Short- and Long-Term Social Recognition Memory Are Differentially Modulated by Neuronal Histamine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Compounds
2.3. Stereotaxic Surgery and i.c.v. Infusion Procedure
2.4. Social Discrimination Test
2.5. Statistical Analysis
3. Results
3.1. Neither Genetic Manipulation nor Pharmacological Interventions Affected Mice Sociability
3.2. Blockade of Histamine Synthesis Impairs Long- but Not Short-Term Social Recognition Memory
3.3. Inhibition of Histamine Release Impairs Both Short- and Long-Term Social Recognition Memory
3.4. The H3R Agonist-Induced Amnesic Effect Is Prevented by Enhancing Cholinergic Neurotransmission
3.5. Increased Histamine Release Mediates H3R Antagonist-Induced Procognitive Effect
3.6. Histamine Deprivation or Potentiation Do Not Affect General Motor Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van der Kooij, M.A.; Sandi, C. Social memories in rodents: Methods, mechanisms and modulation by stress. Neurosci. Biobehav. Rev. 2012, 36, 1763–1772. [Google Scholar] [CrossRef]
- Tzakis, N.; Holahan, M.R. Social Memory and the Role of the Hippocampal CA2 Region. Front. Behav. Neurosci. 2019, 13, 233. [Google Scholar] [CrossRef]
- Ferguson, J.N.; Young, L.J.; Insel, T.R. The neuroendocrine basis of social recognition. Front. Neuroendocrinol. 2002, 23, 200–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burman, O.H.; Mendl, M. Short-term social memory in the laboratory rat: Its susceptibility to disturbance. Appl. Anim. Behav. Sci. 2000, 67, 241–254. [Google Scholar] [CrossRef] [Green Version]
- Lemaire, M. Social recognition task in the rat. Curr. Protoc. Pharmacol. 2003, 5. [Google Scholar] [CrossRef] [PubMed]
- Okuyama, T.; Kitamura, T.; Roy, D.S.; Itohara, S.; Tonegawa, S. Ventral CA1 neurons store social memory. Science 2016, 353, 1536–1541. [Google Scholar] [CrossRef] [Green Version]
- Engelmann, M.; Wotjak, C.T.; Landgraf, R. Social discrimination procedure: An alternative method to investigate juvenile recognition abilities in rats. Physiol. Behav. 1995, 58, 315–321. [Google Scholar] [CrossRef]
- Camats Perna, J.; Engelmann, M. Recognizing Others: Rodent’s Social Memories. Curr. Top. Behav. Neurosci. 2017, 30, 25–45. [Google Scholar] [CrossRef]
- Wacker, D.W.; Ludwig, M. Vasopressin, oxytocin, and social odor recognition. Horm. Behav. 2012, 61, 259–265. [Google Scholar] [CrossRef]
- McGaugh, J.L. Memory—A century of consolidation. Science 2000, 287, 248–251. [Google Scholar] [CrossRef] [Green Version]
- Asok, A.; Leroy, F.; Rayman, J.B.; Kandel, E.R. Molecular Mechanisms of the Memory Trace. Trends Neurosci. 2019, 42, 14–22. [Google Scholar] [CrossRef]
- Bicks, L.K.; Koike, H.; Akbarian, S.; Morishita, H. Prefrontal Cortex and Social Cognition in Mouse and Man. Front. Psychol. 2015, 6, 1805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garrido Zinn, C.; Clairis, N.; Silva Cavalcante, L.E.; Furini, C.R.; de Carvalho Myskiw, J.; Izquierdo, I. Major neurotransmitter systems in dorsal hippocampus and basolateral amygdala control social recognition memory. Proc. Natl. Acad. Sci. USA 2016, 113, 4914–4919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raam, T. Oxytocin-Sensitive Neurons in Prefrontal Cortex Gate Social Recognition Memory. J. Neurosci. 2020, 40, 1194–1196. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.T.; Hsu, K.S. Oxytocin receptor signaling in the hippocampus: Role in regulating neuronal excitability, network oscillatory activity, synaptic plasticity and social memory. Prog. Neurobiol. 2018, 171, 1–14. [Google Scholar] [CrossRef]
