Modulation of Blood–Brain Barrier Permeability by Activating Adenosine A2 Receptors in Oncological Treatment
Abstract
:1. Introduction
2. Blood–Brain Barrier
2.1. Structure and Function
2.2. BBB in Pathological Conditions
3. Brain Tumors and the Role of the Blood–Brain Barrier in Oncological Treatment
4. Adenosine Receptors
4.1. Characteristics of Adenosine Receptors
4.2. Function and Mechanism of Action of A2A Receptors
4.3. A2AR Agonists
- low affinity, short-acting, and selective: e.g., CVT-3146 (Regadenoson) and CVT-3033;
- high affinity, longer duration of action, and selective: e.g., CGS21680, ALT-146e (Apadenoson), ALT-313 (Evodenoson), or WRC0470;
- nonselective agonists: e.g., NECA (5′-N-Ethylcarboxamidoadenosine).
4.4. Clinical Implication and Uncertainties
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Zhou, Y.; Peng, Z.; Seven, E.S.; Leblanc, R.M. Crossing the blood-brain barrier with nanoparticles. J. Control. Release 2018, 270, 290–303. [Google Scholar] [CrossRef]
- Luo, H.; Shusta, E.V. Blood–brain barrier modulation to improve glioma drug delivery. Pharmaceutics 2020, 12, 85. [Google Scholar] [CrossRef]
- Deeken, J.F.; Löscher, W. The blood-brain barrier and cancer: Transporters, treatment, and trojan horses. Clin. Cancer Res. 2007, 13, 1663–1674. [Google Scholar] [CrossRef] [Green Version]
- Tajes, M.; Ramos-Fernández, E.; Weng-Jiang, X.; Bosch-Morató, M.; Guivernau, B.; Eraso-Pichot, A.; Salvador, B.; Fernàndez-Busquets, X.; Roquer, J.; Muñoz, F.J. The blood-brain barrier: Structure, function and therapeutic approaches to cross it. Mol. Membr. Biol. 2014, 31, 152–167. [Google Scholar] [CrossRef] [Green Version]
- Wolburg, H.; Lippoldt, A. Tight junctions of the blood-brain barrier: Development, composition and regulation. Vascul. Pharmacol. 2002, 38, 323–337. [Google Scholar] [CrossRef]
- Günzel, D.; Fromm, M. Claudins and other tight junction proteins. Compr. Physiol. 2012, 2, 1819–1852. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.-Y.; Wang, Z.-B.; Zhang, L.-C.; Wei, X.; Li, L. Tight Junction in Blood-Brain Barrier: An Overview of Structure, Regulation, and Regulator Substances. CNS Neurosci. Ther. 2012, 18, 609–615. [Google Scholar] [CrossRef]
- Nakagawa, S.; Deli, M.A.; Kawaguchi, H.; Shimizudani, T.; Shimono, T.; Kittel, Á.; Tanaka, K.; Niwa, M. A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem. Int. 2009, 54, 253–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attwell, D.; Mishra, A.; Hall, C.N.; O’Farrell, F.M.; Dalkara, T. What is a pericyte? J. Cereb. Blood Flow Metab. 2016, 36, 451–455. [Google Scholar] [CrossRef] [Green Version]
- Abbott, N.J.; Ronnback, L.; Hansson, E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci. 2006, 7, 41–54. [Google Scholar] [CrossRef]
- Huber, J.D.; Egleton, R.D.; Davis, T.P. Molecular physiology and pathophysiology of tight junctions in the blood -brain barrier. Trends Neurosci. 2001, 24, 719–725. [Google Scholar] [CrossRef]
- Groothuis, D.R.; Vick, N.A. Brain tumors and the blood-brain barrier. Trends Neurosci. 1982, 5, 232–235. [Google Scholar] [CrossRef]
- Essig, M.; Weber, M.A.; Von Tengg-Kobligk, H.; Knopp, M.V.; Yuh, W.T.C.; Giesel, F.L. Contrast-enhanced magnetic resonance imaging of central nervous system tumors: Agents, mechanisms, and applications. Top. Magn. Reson. Imaging 2006, 17, 89–106. [Google Scholar] [CrossRef]
- Cordova, J.S.; Shu, H.K.G.; Liang, Z.; Gurbani, S.S.; Cooper, L.A.D.; Holder, C.A.; Olson, J.J.; Kairdolf, B.; Schreibmann, E.; Neill, S.G.; et al. Whole-brain spectroscopic MRI biomarkers identify infiltrating margins in glioblastoma patients. Neuro. Oncol. 2016, 18, 1180–1189. [Google Scholar] [CrossRef]
- Gao, X.; Yue, Q.; Liu, Y.; Fan, D.; Fan, K.; Li, S.; Qian, J.; Han, L.; Fang, F.; Xu, F.; et al. Image-guided chemotherapy with specifically tuned blood brain barrier permeability in glioma margins. Theranostics 2018, 8, 3126–3137. [Google Scholar] [CrossRef]
- Sarkaria, J.N.; Hu, L.S.; Parney, I.F.; Pafundi, D.H.; Brinkmann, D.H.; Laack, N.N.; Giannini, C.; Burns, T.C.; Kizilbash, S.H.; Laramy, J.K.; et al. Is the blood-brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data. Neuro. Oncol. 2018, 20, 184–191. [Google Scholar] [CrossRef]
- SEER Cancer Stat Facts: Brain and Other Nervous System Cancer. Available online: https://seer.cancer.gov/statfacts/html/brain.html (accessed on 12 December 2020).
