Rifamycin W Analogues from Amycolatopsis mediterranei S699 Δrif-orf5 Strain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Plasmids and Culture Media
2.2. Molecular Cloning and Mutant Construction
2.2.1. Construction of the rif-orf5 Gene Knock-Out Mutant Δrif-orf5
2.2.2. Construction of the rif-orf5 Gene Complementation Mutant Δrif-orf5::orf5
2.3. HPLC Detection of the Metabolites in Mutants
2.4. Extraction and Isolation of the Metabolites from the Δrif-orf5 Strain
2.4.1. General Experimental Procedures
2.4.2. Fermentation, Extraction and Isolation of the Metabolites from the Δrif-orf5 Strain
2.5. Bioactivity
2.5.1. Antimicrobial Assay
2.5.2. Cytotoxicity Assay
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rinehart, K.L.; Shield, L.S. Chemistry of the ansamycin antibiotics. In Fortschritte der Chemie Organischer Naturstoffe/Progress in the Chemistry of Organic Natural Products; Herz, W., Grisebach, H., Kirby, G.W., Eds.; Springer: Vienna, Austria, 1976; Volume 33, pp. 231–307. [Google Scholar]
- Wehrli, W. ChemInform Abstract: Ansamycins: Chemistry, biosynthesis and biological activity. Chem. Inf. 1978, 9, 21–49. [Google Scholar] [CrossRef]
- Sensi, P. Applications of paper chromatography & countercurrent distribution to steroids & antibiotics. Boll. Chim. Farm. 1957, 96, 437–457. [Google Scholar] [PubMed]
- Sensi, P.; Greco, A.M.; Gallo, G.G.; Rolland, G. Isolation and structure determination of a new amicetin-like antibiotic: Amicetin B. Antibiot. Chemother. 1957, 7, 645–652. [Google Scholar]
- Sensi, P.; Margalith, P.; Timbal, M.T. Rifomycin, a new antibiotic. Preliminary report. Farmaco Sci. 1959, 14, 146–147. [Google Scholar]
- Wehrli, W.; Staehelin, M. The rifamycins—Relation of chemical structure and action on RNA polymerase. Biochim. et Biophys. Acta (BBA) Nucleic Acids Protein Synth. 1969, 182, 24–29. [Google Scholar] [CrossRef]
- Ramos-e-Silva, M.; Rebello, P.F. Leprosy. Recognition and treatment. Am. J. Clin. Dermatol. 2001, 2, 203–211. [Google Scholar] [CrossRef]
- Murphy, C.K.; Karginova, E.; Sahm, D.; Rothstein, D.M. In Vitro Activity of Novel Rifamycins against Gram-positive Clinical Isolates. J. Antibiot. 2007, 60, 572–576. [Google Scholar] [CrossRef] [Green Version]
- Czerwonka, D.; Domagalska, J.; Pyta, K.; Kubicka, M.M.; Pecyna, P.; Gajecka, M.; Przybylski, P. Structure–activity relationship studies of new rifamycins containing (L) -amino acid esters as inhibitors of bacterial RNA polymerases. Eur. J. Med. Chem. 2016, 116, 216–221. [Google Scholar] [CrossRef]
- Girling, D.J. Adverse reactions to rifampicin in antituberculosis regimens. J. Antimicrob. Chemother. 1977, 3, 115–132. [Google Scholar] [CrossRef]
- Goldstein, B.P. Resistance to rifampicin: A review. J. Antibiot. 2014, 67, 625–630. [Google Scholar] [CrossRef] [Green Version]