- Feuerbach, D.; Pezous, N.; Weiss, M.; Shakeri-Nejad, K.; Lingenhoehl, K.; Hoyer, D.; Hurth, K.; Bilbe, G.; Pryce, C.R.; McAllister, K.; et al. AQW051, a novel, potent and selective α7 nicotinic ACh receptor partial agonist: Pharmacological characterization and phase I evaluation. Br. J. Pharmacol. 2015, 172, 1292–1304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Locke, T.M.; Soden, M.E.; Miller, S.M.; Hunker, A.; Knakal, C.; Licholai, J.A.; Dhillon, K.S.; Keene, C.D.; Zweifel, L.S. Dopamine D(1) Receptor-Positive Neurons in the Lateral Nucleus of the Cerebellum Contribute to Cognitive Behavior. Biol. Psychiatry 2018, 84, 401–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garrido Zinn, C.; Bühler, L.; Cavalcante, L.E.; Schmidt, S.D.; Ferreira, F.F.; Zanini, M.L.; Furini, C.R.G.; de Carvalho Myskiw, J.; Izquierdo, I. Methylphenidate induces state-dependency of social recognition learning: Central components. Neurobiol. Learn Mem. 2018, 149, 77–83. [Google Scholar] [CrossRef]
- Provensi, G.; Costa, A.; Izquierdo, I.; Blandina, P.; Passani, M.B. Brain histamine modulates recognition memory: Possible implications in major cognitive disorders. Br. J. Pharmacol. 2020, 177, 539–556. [Google Scholar] [CrossRef]
- Panula, P.; Yang, H.Y.; Costa, E. Histamine-containing neurons in the rat hypothalamus. Proc. Natl. Acad. Sci. USA 1984, 81, 2572–2576. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, T.; Taguchi, Y.; Hayashi, H.; Tanaka, J.; Shiosaka, S.; Tohyama, M.; Kubota, H.; Terano, Y.; Wada, H. Evidence for the presence of a histaminergic neuron system in the rat brain: An immunohistochemical analysis. Neurosci. Lett. 1983, 39, 249–254. [Google Scholar] [CrossRef]
- Haas, H.L.; Sergeeva, O.A.; Selbach, O. Histamine in the nervous system. Physiol. Rev. 2008, 88, 1183–1241. [Google Scholar] [CrossRef]
- Wouterlood, F.G.; Gaykema, R.P.; Steinbusch, H.W.; Watanabe, T.; Wada, H. The connections between the septum-diagonal band complex and histaminergic neurons in the posterior hypothalamus of the rat. Anterograde tracing with Phaseolus vulgaris-leucoagglutinin combined with immunocytochemistry of histidine decarboxylase. Neuroscience 1988, 26, 827–845. [Google Scholar] [CrossRef]
- Tonegawa, S.; Morrissey, M.D.; Kitamura, T. The role of engram cells in the systems consolidation of memory. Nat. Rev. Neurosci. 2018, 19, 485–498. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo, I.; Furini, C.R.; Myskiw, J.C. Fear Memory. Physiol. Rev. 2016, 96, 695–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Passani, M.B.; Benetti, F.; Blandina, P.; Furini, C.R.G.; de Carvalho Myskiw, J.; Izquierdo, I. Histamine regulates memory consolidation. Neurobiol. Learn Mem. 2017, 145, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Provensi, G.; Passani, M.B.; Costa, A.; Izquierdo, I.; Blandina, P. Neuronal histamine and the memory of emotionally salient events. Br. J. Pharmacol. 2020, 177, 557–569. [Google Scholar] [CrossRef] [PubMed]
- Prast, H.; Argyriou, A.; Philippu, A. Histaminergic neurons facilitate social memory in rats. Brain Res. 1996, 734, 316–318. [Google Scholar] [CrossRef]