- Zhang, H.; Wang, R.; Yu, Y.; Liu, J.; Luo, T.; Fan, F. Glioblastoma treatment modalities besides surgery. J. Cancer 2019, 10, 4793–4806. [Google Scholar] [CrossRef] [PubMed]
- Batash, R.; Asna, N.; Schaffer, P.; Francis, N.; Schaffer, M. Glioblastoma Multiforme, Diagnosis and Treatment; Recent Literature Review. Curr. Med. Chem. 2017, 24, 3002–3009. [Google Scholar] [CrossRef]
- PDQ Adult Central Nervous System Tumors Treatment. Available online: https://www.cancer.gov/types/brain/hp/adult-brain-treatment-pdq (accessed on 12 December 2020).
- Brandes, A.A.; Tosoni, A.; Basso, U.; Reni, M.; Valduga, F.; Monfardini, S.; Amistà, P.; Nicolardi, L.; Sotti, G.; Ermani, M. Second-line chemotherapy with irinotecan plus carmustine in glioblastoma recurrent or progressive after first-line temozolomide chemotherapy: A phase II study of the Gruppo Italiano Cooperativo di Neuro-Oncologia (GICNO). J. Clin. Oncol. 2004, 22, 4727–4734. [Google Scholar] [CrossRef] [PubMed]
- Pardridge, W.M. Drug transport across the blood-brain barrier. J. Cereb. Blood Flow Metab. 2012, 32, 1959–1972. [Google Scholar] [CrossRef] [PubMed]
- Attenello, F.; Raza, S.M.; Dimeco, F.; Olivi, A. Chemotherapy for brain tumors with polymer drug delivery. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2012; Volume 104, pp. 339–353. [Google Scholar]
- Haque, R.M.; Amundson, E.; Dorsi, M.; Brem, H. Interstitial chemotherapy and polymer-drug delivery. In Handbook of Brain Tumor Chemotherapy; Elsevier Inc.: Amsterdam, The Netherlands, 2006; pp. 274–294. ISBN 9780120884100. [Google Scholar]
- Kwok, K.K.; Vincent, E.C.; Gibson, J.N. Antineoplastic Drugs. In Pharmacology and Therapeutics for Dentistry, 7th ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 530–562. ISBN 9780323393072. [Google Scholar]
- Blakeley, J.; Grossman, S.A. Chemotherapy with cytotoxic and cytostatic agents in brain cancer. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2012; Volume 104, pp. 229–254. [Google Scholar]
- Yoneda, K.Y.; Cross, C.E. The Pulmonary Toxicity of Anticancer Agents. In Comprehensive Toxicology, 7th ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2010; Volume 8, pp. 477–510. ISBN 9780080468686. [Google Scholar]
- McDannold, N.; Zhang, Y.; Supko, J.G.; Power, C.; Sun, T.; Vykhodtseva, N.; Golby, A.J.; Reardon, D.A. Blood-brain barrier disruption and delivery of irinotecan in a rat model using a clinical transcranial MRI-guided focused ultrasound system. Sci. Rep. 2020, 10, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Vredenburgh, J.J.; Desjardins, A.; Reardon, D.A.; Friedman, H.S. Experience with irinotecan for the treatment of malignant glioma. Neuro. Oncol. 2009, 11, 80–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oropesa Jiménez, A.L.; Hernández-Moreno, D.; Soler-Rodríguez, F. Melphalan. In Encyclopedia of Toxicology, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 191–193. ISBN 9780123864543. [Google Scholar]
- Cornford, E.M.; Young, D.; Paxton, J.W.; Finlay, G.J.; Wilson, W.R.; Pardridge, W.M. Melphalan Penetration of the Blood-Brain Barrier via the Neutral Amino Acid Transporter in Tumor-bearing Brain. Cancer Res. 1992, 52, 138–143. [Google Scholar] [PubMed]
- Bazan, F.; Dobi, E.; Royer, B.; Curtit, E.; Mansi, L.; Menneveau, N.; Paillard, M.J.; Meynard, G.; Villanueva, C.; Pivot, X.; et al. Systemic high-dose intravenous methotrexate in patients with central nervous system metastatic breast cancer. BMC Cancer 2019, 19, 1029. [Google Scholar] [CrossRef] [PubMed]
- Bidaki, R.; Kian, M.; Owliaey, H.; Babaei Zarch, M.; Feysal, M. Accidental Chronic Poisoning with Methotrexate; Report of Two Cases. Emergency 2017, 5, e67. [Google Scholar]
- Avgeropoulos, N.G.; Newton, H.B. Clinical Pharmacology of Brain Tumor Chemotherapy. In Handbook of Brain Tumor Chemotherapy, Molecular Therapeutics, and Immunotherapy, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 21–44. ISBN 9780128121009. [Google Scholar]
- Armand, J.P.; Ribrag, V.; Harrousseau, J.L.; Abrey, L. Reappraisal of the use of procarbazine in the treatment of lymphomas and brain tumors. Ther. Clin. Risk Manag. 2007, 3, 213–224. [Google Scholar] [CrossRef] [Green Version]
- IJzerman-Korevaar, M.; Snijders, T.J.; de Graeff, A.; Teunissen, S.C.C.M.; de Vos, F.Y.F. Prevalence of symptoms in glioma patients throughout the disease trajectory: A systematic review. J. Neurooncol. 2018, 140, 485–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bae, S.H.; Park, M.J.; Lee, M.M.; Kim, T.M.; Lee, S.H.; Cho, S.Y.; Kim, Y.H.; Kim, Y.J.; Park, C.K.; Kim, C.Y. Toxicity profile of temozolomide in the treatment of 300 malignant glioma patients in Korea. J. Korean Med. Sci. 2014, 29, 980–984. [Google Scholar] [CrossRef] [Green Version]
- Agarwala, S.S.; Kirkwood, J.M. Temozolomide, a Novel Alkylating Agent with Activity in the Central Nervous System, May Improve the Treatment of Advanced Metastatic Melanoma. Oncologist 2000, 5, 144–151. [Google Scholar] [CrossRef]