- August, P.R.; Tang, L.; Yoon, Y.J.; Ning, S.; Müller, R.; Yu, T.-W.; Taylor, M.; Hoffmann, D.; Kim, C.-G.; Zhang, X.; et al. Biosynthesis of the ansamycin antibiotic rifamycin: Deductions from the molecular analysis of the rif biosynthetic gene cluster of Amycolatopsis mediterranei S699. Chem. Biol. 1998, 5, 69–79. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Yoon, Y.J.; Choi, C.-Y.; Hutchinson, C.R. Characterization of the enzymatic domains of in the modular polyketide synthase involved in rifamycin B biosynthesis by Amycolatopsis mediterranei. Gene 1998, 216, 255–265. [Google Scholar] [CrossRef]
- Schupp, T.; Toupet, C.; Engel, N.; Goff, S. Cloning and sequence analysis of the putative rifamycin polyketide synthase gene cluster from Amycolatopsis mediterranei. FEMS Microbiol. Lett. 1998, 159, 201–207. [Google Scholar] [CrossRef]
- Floss, H.G.; Yu, T.-W. Lessons from the rifamycin biosynthetic gene cluster. Curr. Opin. Chem. Biol. 1999, 3, 592–597. [Google Scholar] [CrossRef]
- Floss, H.G.; Yu, T.-W. Rifamycin-Mode of Action, Resistance, and Biosynthesis. Chem. Rev. 2005, 105, 621–632. [Google Scholar] [CrossRef]
- Xu, J.; Wan, E.; Kim, C.-J.; Floss, H.G.; Mahmud, T. Identification of tailoring genes involved in the modification of the polyketide backbone of rifamycin B by Amycolatopsis mediterranei S699. Microbiology 2005, 151, 2515–2528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bierman, M.; Logan, R.; O’Brien, K.; Seno, E.; Rao, R.N.; Schoner, B. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 1992, 116, 43–49. [Google Scholar] [CrossRef]
- Hu, Z.; Hunziker, D.; Hutchinson, C.R.; Khosla, C. A host–vector system for analysis and manipulation of rifamycin polyketide biosynthesis in Amycolatopsis mediterranei. Microbiology 1999, 145, 2335–2341. [Google Scholar] [CrossRef] [Green Version]
- Gibson, D.G.; Young, L.; Chuang, R.Y.; Venter, J.C.; Hutchison, C.A., 3rd; Smith, H.O. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 2009, 6, 343–345. [Google Scholar] [CrossRef] [PubMed]
- Raahave, D. Paper Disk-Agar Diffusion Assay of Penicillin in the Presence of Streptomycin. Antimicrob. Agents Chemother. 1974, 6, 603–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arendrup, M.C.; Prakash, A.; Meletiadis, J.; Sharma, C.; Chowdhary, A. Comparison of EUCAST and CLSI reference micro-dilution MICs of eight antifungal compounds for Candida auris and associated tentative epidemiological cutoff values. Anti-microb. Agents Chemother. 2017, 61, e00485-17. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Zhou, Q.; Ge, C.; Yang, J.; Li, H.; Chen, T.; Xie, H.; Cui, Y.; Shao, M.; Li, J.; et al. Rpn10 promotes tumor progression by regulating hypoxia-inducible factor 1 alpha through the PTEN/Akt signaling pathway in hepatocellular carcinoma. Cancer Lett. 2019, 447, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ye, F.; Shi, Y.; Zhao, S.; Li, Z.; Wang, H.; Lu, C.; Shen, Y. 8-Deoxy-rifamycin derivatives from Amycolatopsis mediterranei S699 ΔrifT strain. Biomolecules 2020, 10, 1265. [Google Scholar] [CrossRef] [PubMed]