- Cowart, M.; Faghih, R.; Curtis, M.P.; Gfesser, G.A.; Bennani, Y.L.; Black, L.A.; Pan, L.; Marsh, K.C.; Sullivan, J.P.; Esbenshade, T.A.; et al. 4-(2-[2-(2(R)-methylpyrrolidin-1-yl)ethyl]benzofuran-5-yl)benzonitrile and related 2-aminoethylbenzofuran H3 receptor antagonists potently enhance cognition and attention. J. Med. Chem. 2015, 48, 38–55. [Google Scholar] [CrossRef]
- Fox, G.B.; Esbenshade, T.A.; Pan, J.B.; Radek, R.J.; Krueger, K.M.; Yao, B.B.; Browman, K.E.; Buckley, M.J.; Ballard, M.E.; Komater, V.A.; et al. Pharmacological properties of ABT-239 [4-(2-{2-[(2R)-2-Methylpyrrolidinyl]ethyl}-benzofuran-5-yl)benzonitrile]: II. Neurophysiological characterization and broad preclinical efficacy in cognition and schizophrenia of a potent and selective histamine H3 receptor antagonist. J. Pharmacol Exp. Ther. 2015, 313, 176–190. [Google Scholar] [CrossRef] [Green Version]
- Esbenshade, T.A.; Browman, K.E.; Miller, T.R.; Krueger, K.M.; Komater-Roderwald, V.; Zhang, M.; Fox, G.B.; Rueter, L.; Robb, H.M.; Radek, R.J.; et al. Pharmacological properties and procognitive effects of ABT-288, a potent and selective histamine H3 receptor antagonist. J. Pharmacol. Exp. Ther. 2012, 343, 233–245. [Google Scholar] [CrossRef] [Green Version]
- Griebel, G.; Pichat, P.; Pruniaux, M.P.; Beeské, S.; Lopez-Grancha, M.; Genet, E.; Terranova, J.P.; Castro, A.; Sánchez, J.A.; Black, M.; et al. SAR110894, a potent histamine H3-receptor antagonist, displays procognitive effects in rodents. Pharmacol. Biochem. Behav. 2012, 102, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Raddatz, R.; Hudkins, R.L.; Mathiasen, J.R.; Gruner, J.A.; Flood, D.G.; Aimone, L.D.; Le, S.; Schaffhauser, H.; Duzic, E.; Gasior, M.; et al. CEP-26401 (irdabisant), a potent and selective histamine H3 receptor antagonist/inverse agonist with cognition-enhancing and wake-promoting activities. J. Pharmacol. Exp. Ther. 2012, 340, 124–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hudkins, R.L.; Josef, K.A.; Becknell, N.C.; Aimone, L.D.; Lyons, J.A.; Mathiasen, J.R.; Gruner, J.A.; Raddatz, R. Discovery of (1R,6S)-5-[4-(1-cyclobutyl-piperidin-4-yloxy)-phenyl]-3,4-diaza-bicyclo[4.1.0]hept-4-en-2-one (R,S-4a): Histamine H(3) receptor inverse agonist demonstrating potent cognitive enhancing and wake promoting activity. Bioorg. Med. Chem. Lett. 2014, 24, 1303–1306. [Google Scholar] [CrossRef] [PubMed]
- Ohtsu, H.; Tanaka, S.; Terui, T.; Hori, Y.; Makabe-Kobayashi, Y.; Pejler, G.; Tchougounova, E.; Hellman, L.; Gertsenstein, M.; Hirasawa, N.; et al. Mice lacking histidine decarboxylase exhibit abnormal mast cells. FEBS Lett. 2001, 502, 53–56. [Google Scholar] [CrossRef] [Green Version]
- Provensi, G.; Coccurello, R.; Umehara, H.; Munari, L.; Giacovazzo, G.; Galeotti, N.; Nosi, D.; Gaetani, S.; Romano, A.; Moles, A.; et al. Satiety factor oleoylethanolamide recruits the brain histaminergic system to inhibit food intake. Proc. Natl. Acad. Sci. USA 2014, 111, 11527–11532. [Google Scholar] [CrossRef] [Green Version]
- Provensi, G.; Costa, A.; Passani, M.B.; Blandina, P. Donepezil, an acetylcholine esterase inhibitor, and ABT-239, a histamine H3 receptor antagonist/inverse agonist, require the integrity of brain histamine system to exert biochemical and procognitive effects in the mouse. Neuropharmacology 2016, 109, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Wágner, G.; Mocking, T.A.M.; Arimont, M.; Provensi, G.; Rani, B.; Silva-Marques, B.; Latacz, G.; Da Costa Pereira, D.; Karatzidou, C.; Vischer, H.F.; et al. 4-(3-Aminoazetidin-1-yl)pyrimidin-2-amines as High-Affinity Non-imidazole Histamine H(3) Receptor Agonists with in Vivo Central Nervous System Activity. J. Med. Chem. 2019, 62, 10848–10866. [Google Scholar] [CrossRef] [Green Version]