- Ghobrial, I.M.; Rajkumar, S.V. Management of thalidomide toxicity. J. Support. Oncol. 2003, 1, 194–205. [Google Scholar]
- Ryu, J.K.; McLarnon, J.G. Thalidomide inhibition of perturbed vasculature and glial-derived tumor necrosis factor-α in an animal model of inflamed Alzheimer’s disease brain. Neurobiol. Dis. 2008, 29, 254–266. [Google Scholar] [CrossRef]
- Baird, R.; Van Zyl-Smit, R.N.; Iveson, A.; Duddy, J.; Rassam, S.M.B. Thalidomide is highly effective in a patient with meningeal acute myeloid leukaemia. Leuk. Lymphoma 2004, 45, 179–181. [Google Scholar] [CrossRef]
- Alexander, T.C.; Kiffer, F.; Groves, T.; Anderson, J.; Wang, J.; Hayar, A.; Chen, M.T.; Rodriguez, A.; Allen, A.R. Effects of thioTEPA chemotherapy on cognition and motor coordination. Synapse 2019, 73, e22085. [Google Scholar] [CrossRef] [PubMed]
- Heideman, R.L.; Packer, R.J.; Reaman, G.H.; Allen, J.C.; Lange, B.; Horowitz, M.E.; Steinberg, S.M.; Gillespie, A.; Kovnar, E.H.; Balis, F.M.; et al. A phase II evaluation of thiotepa in pediatric central nervous system malignancies. Cancer 1993, 72, 271–275. [Google Scholar] [CrossRef]
- Boyle, F.M.; Eller, S.L.; Grossman, S.A. Penetration of intra-arterially administered vincristine in experimental brain tumor. Neuro. Oncol. 2004, 6, 300–305. [Google Scholar] [CrossRef] [Green Version]
- Madsen, M.L.; Due, H.; Ejskjær, N.; Jensen, P.; Madsen, J.; Dybkær, K. Aspects of vincristine-induced neuropathy in hematologic malignancies: A systematic review. Cancer Chemother. Pharmacol. 2019, 84, 471–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikpour, F.; Tayefi, H.; Mohammadnejad, D.; Akbarzadeh, A. Adverse effects of vincristine chemotherapy on cell changes in seminiferous tubules and cetrorelix GnRH antagonist inhibitory effects in mice. Asian Pacific J. Cancer Prev. 2018, 19, 683–687. [Google Scholar] [CrossRef]
- Greig, N.H.; Soncrant, T.T.; Shetty, H.U.; Momma, S.; Smith, Q.R.; Rapoport, S.I. Brain uptake and anticancer activities of vincristine and vinblastine are restricted by their low cerebrovascular permeability and binding to plasma constituents in rat. Cancer Chemother. Pharmacol. 1990, 26, 263–268. [Google Scholar] [CrossRef]
- Jackson, S.; Anders, N.M.; Mangraviti, A.; Wanjiku, T.M.; Sankey, E.W.; Liu, A.; Brem, H.; Tyler, B.; Rudek, M.A.; Grossman, S.A. The effect of regadenoson-induced transient disruption of the blood–brain barrier on temozolomide delivery to normal rat brain. J. Neurooncol. 2016, 126, 433–439. [Google Scholar] [CrossRef] [Green Version]
- Muldoon, L.L.; Soussain, C.; Jahnke, K.; Johanson, C.; Siegal, T.; Smith, Q.R.; Hall, W.A.; Hynynen, K.; Senter, P.D.; Peereboom, D.M.; et al. Chemotherapy delivery issues in central nervous system malignancy: A reality check. J. Clin. Oncol. 2007, 25, 2295–2305. [Google Scholar] [CrossRef] [Green Version]
- Régina, A.; Demeule, M.; Laplante, A.; Jodoin, J.; Dagenais, C.; Berthelet, F.; Moghrabi, A.; Béliveau, R. Multidrug resistance in brain tumors: Roles of the blood-brain barrier. Cancer Metastasis Rev. 2001, 20, 13–25. [Google Scholar] [CrossRef]
- De Vries, N.A.; Beijnen, J.H.; Boogerd, W.; Van Tellingen, O. Blood-brain barrier and chemotherapeutic treatment of brain tumors. Expert Rev. Neurother. 2006, 6, 1199–1209. [Google Scholar] [CrossRef] [PubMed]
- Appelboom, G.; Detappe, A.; LoPresti, M.; Kunjachan, S.; Mitrasinovic, S.; Goldman, S.; Chang, S.D.; Tillement, O. Stereotactic modulation of blood-brain barrier permeability to enhance drug delivery. Neuro. Oncol. 2016, 18, 1601–1609. [Google Scholar] [CrossRef] [PubMed]
- Shapira-Furman, T.; Serra, R.; Gorelick, N.; Doglioli, M.; Tagliaferri, V.; Cecia, A.; Peters, M.; Kumar, A.; Rottenberg, Y.; Langer, R.; et al. Biodegradable wafers releasing Temozolomide and Carmustine for the treatment of brain cancer. J. Control. Release 2019, 295, 93–101. [Google Scholar] [CrossRef]
- Chowdhary, S.A.; Ryken, T.; Newton, H.B. Survival outcomes and safety of carmustine wafers in the treatment of high-grade gliomas: A meta-analysis. J. Neurooncol. 2015, 122, 367–382. [Google Scholar] [CrossRef] [Green Version]
- Black, K.L.; Yin, D.; Ong, J.M.; Hu, J.; Konda, B.M.; Wang, X.; Ko, M.H.K.; Bayan, J.A.; Sacapano, M.R.; Espinoza, A.; et al. PDE5 inhibitors enhance tumor permeability and efficacy of chemotherapy in a rat brain tumor model. Brain Res. 2008, 1230, 290–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.A.; Lie, J.D. Phosphodiesterase-5 (PDE5) inhibitors in the management of erectile dysfunction. Pharm. Ther. 2013, 38, 407–419. [Google Scholar]
- Dowd, F.J.; Jeffries, W.B. Antihypertensive Drugs. In Pharmacology and Therapeutics for Dentistry, 7th ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 333–348. ISBN 9780323393072. [Google Scholar]
- Gu, Y.T.; Xue, Y.X.; Wang, Y.F.; Wang, J.H.; Chen, X.; Shangguan, Q.R.; Lian, Y.; Zhong, L.; Meng, Y.N. Minoxidil sulfate induced the increase in blood-brain tumor barrier permeability through ROS/RhoA/PI3K/PKB signaling pathway. Neuropharmacology 2013, 75, 407–415. [Google Scholar] [CrossRef]