- Stratmann, A.; Schupp, T.; Toupet, C.; Schilling, W.; Oberer, L.; Traber, R. New Insights into Rifamycin B Biosynthesis: Isolation of Proansamycin B and 34a-Deoxy-rifamycin W as Early Macrocyclic Intermediates Indicating Two Separated Biosynthetic Pathways. J. Antibiot. 2002, 55, 396–406. [Google Scholar] [CrossRef]
- Ghisalba, O.; Traxler, P.; Fuhrer, H.; Richter, W.J. Early intermediates in the biosynthesis of ansamycins. III. Isolation and identification of further 8-deoxyansamycins of the rifamycin-type. J. Antibiot. 1980, 33, 847–856. [Google Scholar] [CrossRef] [Green Version]
- Richard, J.W.; Edoardo, M.; Giancarlo, L. Ansamycin biogenesis: Studies on a novel rifamycin isolated from a mutant strain of Nocardia mediterranei. Proc. Natl. Acad. Sci. USA 1974, 71, 3260–3264. [Google Scholar] [CrossRef] [Green Version]
- Cricchio, R.; Antonini, P.; Ferrari, P.; Ripamonti, A.; Tuan, G.; Martinelli, E. Rifamycin Z, a novel ansamycin from a mutant of Nocardia mediterranea. J. Antibiot. 1981, 34, 1257–1260. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Zhang, J.; Tian, X.; Wu, X.; Li, T.; Lu, C.; Shen, Y. Isolation of 11,12-seco-Rifamycin W Derivatives Reveals a Cleavage Pattern of the Rifamycin Ansa Chain. Org. Lett. 2019, 21, 900–903. [Google Scholar] [CrossRef] [PubMed]
- Traxler, P.; Schupp, T.; Fuhrer, H.; Richter, W.J. 3-Hydroxyrifamycin S and further novel ansamycins from a recombinant strain R-21 of Nocardia mediterranei. J. Antibiot. 1981, 34, 971–979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghisalba, O.; Traxler, P.; Nuesch, J. Early intermediates in the biosynthesis of ansamycins. I. Isolation and identification of protorifamycin I. J. Antibiot. 1978, 31, 1124–1131. [Google Scholar] [CrossRef]
- Stratmann, A.; Toupet, C.; Schilling, W.; Traber, R.; Oberer, L.; Schupp, T. Intermediates of rifamycin polyketide synthase produced by an Amycolatopsis mediterranei mutant with inactivated rifF gene. Microbiology 1999, 145, 3365–3375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, T.-W.; Shen, Y.; Doi-Katayama, Y.; Tang, L.; Park, C.; Moore, B.; Hutchinson, C.R.; Floss, H.G. Direct evidence that the rifamycin polyketide synthase assembles polyketide chains processively. Proc. Natl. Acad. Sci. USA 1999, 96, 9051–9056. [Google Scholar] [CrossRef] [Green Version]
- Mejía, A.; Luna, D.; Fernández, F.J.; Barrios-González, J.; Gutierrez, L.H.; Reyes, A.G.; Absalón, A.E.; Kelly, S. Improving rifamycin production in Amycolatopsis mediterranei by expressing a Vitreoscilla hemoglobin (vhb) gene fused to a cytochrome P450 monooxygenase domain. 3 Biotech 2018, 8, 456. [Google Scholar] [CrossRef] [PubMed]