- Franklin, K.B.J.; Paxinos, G. Paxinos and Franklin’s The Mouse Brain in Stereotaxic Coordinates, 4th ed.; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Munari, L.; Provensi, G.; Passani, M.B.; Galeotti, N.; Cassano, T.; Benetti, F.; Corradetti, R.; Blandina, P. Brain Histamine Is Crucial for Selective Serotonin Reuptake Inhibitors’ Behavioral and Neurochemical Effects. Int. J. Neuropsychopharmacol. 2015, 18. [Google Scholar] [CrossRef] [Green Version]
- Costa, A.; Cristiano, C.; Cassano, T.; Gallelli, C.A.; Gaetani, S.; Ghelardini, C.; Blandina, P.; Calignano, A.; Passani, M.B.; Provensi, G.; et al. Histamine-deficient mice do not respond to the antidepressant-like effects of oleoylethanolamide. Neuropharmacology 2018, 135, 234–241. [Google Scholar] [CrossRef]
- Moy, S.S.; Riddick, N.V.; Nikolova, V.D.; Teng, B.L.; Agster, K.L.; Nonneman, R.J.; Young, N.B.; Baker, L.K.; Nadler, J.J.; Bodfish, J.W. Repetitive behavior profile and supersensitivity to amphetamine in the C58/J mouse model of autism. Behav. Brain Res. 2014, 259, 200–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazdoba, T.M.; Leach, P.T.; Yang, M.; Silverman, J.L.; Solomon, M.; Crawley, J.N. Translational Mouse Models of Autism: Advancing Toward Pharmacological Therapeutics. Curr. Top. Behav. Neurosci. 2016, 28, 1–52. [Google Scholar] [CrossRef] [Green Version]
- Benetti, F.; Furini, C.R.; de Carvalho Myskiw, J.; Provensi, G.; Passani, M.B.; Baldi, E.; Bucherelli, C.; Munari, L.; Izquierdo, I.; Blandina, P. Histamine in the basolateral amygdala promotes inhibitory avoidance learning independently of hippocampus. Proc. Natl. Acad. Sci. USA 2015, 112, 2536–2542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arrang, J.M.; Garbarg, M.; Schwartz, J.C. Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature 1983, 302, 832–837. [Google Scholar] [CrossRef] [PubMed]
- Nieto-Alamilla, G.; Márquez-Gómez, R.; García-Gálvez, A.M.; Morales-Figueroa, G.E.; Arias-Montaño, J.A. The Histamine H3 Receptor: Structure, Pharmacology, and Function. Mol. Pharmacol. 2016, 90, 649–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arrang, J.M.; Garbarg, M.; Lancelot, J.C.; Lecomte, J.M.; Pollard, H.; Robba, M.; Schunack, W.; Schwartz, J.C. Highly potent and selective ligands for histamine H3-receptors. Nature 1987, 327, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Blandina, P.; Bacciottini, L.; Giovannini, M.G.; Mannaioni, P.F. H3 receptor modulation of the release of neurotransmitters in vivo. Pharmacochem. Libr. 1988, 30, 27–40. [Google Scholar]
- Blandina, P.; Efoudebe, M.; Cenni, G.; Mannaioni, P.; Passani, M.B. Acetylcholine, histamine, and cognition: Two sides of the same coin. Learn. Mem. 2004, 11, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ligneau, X.; Lin, J.; Vanni-Mercier, G.; Jouvet, M.; Muir, J.L.; Ganellin, C.R.; Stark, H.; Elz, S.; Schunack, W.; Schwartz, J. Neurochemical and behavioral effects of ciproxifan, a potent histamine H3-receptor antagonist. J. Pharmacol. Exp. Ther. 1998, 287, 658–666. [Google Scholar]