- Emerich, D.F.; Dean, R.L.; Osborn, C.; Bartus, R.T. The development of the bradykinin agonist labradimil as a means to increase the permeability of the blood-brain barrier: From concept to clinical evaluation. Clin. Pharmacokinet. 2001, 40, 105–123. [Google Scholar] [CrossRef]
- Bartus, R.T.; Elliott, P.J.; Dean, R.L.; Hayward, N.J.; Nagle, T.L.; Huff, M.R.; Snodgrass, P.A.; Blunt, D.G. Controlled modulation of BBB permeability using the bradykinin agonist, RMP-7. Exp. Neurol. 1996, 142, 14–28. [Google Scholar] [CrossRef]
- Gumerlock, M.K.; Belshe, B.D.; Madsen, R.; Watts, C. Osmotic blood-brain barrier disruption and chemotherapy in the treatment of high grade malignant glioma: Patient series and literature review. J. Neurooncol. 1992, 12, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.G.; Bynoe, M.S. A2A Adenosine Receptor Regulates the Human Blood-Brain Barrier Permeability. Mol. Neurobiol. 2015, 52, 664–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, S.; Weingart, J.; Nduom, E.K.; Harfi, T.T.; George, R.T.; McAreavey, D.; Ye, X.; Anders, N.M.; Peer, C.; Figg, W.D.; et al. The effect of an adenosine A2A agonist on intra-tumoral concentrations of temozolomide in patients with recurrent glioblastoma. Fluids Barriers CNS 2018, 15. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.; Liu, Y.J.; Yang, Z.P.; Zhang, D.Y.; Lu, Y.Q.; Zheng, M.; Xue, X.; Geng, J.; Chung, R.; Shi, B.Y. Effective and targeted human orthotopic glioblastoma xenograft therapy via a multifunctional biomimetic nanomedicine. Adv. Mater. 2018, 30, 1803717. [Google Scholar] [CrossRef] [PubMed]
- Teleanu, D.M.; Chircov, C.; Grumezescu, A.M.; Volceanov, A.; Teleanu, R.I. Blood-brain delivery methods using nanotechnology. Pharmaceutics 2018, 10, 269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouchet, A.; Potez, M.; Coquery, N.; Rome, C.; Lemasson, B.; Bräuer-Krisch, E.; Rémy, C.; Laissue, J.; Barbier, E.L.; Djonov, V.; et al. Permeability of Brain Tumor Vessels Induced by Uniform or Spatially Microfractionated Synchrotron Radiation Therapies. Int. J. Radiat. Oncol. Biol. Phys. 2017, 98, 1174–1182. [Google Scholar] [CrossRef]
- Bouchet, A.; Serduc, R.; Laissue, J.A.; Djonov, V. Effects of microbeam radiation therapy on normal and tumoral blood vessels. Phys. Medica 2015, 31, 634–641. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.; Gaber, M.W.; McColgan, T.; Naimark, M.D.; Kiani, M.F.; Merchant, T.E. Radiation-induced permeability and leukocyte adhesion in the rat blood-brain barrier: Modulation with anti-ICAM-1 antibodies. Brain Res. 2003, 969, 59–69. [Google Scholar] [CrossRef]
- Chen, K.-T.; Lin, Y.-J.; Chai, W.-Y.; Lin, C.-J.; Chen, P.-Y.; Huang, C.-Y.; Kuo, J.S.; Liu, H.-L.; Wei, K.-C. Neuronavigation-guided focused ultrasound (NaviFUS) for transcranial blood-brain barrier opening in recurrent glioblastoma patients: Clinical trial protocol. Ann. Transl. Med. 2020, 8, 673. [Google Scholar] [CrossRef] [PubMed]
- Curley, C.T.; Sheybani, N.D.; Bullock, T.N.; Price, R.J. Focused ultrasound immunotherapy for central nervous system pathologies: Challenges and opportunities. Theranostics 2017, 7, 3608–3623. [Google Scholar] [CrossRef]
- Ashraf, O.; Patel, N.V.; Hanft, S.; Danish, S.F. Laser-Induced Thermal Therapy in Neuro-Oncology: A Review. World Neurosurg. 2018, 112, 166–177. [Google Scholar] [CrossRef]
- Sek, K.; Mølck, C.; Stewart, G.; Kats, L.; Darcy, P.; Beavis, P. Targeting Adenosine Receptor Signaling in Cancer Immunotherapy. Int. J. Mol. Sci. 2018, 19, 3837. [Google Scholar] [CrossRef] [Green Version]
- Effendi, W.I.; Nagano, T.; Kobayashi, K.; Nishimura, Y. Focusing on Adenosine Receptors as a Potential Targeted Therapy in Human Diseases. Cells 2020, 9, 785. [Google Scholar] [CrossRef] [Green Version]
- Fredholm, B.B.; IJzerman, A.P.; Jacobson, K.A.; Linden, J.; Müller, C.E. International union of basic and clinical pharmacology. LXXXI. Nomenclature and classification of adenosine receptors—An update. Pharmacol. Rev. 2011, 63, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Ongini, E.; Fredholm, B.B. Pharmacology of adenosine A2A receptors. Trends Pharmacol. Sci. 1996, 17, 364–372. [Google Scholar] [CrossRef]
- Bynoe, M.S.; Viret, C.; Yan, A.; Kim, D.G. Adenosine receptor signaling: A key to opening the blood-brain door. Fluids Barriers CNS 2015, 12, 20. [Google Scholar] [CrossRef] [Green Version]
- Ledent, C.; Vaugeoist, J.M.; Schiffmann, S.N.; Pedrazzini, T.; El Yacoubi, M.; Vanderhaeghen, J.J.; Costentin, J.; Heath, J.K.; Vassart, G.; Parmentier, M. Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A(2a) receptor. Nature 1997, 388, 674–678. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Li, Z.; Baker, S.P.; Lasley, R.D.; Meyer, S.; Elzein, E.; Palle, V.; Zablocki, J.A.; Blackburn, B.; Belardinelli, L. Novel short-acting A2A adenosine receptor agonists for coronary vasodilation: Inverse relationship between affinity and duration of action of A2A agonists. J. Pharmacol. Exp. Ther. 2001, 298, 209–218. [Google Scholar]