- Ghisalba, O.; Traxler, P.; Fuhrer, H.; Richter, W.J. Early intermediates in the biosynthesis of ansamycins. II. Isolation and identification of proansamycin B-M1 and protorifamycin I-M1. J. Antibiot. 1979, 32, 1267–1272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Lu, C.; Ou, J.; Deng, J.; Shen, Y. Overexpression of hgc1 increases the production and diversity of hygrocins in Streptomyces sp. LZ35. RSC Adv. 2015, 5, 83843–83846. [Google Scholar] [CrossRef]
- Zhao, G.; Li, S.; Guo, Z.; Sun, M.; Lu, C. Overexpression of div8 increases the production and diversity of divergolides in Streptomyces sp. W112. RSC Adv. 2015, 5, 98209–98214. [Google Scholar] [CrossRef]
- Wang, J.; Li, W.; Wang, H.; Lu, C. Pentaketide Ansamycin Microansamycins A–I from Micromonospora sp. Reveal Diverse Post-PKS Modifications. Org. Lett. 2018, 20, 1058–1061. [Google Scholar] [CrossRef] [PubMed]
Position | 1 | 2 | 3 | |||
---|---|---|---|---|---|---|
1a | 1b | 2a | 2b | 3a | 3b | |
3 | 7.64 (s) | 7.64 (s) | 7.64 (s) | 7.64 (s) | 7.61 (s) | 7.61 (s) |
5 | 7.18 (s) | 7.18 (s) | 6.99 (s) | 6.99 (s) | 7.02 (s) | 7.02 (s) |
MeO-6 | 4.00 (s) | 4.00 (s) | ||||
13 | 1.89 (s) | 1.87 (s) | 1.90 (s) | 1.88 (s) | 1.90 (s) | 1.88 (s) |
14 | 2.09 (s) | 2.09 (s) | 2.07 (s) | 2.07 (s) | 2.09 (s) | 2.09 (s) |
17 | 6.50 (d, 10.8) | 6.50 (d, 10.8) | 6.64 (d, 11.3) | 6.64 (d, 11.3) | 6.50 (d, 10.8) | 6.50 (d, 10.8) |
18 | 6.87 (dd, 11.2, 14.9) | 6.87 (dd, 11.2, 14.9) | 7.21 (dd, 11.1, 15.0) | 7.21 (dd, 11.1, 15.0) | 6.86 (dd, 12.4, 14.9) | 6.86 (dd, 12.4, 14.9) |
19 | 6.08 (m) | 6.08 (m) | 6.23 (m) | 6.23 (m) | 6.07 (m) | 6.07 (m) |
20 | 2.44 (m) | 2.44 (m) | 2.52 (m) | 2.52 (m) | 2.47 (m) | 2.47 (m) |
21 | 3.82 (m) | 3.82 (m) | 3.84 (d, 8.7) | 3.84 (d, 8.7) | 3.83 (m) | 3.83 (m) |
22 | 2.04 (m) | 2.04 (m) | 1.95 (m) | 1.95 (m) | 1.96 (m) | 1.96 (m) |
23 | 3.62 (m) | 3.62 (m) | 3.64 (m) | 3.64 (m) | 3.62 (m) | 3.62 (m) |
24 | 1.98 (m) | 1.98 (m) | 2.03 (m) | 2.03 (m) | 2.02 (m) | 2.02 (m) |
25 | 3.55 (m) | 4.21 (d, 10.4) | 3.56 (m) | 4.22 (d, 10.3) | 3.56 (m) | 4.21 (m) |
26 | 1.59 (m) | 1.63 (m) | 1.60 (m) | 1.62 (m) | 1.60 (m) | 1.61 (m) |
27 | 3.18 (t, 9.8) | 3.55 (m) | 3.20 (t, 9.8) | 3.56 (m) | 3.17 (m) | 3.56 (m) |
28 | 2.42 (m) | 2.64 (td, 3.5, 10.0) | 2.47 (m) | 2.65 (td, 3.5, 10.2) | 2.42 (m) | 2.61 (m) |
29 | 6.62 (d, 10.7) | 6.79 (d, 10.1) | 6.61 (d, 11.3) | 6.80 (d, 10.0) | 6.62 (d, 10.7) | 6.78 (d, 10.1) |
30 | 2.08 (s) | 2.08 (s) | 4.34/4.33 (s) | 4.34/4.33 (s) | 2.08 (s) | 2.08 (s) |
31 | 1.02 (s) | 1.02 (s) | 1.03 (d, 7.0) | 1.03 (d, 7.0) | 1.02 (s) | 1.02 (s) |
32 | 1.00 (s) | 1.00 (s) | 1.01 (d, 7.1) | 1.01 (d, 7.1) | 1.00 (s) | 1.00 (s) |
33 | 0.98 (s) | 0.98 (s) | 0.98 (d, 6.7) | 0.98 (d, 6.7) | 0.98 (s) | 0.98 (s) |
34 | 0.96 (s) | 0.96 (s) | 0.97 (d, 6.9) | 0.97 (d, 6.9) | 0.96 (s) | 0.96 (s) |
34a | 4.54 (d, 8.4) | 5.08 (d, 3.2) | 4.56 (d, 6.9) | 5.09 (d, 3.3) | 4.54 (d, 6.9) | 5.08 (d, 3.3) |