- Fabbri, R.; Furini, C.R.; Passani, M.B.; Provensi, G.; Baldi, E.; Bucherelli, C.; Izquierdo, I.; de Carvalho Myskiw, J.; Blandina, P. Memory retrieval of inhibitory avoidance requires histamine H1 receptor activation in the hippocampus. Proc. Natl. Acad. Sci. USA 2016, 113, 2714–2720. [Google Scholar] [CrossRef] [Green Version]
- Izquierdo, I.; Barros, D.M.; Mello e Souza, T.; de Souza, M.M.; Izquierdo, L.A.; Medina, J.H. Mechanisms for memory types differ. Nature 1998, 393, 635–636. [Google Scholar] [CrossRef]
- Izquierdo, L.A.; Vianna, M.; Barros, D.M.; Mello e Souza, T.; Ardenghi, P.; Sant’Anna, M.K.; Rodrigues, C.; Medinam, J.H.; Izquierdo, I. Short- and long-term memory are differentially affected by metabolic inhibitors given into hippocampus and entorhinal cortex. Neurobiol. Learn. Mem. 2000, 73, 141–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, J.C.; Tully, T. CREB and the formation of long-term memory. Curr. Opin. Neurobiol. 1996, 6, 264–268. [Google Scholar] [CrossRef]
- Izquierdo, L.A.; Barros, D.M.; Vianna, M.R.; Coitinho, A.; deDavid e Silva, T.; Choi, H.; Moletta, B.; Medina, J.H.; Izquierdo, I. Molecular pharmacological dissection of short- and long-term memory. Cell Mol. Neurobiol. 2002, 22, 269–287. [Google Scholar] [CrossRef] [PubMed]
- Haas, H.; Panula, P. The role of histamine and the tuberomamillary nucleus in the nervous system. Nat. Rev. Neurosci. 2003, 4, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Blandina, P.; Giorgetti, M.; Bartolini, L.; Cecchi, M.; Timmerman, H.; Leurs, R.; Pepeu, G.; Giovannini, M.G. Inhibition of cortical acetylcholine release and cognitive performance by histamine H3 receptor activation in rats. Br. J. Pharmacol. 1996, 119, 1656–1664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benetti, F.; Baldi, E.; Bucherelli, C.; Blandina, P.; Passani, M.B. Histaminergic ligands injected into the nucleus basalis magnocellularis differentially affect fear conditioning consolidation. Int. J. Neuropsychopharmacol. 2013, 16, 575–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Silveira, C.K.; Furini, C.R.; Benetti, F.; Monteiro, S.C.; Izquierdo, I. The role of histamine receptors in the consolidation of object recognition memory. Neurobiol. Learn. Mem. 2013, 103, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Baldi, E.; Bucherelli, C.; Schunack, W.; Cenni, G.; Blandina, P.; Passani, M.B. The H3 receptor protean agonist proxyfan enhances the expression of fear memory in the rat. Neuropharmacology 2005, 48, 246–251. [Google Scholar] [CrossRef]
- Bambah-Mukku, D.; Travaglia, A.; Chen, D.Y.; Pollonini, G.; Alberini, C.M. A positive autoregulatory BDNF feedback loop via C/EBPβ mediates hippocampal memory consolidation. J. Neurosci. 2014, 34, 12547–12559. [Google Scholar] [CrossRef]
- Taubenfeld, S.M.; Milekic, M.H.; Monti, B.; Alberini, C.M. The consolidation of new but not reactivated memory requires hippocampal C/EBPbeta. Nat. Neurosci. 2001, 4, 813–818. [Google Scholar] [CrossRef] [PubMed]
- Bekinschtein, P.; Weisstaub, N. Role of PFC during retrieval of recognition memory in rodents. J. Physiol. Paris 2014, 108, 252–255. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo, I.; Quillfeldt, J.A.; Zanatta, M.S.; Quevedo, J.; Schaeffer, E.; Schmitz, P.K.; Medina, J.H. Sequential role of hippocampus and amygdala, entorhinal cortex and parietal cortex in formation and retrieval of memory for inhibitory avoidance in rats. Eur. J. Neurosci. 1997, 9, 786–793. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.S.; Sergeeva, O.A.; Haas, H.L. Histamine H3 receptors and sleep-wake regulation. J. Pharmacol. Exp. Ther. 2011, 336, 17–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parmentier, R.; Anaclet, C.; Guhennec, C.; Brousseau, E.; Bricout, D.; Giboulot, T.; Bozyczko-Coyne, D.; Spiegel, K.; Ohtsu, H.; Williams, M.; et al. The brain H3-receptor as a novel therapeutic target for vigilance and sleep-wake disorders. Biochem. Pharmacol. 2007, 73, 1157–1171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Passani, M.B.; Blandina, P. Histamine receptors in the CNS as targets for therapeutic intervention. Trends Pharmacol. Sci. 2011, 32, 242–249. [Google Scholar] [CrossRef] [Green Version]
- Rabbitt, P.; Scott, M.; Thacker, N.; Lowe, C.; Jackson, A.; Horan, M.; Pendleton, N. Losses in gross brain volume and cerebral blood flow account for age-related differences in speed but not in fluid intelligence. Neuropsychology 2006, 20, 549–557. [Google Scholar] [CrossRef]
- Ogoh, S. Relationship between cognitive function and regulation of cerebral blood flow. J. Physiol. Sci. 2017, 67, 345–351. [Google Scholar] [CrossRef]
- Heo, S.; Prakash, R.S.; Voss, M.W.; Erickson, K.I.; Ouyang, C.; Sutton, B.P.; Kramer, A.F. Resting hippocampal blood flow, spatial memory and aging. Brain Res. 2010, 1315, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Perosa, V.; Priester, A.; Ziegler, G.; Cardenas-Blanco, A.; Dobisch, L.; Spallazzi, M.; Assmann, A.; Maass, A.; Speck, O.; Oltmer, J.; et al. Hippocampal vascular reserve associated with cognitive performance and hippocampal volume. Brain 2020, 143, 622–634. [Google Scholar] [CrossRef]
- Karlstedt, K.; Sallmén, T.; Eriksson, K.S.; Lintunen, M.; Couraud, P.O.; Joó, F.; Panula, P. of histamine synthesis and down-regulation of H1 and H2 receptor mRNA levels by dexamethasone in cerebral endothelial cells. J. Cereb. Blood Flow Metab. 1999, 19, 321–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, W.W.; Chen, Z. Role of histamine and its receptors in cerebral ischemia. ACS Chem. Neurosci. 2012, 3, 238–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, G.; Chen, Z.; Sugimoto, Y.; Fuji, Y.; Kamei, C. Effects of histamine and related compounds on regional cerebral blood flow in rats. Methods Find. Exp. Clin. Pharmacol. 1999, 21, 613–617. [Google Scholar] [PubMed]
- Chen, Z. Effect of clobenpropit on regional cerebral blood flow in rat hippocampus. Acta Pharmacol. Sin. 2001, 22, 355–360. [Google Scholar]
- Dong, H.; Zhang, W.; Zeng, X.; Hu, G.; Zhang, H.; He, S.; Zhang, S. Histamine induces upregulated expression of histamine receptors and increases release of inflammatory mediators from microglia. Mol. Neurobiol. 2014, 49, 1487–1500. [Google Scholar] [CrossRef]
- Saraiva, C.; Barata-Antunes, S.; Santos, T.; Ferreiro, E.; Cristóvão, A.C.; Serra-Almeida, C.; Ferreira, R.; Bernardino, L. Histamine modulates hippocampal inflammation and neurogenesis in adult mice. Sci. Rep. 2019, 9, 8384. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Zhang, X.; Zhang, Y.; Qu, C.; Zhou, X.; Zhang, S. Histamine Induces Microglia Activation and the Release of Proinflammatory Mediators in Rat Brain Via H(1)R or H(4)R. J. Neuroimmune Pharmacol. 2020, 15, 280–291. [Google Scholar] [CrossRef]
- Ferreira, R.; Santos, T.; Gonçalves, J.; Baltazar, G.; Ferreira, L.; Agasse, F.; Bernardino, L. Histamine modulates microglia function. J. Neuroinflammation 2012, 9. [Google Scholar] [CrossRef] [Green Version]
