | Pear | ‘Rocha’ | Exudate | Alenquer | 2015 |
Ea 490 | Pear | ‘Rocha’ | Branch | Alenquer | 2015 |
Ea 500 | Pear | ‘Rocha’ | Branch | Alenquer | 2015 |
Ea 510 | Pear | ‘Rocha’ | Exudate | Alenquer | 2015 |
Ea 520 | Pear | ‘Rocha’ | Exudate | Alenquer | 2015 |
Ea 540 | Pear | ‘Carapinheira’ | Branch | Caldas da Rainha | 2015 |
Ea 570 | Pear | ‘Carapinheira’ | Branch | Caldas da Rainha | 2015 |
Ea 580 | Pear | ‘Carapinheira’ | Branch | Caldas da Rainha | 2015 |
Ea 610 | Apple | ‘Gala’ | Branch | Cadaval | 2015 |
Ea 620 | Apple | ‘Gala’ | Branch | Cadaval | 2015 |
Ea 630 | Apple | ‘Gala’ | Branch | Cadaval | 2015 |
Ea 670 | Pear | ‘Rocha’ | Branch | Cadaval | 2015 |
Ea 680 | Pear | ‘Rocha’ | Branch | Cadaval | 2015 |
Ea 720 | Pear | ‘Rocha’ | Branch | Cadaval | 2015 |
Ea 730 | Pear | Unidentified | Branch | West * | 2017 |
Ea 740 | Pear | Unidentified | Branch | West * | 2017 |
Ea 750 | Pear | Unidentified | Branch | West * | 2017 |
Ea 780 | Pear | Unidentified | Branch | West * | 2017 |
Ea 790 | Pear | Unidentified | Branch | West * | 2017 |
Ea 820 | Pear | Unidentified | Branch | West * | 2017 |
AMP | Strain | MIC (µM) | MBC (µM) |
---|---|---|---|
BP100 | LMG 2024 | 5 | 8 |
Ea 230 | 8 | 8 | |
Ea 320 | 5 | 8 | |
Ea 390 | 8 | 20 | |
Ea 490 | 8 | 12 | |
Ea 630 | 8 | 8 | |
Ea 680 | 8 | 8 | |
Ea 820 | 8 | 8 | |
RW-BP100 | LMG 2024 | 5 | 5 |
Ea 230 | 5 | 5 | |
Ea 320 | 5 | 5 | |
Ea 390 | 5 | 5 | |
Ea 490 | 5 | 5 | |
Ea 630 | 5 | 5 | |
Ea 680 | 5 | 5 | |
Ea 820 | 5 | 5 | |
CA-M | LMG 2024 | 8 | 8 |
Ea 230 | 8 | 8 | |
Ea 320 | 8 | 8 | |
Ea 390 | 5 | 5 | |
Ea 490 | 8 | 8 | |
Ea 630 | 8 | 8 | |
Ea 680 | 5 | 5 | |
Ea 820 | 8 | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendes, R.J.; Regalado, L.; Luz, J.P.; Tassi, N.; Teixeira, C.; Gomes, P.; Tavares, F.; Santos, C. In Vitro Evaluation of Five Antimicrobial Peptides against the Plant Pathogen Erwinia amylovora. Biomolecules 2021, 11, 554. https://doi.org/10.3390/biom11040554
Mendes RJ, Regalado L, Luz JP, Tassi N, Teixeira C, Gomes P, Tavares F, Santos C. In Vitro Evaluation of Five Antimicrobial Peptides against the Plant Pathogen Erwinia amylovora. Biomolecules. 2021; 11(4):554. https://doi.org/10.3390/biom11040554
Chicago/Turabian StyleMendes, Rafael J., Laura Regalado, João P. Luz, Natália Tassi, Cátia Teixeira, Paula Gomes, Fernando Tavares, and Conceição Santos. 2021. "In Vitro Evaluation of Five Antimicrobial Peptides against the Plant Pathogen Erwinia amylovora" Biomolecules 11, no. 4: 554. https://doi.org/10.3390/biom11040554
APA StyleMendes, R. J., Regalado, L., Luz, J. P., Tassi, N., Teixeira, C., Gomes, P., Tavares, F., & Santos, C. (2021). In Vitro Evaluation of Five Antimicrobial Peptides against the Plant Pathogen Erwinia amylovora. Biomolecules, 11(4), 554. https://doi.org/10.3390/biom11040554