Position | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |||
---|---|---|---|---|---|---|---|---|---|---|
1a | 1b | 2a | 2b | 3a | 3b | |||||
1 | 184.7s | 184.7s | 184.1s | 184.1s | 184.1s | 184.1s | 183.7s | 184.1s | 184.0s | 184.7s |
2 | 143.0s | 143.0s | 143.2s | 143.2s | 142.4s | 142.4s | 142.7s | 142.4s | 142.4s | 143.0s |
3 | 117.3d | 117.3d | 117.2d | 117.2d | 117.2d | 117.2d | 117.2d | 118.6d | 119.1d | 119.2d |
4 | 187.1s | 187.1s | 186.8s | 186.8s | 186.5s | 186.5s | 186.8s | 186.6s | 186.9s | 187.5s |
5 | 103.7d | 103.7d | 108.6d | 108.6d | 108.8d | 108.8d | 108.9d | 108.3s | 108.1s | 108.7s |
6 | 165.9s | 165.9s | 163.9s | 163.9s | 164.0s | 164.0s | 164.0s | 161.8s | 163.6s | 163.1s |
MeO-6 | 57.0q | 57.0q | ||||||||
7 | 120.3s | 120.3s | 118.2s | 118.2s | 118.3s | 118.3s | 118.4s | 119.2s | 119.3s | 119.2s |
8 | 161.7s | 161.7s | 165.0s | 165.0s | 165.2s | 165.2s | 165.6s | 164.0s | 164.0s | 164.7s |
9 | 131.7s | 131.7s | 130.6s | 130.6s | 131.1s | 131.1s | 126.1s | 125.5s | 124.7s | 126.0s |
10 | 132.6s | 132.6s | 132.3s | 132.3s | 132.4s | 132.4s | 132.4s | 129.9s | 130.8s | 130.9s |
11 | 172.3s | 172.3s | 171.8s | 171.8s | 172.3s | 172.3s | 173.0s | 200.1s | 200.3s | 201.1s |
12 | 133.3s | 132.4s | 133.1s | 131.5s | 132.4s | 131.1s | 131.8s | 141.6s | 142.0s | 142.0s |
13 | 13.9q | 13.3q | 13.9q | 13.3q | 13.9q | 13.3q | 13.9q | 12.7q | 13.0q | 13.4q |
14 | 8.3q | 8.3q | 8.2q | 8.2q | 8.2q | 8.2q | 8.1q | 8.7q | 8.7q | 9.3q |
15 | 170.0s | 170.0s | 169.0s | 169.0s | 170.0s | 170.0s | 170.1s | 172.2s | 172.8s | 172.2s |
16 | 129.3s | 129.3s | 142.6s | 142.6s | 129.4s | 129.4s | 129.5s | 132.2s | 133.1s | 133.4s |
17 | 139.0d | 139.0d | 143.7d | 143.7d | 139.1d | 139.1d | 138.9d | 135.2d | 133.4d | 136.2d |
18 | 127.6d | 127.6d | 128.1d | 128.1d | 127.8d | 127.8d | 127.6d | 126.3d | 127.3d | 136.2d |
19 | 146.3d | 146.3d | 150.1d | 150.1d | 146.4d | 146.4d | 146.5d | 141.6d | 140.7d | 126.1d |
20 | 42.5d | 42.5d | 42.7d | 42.7d | 42.5d | 42.5d | 42.5d | 39.2d | 43.4d | 77.0s |
21 | 75.8d | 75.8d | 75.8d | 75.8d | 75.8d | 75.8d | 75.8d | 74.9d | 78.3d | 76.7d |
22 | 36.6d | 36.6d | 36.7d | 36.7d | 36.5d | 36.5d | 36.9d | 34.4d | 49.7d | 35.3d |
23 | 78.5d | 78.5d | 78.5d | 78.5d | 78.5d | 78.5d | 79.3 d | 79.0d | 211.3s | 80.8d |
24 | 37.0d | 37.0d | 37.1d | 37.1d | 37.0d | 37.0d | 36.7d | 38.0d | 49.9d | 39.0d |
25 | 73.4d | 72.8d | 73.3d | 72.8d | 73.4d | 72.7d | 73.3d | 71.3d | 71.2d | 72.3d |
26 | 40.3d | 41.3d | 40.3d | 41.3d | 40.4d | 41.3d | 40.9d | 43.9d | 42.7d | 44.6d |
27 | 77.5d | 73.4d | 77.1d | 73.3d | 77.1d | 73.4d | 72.1d | 68.7d | 68.3d | 70.0d |
28 | 53.9d | 50.7d | 53.9d | 50.7d | 53.9d | 50.7d | 47.0d | 46.1d | 49.3d | 49.1d |
29 | 141.0d | 142.4d | 141.2d | 142.7d | 141.1d | 142.4d | 142.7d | 139.0d | 140.2d | 141.5d |
30 | 20.7q | 20.7q | 66.0t | 66.0t | 20.7q | 20.7q | 20.7q | 20.3q | 20.4q | 21.0q |