- Iida, T.; Yoshikawa, T.; Matsuzawa, T.; Naganuma, F.; Nakamura, T.; Miura, Y.; Mohsen, A.S.; Harada, R.; Iwata, R.; Yanai, K. Histamine H3 receptor in primary mouse microglia inhibits chemotaxis, phagocytosis, and cytokine secretion. Glia 2015, 63, 1213–1225. [Google Scholar] [CrossRef]
- Donzis, E.J.; Tronson, N.C. Modulation of learning and memory by cytokines: Signaling mechanisms and long term consequences. Neurobiol. Learn. Mem. 2014, 115, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Bourgognon, J.M.; Cavanagh, J. The role of cytokines in modulating learning and memory and brain plasticity. Brain Neurosci. Adv. 2020, 4, 2398212820979802. [Google Scholar] [CrossRef] [PubMed]
- Mani, V.; Jaafar, S.M.; Azahan, N.S.M.; Ramasamy, K.; Lim, S.M.; Ming, L.C.; Majeed, A.B.A. Ciproxifan improves cholinergic transmission, attenuates neuroinflammation and oxidative stress but does not reduce amyloid level in transgenic mice. Life Sci. 2017, 180, 23–35. [Google Scholar] [CrossRef]
Genotype | Treatments | Time Spent Exploring (%) | p | Sociability Index (SI) | |||||
---|---|---|---|---|---|---|---|---|---|
i.c.v. | i.p. | Social | Non Social | ||||||
Figure 1B | Hdc+/+ | - | - | 71.6 ± 11.3 | 28.4 ± 11.3 | **** | 0.43 ± 0.23 | ns | |
Hdc−/− | - | - | 68.6 ± 9.5 | 31.4 ± 9.5 | **** | 0.37 ± 0.19 | |||
Figure 1C | Hdc+/+ | - | - | 73.3 ± 5.9 | 27.7 ± 5.9 | **** | 0.44 ± 0.12 | ns | |
Hdc−/− | - | - | 68.6 ± 4.84 | 31.4 ± 4.8 | *** | 0.37 ± 0.10 | |||
Figure 2B | Hdc+/+ | Veh | - | 70.4 ± 3.4 | 29.6 ± 3.4 | **** | 0.41 ± 0.19 | ns | |
Hdc+/+ | αFMH | - | 76.29 ± 3.2 | 23.71 ± 3.2 | **** | 0.52 ± 0.20 | |||
Figure 2C | Hdc+/+ | Veh | - | 83.5 ± 7.9 | 16.5 ± 7.9 | **** | 0.52 ± 0.16 | ns | |
Hdc+/+ | αFMH | - | 72.3 ± 10.7 | 27.7 ± 10.7 | **** | 0.64 ± 0.19 | |||
Figure 3B | Hdc+/+ | - | Veh | 71.1 ± 15.7 | 28.9 ± 15.7 | **** | 0.42 ± 0.31 | ns | |
Hdc+/+ | - | VUF16839 | 81.9 ± 7.2 | 18.1 ± 7.2 | **** | 0.64 ± 0.14 | |||
Figure 3C | Hdc+/+ | - | Veh | 67.8 ± 6.9 | 32.2 ± 6.9 | **** | 0.35 ± 0.14 | ns | |
Hdc+/+ | - | VUF16839 | 62.5 ± 9.5 | 37.5 ± 9.5 | **** | 0.25 ± 0.19 | |||
Figure 4B | Hdc+/+ | - | Veh | 72.3 ± 5.9 | 27.7 ± 5.9 | **** | 0.45 ± 0.12 | ns | |
Hdc+/+ | - | VUF16839 | 65.7 ± 8.8 | 34.3 ± 8.8 | **** | 0.31 ± 0.18 | |||
Figure 4C | Hdc+/+ | - | Veh | 71.8 ± 6.5 | 28.2 ± 6.5 | **** | 0.44 ± 0.13 | ns | |
Hdc+/+ | - | VUF16839 | 65.6 ± 7.9 | 34.4 ± 7.9 | **** | 0.31 ± 0.16 | |||
Figure 5B | Hdc−/− | - | Veh | 67.0 ± 7.4 | 33.0 ± 7.4 | **** | 0.34 ± 0.15 | ns | |
Hdc−/− | - | VUF16839 | 79.7 ± 7.6 | 30.3 ± 7.6 | **** | 0.39 ± 0.15 | |||
Figure 5C | Hdc+/+ | αFMH | Veh | 70.4 ± 9.9 | 29.6 ± 9.9 | **** | 0.41 ± 0.20 | ns | |
Hdc+/+ | αFMH | VUF16839 | 66.9 ± 12.4 | 33.1 ± 12.4 | **** | 0.34 ± 0.25 | |||
Figure 6 | Hdc+/+ | - | Veh + VUF16939 | 79.3 ± 10.8 | 20.7 ± 10.8 | **** | 0.58 ± 0.21 | ns | |
Hdc+/+ | - | Donepezil + VUF16839 | 68.7 ± 18.3 | 31.3 ± 18.3 | **** | 0.38 ± 0.37 | |||
Figure 7B | Hdc+/+ | - | Veh | 71.2 ± 6.5 | 28.7 ± 6.5 | **** | 0.42 ± 0.13 | ns | |
Hdc+/+ | - | Ciproxifan | 66.6 ± 5.4 | 33.4 ± 5.4 | **** | 0.33 ± 0.11 | |||
Hdc+/+ | - | Veh | 67.1 ± 6.2 | 32.9 ± 6.2 | **** | 0.34 ± 0.12 | |||
Hdc+/+ | - | Ciproxifan | 74.6 ± 5.7 | 25.4 ± 5.7 | **** | 0.48 ± 0.11 | |||
Figure 7C | Hdc+/+ | Veh | Veh | 64.5 ± 5.1 | 35.5 ± 5.1 | **** | 0.29 ± 0.25 | ns | |