- Zhao, G.; Linke, A.; Xu, X.; Ochoa, M.; Belloni, F.; Belardinelli, L.; Hintze, T.H. Comparative profile of vasodilation by CVT-3146, a novel A2A receptor agonist, and adenosine in conscious dogs. J. Pharmacol. Exp. Ther. 2003, 307, 182–189. [Google Scholar] [CrossRef] [Green Version]
- Glaser, F.; Steinberg, D.M.; Vakser, I.A.; Ben-Tal, N. Residue frequencies and pairing preferences at protein-protein interfaces. Proteins Struct. Funct. Genet. 2001, 43, 89–102. [Google Scholar] [CrossRef]
- Haskó, G.; Xu, D.Z.; Lu, Q.; Németh, Z.H.; Jabush, J.; Berezina, T.L.; Zaets, S.B.; Csóka, B.; Deitch, E.A. Adenosine A2A receptor activation reduces lung injury in trauma/hemorrhagic shock. Crit. Care Med. 2006, 34, 1119–1125. [Google Scholar] [CrossRef]
- Bobermin, L.D.; Roppa, R.H.A.; Quincozes-Santos, A. Adenosine receptors as a new target for resveratrol-mediated glioprotection. Biochim. Biophys. Acta Mol. Basis Dis. 2019, 1865, 634–647. [Google Scholar] [CrossRef]
- Carman, A.J.; Mills, J.H.; Krenz, A.; Kim, D.G.; Bynoe, M.S. Adenosine receptor signaling modulates permeability of the blood-brain barrier. J. Neurosci. 2011, 31, 13272–13280. [Google Scholar] [CrossRef]
- Hurtado-Alvarado, G.; Domínguez-Salazar, E.; Velázquez-Moctezuma, J.; Gómez-González, B. A2A Adenosine Receptor Antagonism Reverts the Blood-Brain Barrier Dysfunction Induced by Sleep Restriction. PLoS ONE 2016, 11, e0167236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.G.; Bynoe, M.S. A2A adenosine receptor modulates drug efflux transporter P-glycoprotein at the blood-brain barrier. J. Clin. Investig. 2016, 126, 1717–1733. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Melgar, A.; Albasanz, J.L.; Guixa-Gonzalez, R.; Saleh, N.; Selent, J.; Martin, M. The antioxidant resveratrol acts as a non-selective adenosine receptor agonist. Free Radic. Biol. Med. 2019, 135, 261–273. [Google Scholar] [CrossRef]
- Pak, R.W.; Kang, J.; Valentine, H.; Loew, L.M.; Thorek, D.L.J.; Boctor, E.M.; Wong, D.F.; Kang, J.U. Voltage-sensitive dye delivery through the blood brain barrier using adenosine receptor agonist regadenoson. Biomed. Opt. Express 2018, 9, 3915. [Google Scholar] [CrossRef]
- Saleh, T.A. Nanomaterials: Classification, properties, and environmental toxicities. Environ. Technol. Innov. 2020, 20, 101067. [Google Scholar] [CrossRef]
- Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic. Bioeng. Transl. Med. 2016, 1, 10–29. [Google Scholar] [CrossRef] [PubMed]
- Estelrich, J.; Antònia Busquets, M. Iron oxide nanoparticles in photothermal therapy. Molecules 2018, 23, 1567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, J.; Rahme, K.; He, Y.; Li, L.L.; Holmes, J.D.; O’Driscoll, C.M. Gold nanoparticles enlighten the future of cancer theranostics. Int. J. Nanomed. 2017, 12, 6131–6152. [Google Scholar] [CrossRef] [Green Version]
- Shevtsov, M.; Multhoff, G. Recent Developments of Magnetic Nanoparticles for Theranostics of Brain Tumor. Curr. Drug Metab. 2016, 17, 737–744. [Google Scholar] [CrossRef] [PubMed]
- Morozov, K.V.; Kolyvanova, M.A.; Kartseva, M.E.; Shishmakova, E.M.; Dement’eva, O.V.; Isagulieva, A.K.; Salpagarov, M.H.; Belousov, A.V.; Rudoy, V.M.; Shtil, A.A.; et al. Radiosensitization by gold nanoparticles: Impact of the size, dose rate, and photon energy. Nanomaterials 2020, 10, 952. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Meyers, J.D.; Agnes, R.S.; Doane, T.L.; Kenney, M.E.; Broome, A.M.; Burda, C.; Basilion, J.P. Addressing brain tumors with targeted gold nanoparticles: A new gold standard for hydrophobic drug delivery? Small 2011, 7, 2301–2306. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Morshed, R.A.; Auffinger, B.; Tobias, A.L.; Lesniak, M.S. Multifunctional nanoparticles for brain tumor imaging and therapy. Adv. Drug Deliv. Rev. 2014, 66, 42–57. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Sarin, H. Recent progress towards development of effective systemic chemotherapy for the treatment of malignant brain tumors. J. Transl. Med. 2009, 7, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, M.; van Straten, D.; Broekman, M.L.D.; Préat, V.; Schiffelers, R.M. Nanocarrier-based drug combination therapy for glioblastoma. Theranostics 2020, 10, 1355–1372. [Google Scholar] [CrossRef] [PubMed]
- van Waarde, A.; Dierckx, R.A.J.O.; Zhou, X.; Khanapur, S.; Tsukada, H.; Ishiwata, K.; Luurtsema, G.; de Vries, E.F.J.; Elsinga, P.H. Potential therapeutic applications of adenosine A2A receptor ligands and opportunities for A2A receptor imaging. Med. Res. Rev. 2018, 38, 5–56. [Google Scholar] [CrossRef]