31 | 17.3q | 17.3q | 17.2q | 17.2q | 17.2q | 17.2q | 17.5q | 18.2q | 20.2q | 26.7q |
32 | 11.2q | 11.2q | 11.2q | 11.2q | 11.2q | 11.2q | 10.5q | 11.3q | 14.8q | 14.6q |
33 | 10.5q | 10.5q | 10.7q | 10.7q | 10.9q | 10.9q | 10.7q | 8.9q | 8.4q | 9.8q |
34 | 12.9q | 12.9q | 12.8q | 12.8q | 12.8q | 12.8q | 10.8q | 11.8q | 11.9q | 12.4q |
34a | 98.2d | 94.5d | 98.0d | 94.6d | 98.0d | 94.5d | 64.6t | 65.8t | 64.4t | 65.1t |
AcO-34a | 21.0q 172.9s |
Position | 4 | 5 | 6 | 7 |
---|---|---|---|---|
3 | 7.65 (s) | 7.57 (s) | 7.56 (s) | 7.57 (s) |
5 | 7.07 (s) | |||
13 | 1.89 (s) | 2.08 (s) | 2.04 (s) | 2.06 (d, 1.0) |
14 | 2.12 (s) | 2.18 (s) | 2.17 (s) | 2.17 (s) |
17 | 6.53 (t, 14.3) | 6.25 (d, 10.8) | 6.24 (d, 10.8) | 6.26 (dd, 0.8, 10.9) |
18 | 6.84 (dd, 10.9, 14.3) | 6.51 (dd, 11.0, 15.8) | 6.09 (dd, 11.0, 15.1) | 5.96 (d, 16.0) |
19 | 6.08 (dd, 8.2, 15.0) | 6.09 (dd, 6.6, 15.9) | 5.85 (dd, 9.6, 15.2) | 6.47 (dd, 10.9, 15.9) |
20 | 2.45 (m) | 2.36 (m) | 1.89 (m) | |
21 | 3.82 (d, 8.8) | 4.03 (m) | 3.61 (dd, 1.5, 9.2) | 3.95 (d, 1.2) |
22 | 1.90 (m) | 1.87 (m) | 2.86 (dd, 6.8, 9.2) | 2.01 (m) |
23 | 3.60 (m) | 3.48 (d, 10.2) | 3.42 (q, 2.7, 9.4) | |
24 | 1.84 (m) | 1.80 (m) | 2.52 (m) | 1.72 (m) |
25 | 4.05 (d, 9.7) | 3.98 (m) | 3.87 (d, 10.2) | 3.94 (dd, 1.9, 10.6) |
26 | 1.80 (m) | 1.43 (m) | 1.35 (m) | 1.40 (m) |
27 | 4.13 (d, 5.5) | 4.31 (s) | 4.43 (s) | 4.37 (br s) |
28 | 2.82 (m) | 2.89 (m) | 2.58 (m) | 2.65 (q, 7.1, 16.0) |
29 | 6.91 (d, 10.4) | 6.30 (d, 9.3) | 6.28 (d, 9.1) | 6.35 (dd, 1.0, 9.5) |
30 | 2.09 (s) | 2.09 (s) | 2.05 (s) | 2.10 (s) |
31 | 1.00 (d, 6.8) | 0.91 (d, 6.9) | 1.06 (d, 3.1) | 1.21 (s) |
32 | 0.90 (d, 6.8) | 1.05 (d, 7.0) | 1.05 (d, 3.2) | 1.17 (d, 7.0) |
33 | 0.96 (d, 6.8) | 0.72 (d, 6.8) | 1.12 (d, 7.4) | 0.74 (d, 6.8) |
34 | 0.83 (d, 6.8) | 0.40 (d, 7.0) | 0.41 (d, 7.0) | 0.41 (d, 7.0) |
34a | 3.62 (m) 3.54 (m) | 4.01 (m) 4.00 (m) | 3.52 (dd, 8.6, 10.9) 3.38 (dd, 6.1, 11.0) | 3.40 (m) 3.58 (dd, 8.0, 10.9) |
AcO-34a | 2.03 (s) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Ye, F.; Song, Y.; Zhang, X.; Lu, C.; Shen, Y. Rifamycin W Analogues from Amycolatopsis mediterranei S699 Δrif-orf5 Strain. Biomolecules 2021, 11, 920. https://doi.org/10.3390/biom11070920
Shi Y, Ye F, Song Y, Zhang X, Lu C, Shen Y. Rifamycin W Analogues from Amycolatopsis mediterranei S699 Δrif-orf5 Strain. Biomolecules. 2021; 11(7):920. https://doi.org/10.3390/biom11070920
Chicago/Turabian StyleShi, Yanrong, Feng Ye, Yuliang Song, Xiaochun Zhang, Chunhua Lu, and Yuemao Shen. 2021. "Rifamycin W Analogues from Amycolatopsis mediterranei S699 Δrif-orf5 Strain" Biomolecules 11, no. 7: 920. https://doi.org/10.3390/biom11070920
APA StyleShi, Y., Ye, F., Song, Y., Zhang, X., Lu, C., & Shen, Y. (2021). Rifamycin W Analogues from Amycolatopsis mediterranei S699 Δrif-orf5 Strain. Biomolecules, 11(7), 920. https://doi.org/10.3390/biom11070920