Hdc+/+ | αFMH | Ciproxifan | 71.2 ± 2.3 | 28.8 ± 2.3 | **** | 0.42 ± 0.12 | |||
Hdc+/+ | Veh | Veh | 69.5 ± 2.6 | 30.5 ± 2.6 | **** | 0.39 ± 0.13 | |||
Hdc+/+ | αFMH | Ciproxifan | 70.7 ± 3.1 | 29.3 ± 3.1 | **** | 0.41 ± 0.17 |
Genotype | Treatments | Time Spent Exploring (s) | |||||||
---|---|---|---|---|---|---|---|---|---|
i.c.v. | i.p. | Training | p | Test | p | ||||
Figure 1B | Hdc+/+ | - | - | 180.5 ± 46.5 | ns | 122.1 ± 52.6 | ns | ||
Hdc−/− | - | - | 161.9 ± 22.0 | 124.2 ± 24.9 | |||||
Figure 1C | Hdc+/+ | - | - | 177.9 ± 39.9 | ns | 178.1 ± 64.7 | ns | ||
Hdc−/− | - | - | 142.5 ± 42.0 | 150.6 ± 28.9 | |||||
Figure 2B | Hdc+/+ | Veh | - | 116.3 ± 40.1 | ns | 128.8 ± 43.8 | ns | ||
Hdc+/+ | αFMH | - | 95.8 ± 21.1 | 138.9 ± 45.5 | |||||
Figure 2C | Hdc+/+ | Veh | - | 146.5 ± 46.2 | ns | 178.1 ± 64.7 | ns | ||
Hdc+/+ | αFMH | - | 114.9 ± 47.1 | 127.9 ± 61.6 | |||||
Figure 3B | Hdc+/+ | - | Veh | 113.6 ± 53.6 | ns | 115.1 ± 35.8 | ns | ||
Hdc+/+ | - | VUF16839 | 163.6 ± 46.9 | 151.2 ± 73.0 | |||||
Figure 3C | Hdc+/+ | - | Veh | 138.4 ± 59.6 | ns | 144.0 ± 66.7 | ns | ||
Hdc+/+ | - | VUF16839 | 110.3 ± 35.4 | 100.0 ± 43.1 | |||||
Figure 4B | Hdc+/+ | - | Veh | 126.1 ± 53.5 | ns | 150.1 ± 57.3 | ns | ||
Hdc+/+ | - | VUF16839 | 113.3 ± 32.7 | 108.7 ± 22.5 | |||||
Figure 4C | Hdc+/+ | - | Veh | 163.7 ± 60.9 | ns | 140.6 ± 72.4 | ns | ||
Hdc+/+ | - | VUF16839 | 139.8 ± 62.5 | 102.6 ± 42.6 | |||||
Figure 5B | Hdc−/− | - | Veh | 156.3 ± 70.4 | ns | 143.8 ± 31.5 | ns | ||
Hdc−/− | - | VUF16839 | 107.8 ± 40.8 | 112.2 ± 42.6 | |||||
Figure 5C | Hdc+/+ | αFMH | Veh | 100.8 ± 35.4 | ns | 124.9 ± 61.6 | ns | ||
Hdc+/+ | αFMH | VUF16839 | 86.9 ± 25.5 | 88.5 ± 33.2 | |||||
Figure 6 | Hdc+/+ | - | Veh + VUF16939 | 79.5 ± 23.4 | ns | 82.2 ± 31.3 | ns | ||
Hdc+/+ | - | Donepezil + VUF16839 | 72.7 ± 26.6 | 101.4 ± 17.4 | |||||
Figure 7B | Hdc+/+ | - | Veh | 99.7 ± 33.5 | ns | 115.0 ± 26.5 | ns | ||
Hdc+/+ | - | Ciproxifan | 138.8 ± 33.2 | 95.6 ± 20.6 | |||||
Hdc+/+ | - | Veh | 112.7 ± 29.9 | 93.3 ± 42.3 | |||||
Hdc+/+ | - | Ciproxifan | 119.7 ± 27.2 | 101.5 ± 36.2 | |||||
Figure 7C | Hdc+/+ | Veh | Veh | 110.3 ± 19.3 | ns | 104.2 ± 27.5 | ns | ||
Hdc+/+ | αFMH | Ciproxifan | 145.7 ± 35.3 | 106.8 ± 31.9 | |||||
Hdc+/+ | Veh | Veh | 134.7 ± 47.1 | 134.8 ± 45.7 | |||||
Hdc+/+ | αFMH | Ciproxifan | 118.2 ± 19.1 | 135.9 ± 30.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rani, B.; Silva-Marques, B.; Leurs, R.; Passani, M.B.; Blandina, P.; Provensi, G. Short- and Long-Term Social Recognition Memory Are Differentially Modulated by Neuronal Histamine. Biomolecules 2021, 11, 555. https://doi.org/10.3390/biom11040555
Rani B, Silva-Marques B, Leurs R, Passani MB, Blandina P, Provensi G. Short- and Long-Term Social Recognition Memory Are Differentially Modulated by Neuronal Histamine. Biomolecules. 2021; 11(4):555. https://doi.org/10.3390/biom11040555
Chicago/Turabian StyleRani, Barbara, Bruna Silva-Marques, Rob Leurs, Maria Beatrice Passani, Patrizio Blandina, and Gustavo Provensi. 2021. "Short- and Long-Term Social Recognition Memory Are Differentially Modulated by Neuronal Histamine" Biomolecules 11, no. 4: 555. https://doi.org/10.3390/biom11040555
APA StyleRani, B., Silva-Marques, B., Leurs, R., Passani, M. B., Blandina, P., & Provensi, G. (2021). Short- and Long-Term Social Recognition Memory Are Differentially Modulated by Neuronal Histamine. Biomolecules, 11(4), 555. https://doi.org/10.3390/biom11040555