- Gao, X.; Qian, J.; Zheng, S.; Changyi, Y.; Zhang, J.; Ju, S.; Zhu, J.; Li, C. Overcoming the blood-brain barrier for delivering drugs into the brain by using adenosine receptor nanoagonist. ACS Nano 2014, 8, 3678–3689. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Wang, C.; Lu, Y.; Sheng, G.; Yang, L.; Wu, Z.; Xu, H.; Han, C.; Lu, Y.; Han, F. Targeted Regulation of Blood–Brain Barrier for Enhanced Therapeutic Efficiency of Hypoxia-Modifier Nanoparticles and Immune Checkpoint Blockade Antibodies for Glioblastoma. ACS Appl. Mater. Interfaces 2021, 13, 11657–11671. [Google Scholar] [CrossRef]
- Han, L.; Cai, Q.; Tian, D.; Kong, D.K.; Gou, X.; Chen, Z.; Strittmatter, S.M.; Wang, Z.; Sheth, K.N.; Zhou, J. Targeted drug delivery to ischemic stroke via chlorotoxin-anchored, lexiscan-loaded nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 1833–1842. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Deng, G.; Liu, F.; Peng, B.; Bao, Y.; Du, F.; Chen, A.T.; Liu, J.; Chen, Z.; Ma, J.; et al. Autocatalytic Delivery of Brain Tumor–Targeting, Size-Shrinkable Nanoparticles for Treatment of Breast Cancer Brain Metastases. Adv. Funct. Mater. 2020, 30, 1910651. [Google Scholar] [CrossRef]
- Zoghbi, G.J.; Iskandrian, A.E. Selective adenosine agonists and myocardial perfusion imaging. J. Nucl. Cardiol. 2012, 19, 126–141. [Google Scholar] [CrossRef] [PubMed]
- Doukky, R.; Demori, R.M.; Jain, S.; Kiriakos, R.; Mwansa, V.; Calvin, J.E. Attenuation of the side effect profile of regadenoson: A randomized double-blinded placebo-controlled study with aminophylline in patients undergoing myocardial perfusion imaging. “the ASSUAGE trial.” J. Nucl. Cardiol. 2012, 19, 448–457. [Google Scholar] [CrossRef]
- Kwon, D.H.; Cerqueira, M.D.; Young, R.; Houghtaling, P.; Lieber, E.; Menon, V.; Brunken, R.C.; Jaber, W.A. Lessons from regadenoson and low-level treadmill/regadenoson myocardial perfusion imaging: Initial clinical experience in 1263 patients. J. Nucl. Cardiol. 2010, 17, 853–857. [Google Scholar] [CrossRef]
- Jackson, S.; George, R.T.; Lodge, M.A.; Piotrowski, A.; Wahl, R.L.; Gujar, S.K.; Grossman, S.A. The effect of regadenoson on the integrity of the human blood–brain barrier, a pilot study. J. Neurooncol. 2017, 132, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Determining Dose of Regadenoson Most Likely to Transiently Alter the Integrity of the Blood-Brain Barrier in Patients with High Grade Gliomas. Available online: https://clinicaltrials.gov/ct2/show/NCT03971734 (accessed on 28 February 2021).
- Thomas, G.S.; Jolly, A.F.; Safani, M. When to re-dose regadenoson? J. Nucl. Cardiol. 2017, 24, 66–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Townsend, R.; Desai, A.; Rammelsberg, D.; Kowalski, D.; Simmons, N.; Kitt, T.M. Safety and tolerability of intravenous regadenoson in healthy subjects: A randomized, repeat-dose, placebo-controlled study. J. Nucl. Cardiol. 2017, 24, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Riley, M.G.I.; Kim, N.N.; Watson, V.E.; Gobin, Y.P.; LeBel, C.P.; Black, K.L.; Bartus, R.T. Intra-arterial administration of carboplatin and the blood brain barrier permeabilizing agent, RMP-7: A toxicologic evaluation in swine. J. Neurooncol. 1998, 36, 167–178. [Google Scholar] [CrossRef]
- Bahreyni, A.; Avan, A.; Shabani, M.; Ryzhikov, M.; Fiuji, H.; Soleimanpour, S.; Khazaei, M.; Hassanian, S.M. Therapeutic potential of A2 adenosine receptor pharmacological regulators in the treatment of cardiovascular diseases, recent progress, and prospective. J. Cell. Physiol. 2019, 234, 1295–1299. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Jiang, H.; Wan, L.; Zhao, Q.; Jiang, T.; Wang, B.; Wang, S. Potential application of functional porous TiO2 nanoparticles in light-controlled drug release and targeted drug delivery. Acta Biomater. 2015, 13, 354–363. [Google Scholar] [CrossRef] [PubMed]
- Yan, A.; Joachims, M.L.; Thompson, L.F.; Miller, A.D.; Canoll, P.D.; Bynoe, M.S. CD73 promotes glioblastoma pathogenesis and enhances its chemoresistance via A2B adenosine receptor signaling. J. Neurosci. 2019, 39, 4387–4402. [Google Scholar] [CrossRef] [Green Version]
- Torres, Á.; Erices, J.I.; Sanchez, F.; Ehrenfeld, P.; Turchi, L.; Virolle, T.; Uribe, D.; Niechi, I.; Spichiger, C.; Rocha, J.D.; et al. Extracellular adenosine promotes cell migration/invasion of Glioblastoma Stem-like Cells through A3 Adenosine Receptor activation under hypoxia. Cancer Lett. 2019, 446, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Azambuja, J.H.; Gelsleichter, N.E.; Beckenkamp, L.R.; Iser, I.C.; Fernandes, M.C.; Figueiró, F.; Battastini, A.M.O.; Scholl, J.N.; de Oliveira, F.H.; Spanevello, R.M.; et al. CD73 Downregulation Decreases In Vitro and In Vivo Glioblastoma Growth. Mol. Neurobiol. 2019, 56, 3260–3279. [Google Scholar] [CrossRef]
- Gessi, S.; Sacchetto, V.; Fogli, E.; Merighi, S.; Varani, K.; Baraldi, P.G.; Tabrizi, M.A.; Leung, E.; Maclennan, S.; Borea, P.A. Modulation of metalloproteinase-9 in U87MG glioblastoma cells by A3 adenosine receptors. Biochem. Pharmacol. 2010, 79, 1483–1495. [Google Scholar] [CrossRef] [PubMed]
- Uribe, D.; Torres, Á.; Rocha, J.D.; Niechi, I.; Oyarzún, C.; Sobrevia, L.; San Martín, R.; Quezada, C. Multidrug resistance in glioblastoma stem-like cells: Role of the hypoxic microenvironment and adenosine signaling. Mol. Aspects Med. 2017, 55, 140–151. [Google Scholar] [CrossRef]
Drug | Pharmacokinetics and BBB Penetration | Systemic Side Effects | References |
---|---|---|---|
Carmustine | Partial BBB penetration—local application can bypass both the short serum half-life and the systemic toxicity | Bone marrow suppression, pulmonary fibrosis—systemic delivery is not associated with a significant prolongation of the patient’s survival | [23,24] |
Lomustine | Partial BBB penetration—oral administration, rapid metabolism, and lipophilicity | Myelosuppression, nausea, fatigue, and pulmonary fibrosis | [25,26,27] |
Irinotecan | Under investigations, crosses the BBB, works in mono- and poly-chemotherapy against brain tumor xenografts and MDR glioblastoma cells | Myelosuppression, neutropenia, gastrointestinal toxicity, nausea, vomiting, and diarrhea | [28,29] |
Melphalan | In rat model, it is transported actively by large amino acid transporter and in high (>1 mM) concentrations may open the BBB in a nonspecific manner. | Suppression of ovarian function, amenorrhea, azoospermia, reversible and irreversible testicular suppression, embryo lethality, malformations, predisposition to pneumonitis and gastrointestinal toxicity, marrow aplasia, cardiac dysrhythmia, hemorrhagic diarrhea, and bowel perforation | [30,31] |
Methotrexate | For CNS lymphomas treatment, high-dose intravenous MTX penetrates the BBB, effective in combination with BBB disrupting agents | Gastrointestinal tract symptoms, myelosuppression, pancytopenia, liver dysfunction, renal failure, pulmonary symptoms, and mucositis, ulcerations | [32,33] |
Procarbazine | Readily cross of BBB, rapid equilibration between plasma and CSF | Gastrointestinal disturbances, myelosuppression, hair loss, fever, chills, generalized aches and pains, weakness, lack of balance, headache, dizziness, rash, neutropenia and thrombocytopenia, myalgia, and arthralgia | [34,35] |
Temozolomid | Can penetrate BBB due to its lipophilic structure and small size of the molecule | Vomiting, nausea, constipation, tiredness, dizziness, and anorexia | [36,37,38] |
Thalidomide | Penetrates BBB, modulates BBB glial cells | Birth defects, peripheral neuropathy, rash, fatigue, constipation, thrombosis, Stevens–Johnson syndrome, malaise, and edema | [39,40,41] |
Thiotepa | Thiotepa and its active metabolite, tepa, efficiently cross the BBB | Cognitive impairment, nausea, vomiting, hair loss, pain sores, bleedings, rashes, and dermatitis | [42,43] |
Vincristine | The lipophilic agent penetrates BBB when supplied intravenously | Blurred vision, walking difficulties, jaw pain, numbness, pain in the extremities, stomach cramps, neurotoxicity, effect on seminiferous tubules, cardiovascular disorders, alopecia, rash, coma, and paralysis | [44,45,46,47] |
Molecules Affecting BBB Used in Treatment of CNS Diseases | Effect on BBB | Challenges and Side Effects | Example of Substance | Clinical Phase Progress | References |
---|---|---|---|---|---|
Pharmacological | |||||
Phosphodiesterase 5 (PDE5) inhibitors | Increased permeability of brain capillaries by inhibition the degradation of cGMP and increased vesicular transport in tumor area | Headache, flushing, dyspepsia, nasal congestion, nasopharyngitis, and visual abnormalities. | Sildenafil (Viagra) Vardenafil (Levitra) | Preclinical | [55,56] |
Potassium channel activators | Selectively increases BBB permeability in the tumor area via a transcellular pathway and downregulation of the expression of tight junction proteins, increased formation of pinocytotic vesicles | pericardial effusion, cardiac tamponade, reflex tachycardia, hypotension, dermatologic reactions, and hypertrichosis | Minoxidil sulfate | Preclinical | [57,58] |
Bradykinin receptor activators | Selectively and temporarily increased tumor BBB permeability—multidirectional effect (increased transcytosis, modulation of TJ proteins and cGMP synthesis) | A short biological half-life, in phase III clinical trials the efficacy of RMP-7 has not been confirmed. Side effects: flushing, nausea, headache, and increase in heart rate | Labradimil (reffered to as RMP-7) | Clinical | [3,59,60] |
Osmotic substances | Osmotic disruption of BBB, efficacy proven in preclinical and clinical studies | Enhanced entry of other molecules such as albumin to CNS. Side effects: edema, seizures, or neuropathological changes | Mannitol/arabinose | Clinical | [51,61] |
A2AR agonist | Effective increase in BBB permeability in mice and rats via downregulation of the expression of tight junction proteins and P-glycoprotein | Short circulating lifetime, systemic side effect, no efficacy in clinical trial in FDA approved doses | Lexiscan | Clinical | [62,63] |
A2AR agonist + nanoparticles | As above, but comparing to A2AR agonist alone: enhanced selectivity (may correlate with reduced systemic side effect), improved targeted drug delivery to CNS, prolonged time window of the BBB opening | Effectiveness proved only in in vivo studies—no clinical trials | NPs with Lexiscan | Preclinical | [64,65] |
Physical | |||||
Stereotactic or Microbeam Radiation Therapy (MRT) | Increase in tumor vessel permeability in rats after irradiation | Early radiation toxicity syndrome, inhibition of cell regeneration, demyelination, and tissue necrosis possible | - | Preclinical | [52,66,67,68] |
Focused Ultrasound (FUS) | Downregulation of TJ proteins induced transcellular transport—increased number of transport vesicles | Risks associated with over-activation of the immune system, such as autoimmunity, vascular damage due to microbubble inertial cavitation when using intensive FUS parameters | - | Clinical- phase 1 clinical trial | [69,70] |
Laser-Induced Thermal Therapy (LITT) | Increased BBB permeability in patients with the highest permeability observed 1–2 weeks after thermal ablation | -invasive -general anesthesia required | - | Clinical | [71] |
Adenosine 2A Agonist | Mechanism of Action | Clinical Application | Research Object/Model | Effect on BBB Permeability | References |
---|---|---|---|---|---|
Regadenoson (CVT-3146/ Lexiscan) | Selective adenosine 2A receptor agonist | FDA approval for pharmacologic cardiac stress testing (detection of coronary artery disease) | In vitro: primary human brain endothelial cell monolayers | Increase in BBB permeability for 10 kDa FITC-dextran mainly from 5 to 30 min after administration | [62] |
In vivo: murine models | Increased permeability of the BBB to 10 kDa FITC-dextran (maximal concentration after 30 min) | [62] | |||
In vivo: -murine models -rat models | Increased CNS dextran entry over time (maximum after 30 min) in both mice and rats | [83] | |||
Clinical study—patients with glioblastoma | No significant difference in TMZ concentrations in CNS before and after administration of Lexiscan | [63] | |||
In vivo: -murine models -rat models | Significantly increased concentration of voltage sensitive dye (VSD) in rat brain tissue and increased residence time of the VDS fluorescence signal in mouse brains. | [87] | |||
In vivo: rat models | Significantly higher brain temozolomide concentrations at 120 min after regadenoson and TMZ administration | [48] | |||
NECA (5‘-N-Ethylcarboxamidoadenosine) | Broad-spectrum adenosine receptor agonist | Not yet approved by the FDA | In vitro: -primary human brain endothelial cell monolayers | Increase in BBB permeability for 10 kDa FITC-dextran mainly from 60 to 90 min after administration | [62] |
In vivo: -murine models -rat models | Increased entry of 10 kDa and 70 kDa dextrans into WT mouse brain 3 h after intravenous administration | [83] | |||
CGS 21680 | Selective adenosine 2A receptor agonist | Not yet approved by the FDA | In vivo: -murine models | Increased entry of 10 kDa FITC-dextran into WT brain tissue 3 h after intravenous administration | [83] |
Nanoparticles | Examples | Main Medical Applications | Additional Properties | Challenges |
---|---|---|---|---|
Organic | Dendrimers | -drug delivery system to CNS -extended circulation time of drugs -targeted drug release -reduced toxicity of anticancer drugs | -only small-size NPs can cross BBB ( <12 nm) -not fully explored, further research required -potential neurotoxicity and systemic toxicity | |
Liposomes | -sensitivity to light | |||
Micelles | ||||
Polymeric NPs | ||||
Inorganic | Gold NPs | -drug delivery system to CNS -extended circulation time of drugs -targeted drug release -reduced toxicity of anticancer drugs -tissue imaging | -photothermal therapy -enhanced sensitivity to radiation—combined therapy possible | |
Silver NPs | ||||
Iron oxide NPs | -photothermal therapy | |||
Silica NPs | ||||
Quantum Dots | -extremely small size 2–20 nm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wala, K.; Szlasa, W.; Saczko, J.; Rudno-Rudzińska, J.; Kulbacka, J. Modulation of Blood–Brain Barrier Permeability by Activating Adenosine A2 Receptors in Oncological Treatment. Biomolecules 2021, 11, 633. https://doi.org/10.3390/biom11050633
Wala K, Szlasa W, Saczko J, Rudno-Rudzińska J, Kulbacka J. Modulation of Blood–Brain Barrier Permeability by Activating Adenosine A2 Receptors in Oncological Treatment. Biomolecules. 2021; 11(5):633. https://doi.org/10.3390/biom11050633
Chicago/Turabian StyleWala, Kamila, Wojciech Szlasa, Jolanta Saczko, Julia Rudno-Rudzińska, and Julita Kulbacka. 2021. "Modulation of Blood–Brain Barrier Permeability by Activating Adenosine A2 Receptors in Oncological Treatment" Biomolecules 11, no. 5: 633. https://doi.org/10.3390/biom11050633
APA StyleWala, K., Szlasa, W., Saczko, J., Rudno-Rudzińska, J., & Kulbacka, J. (2021). Modulation of Blood–Brain Barrier Permeability by Activating Adenosine A2 Receptors in Oncological Treatment. Biomolecules, 11(5), 633. https://doi.org/10.3390/biom11050633