The Influence of Biomolecule Composition on Colloidal Beer Structure
Abstract
:1. Introduction
2. The Beer’s “Head” Biomolecules
2.1. The Effect of Proteins on Foaming
2.2. The Ligand Compounds of Proteins Involved in Foaming
3. The Beer’s “Body” Biomolecules
3.1. The Beer’s “Body” Proteins
3.2. The Carbohydrates “Body” Profile
3.3. The Polyphenol Beer’s “Body” Profiles
3.4. The Profiles of Other Beers’ “Body” Compounds
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Humia, B.V.; Santos, K.S.; Barbosa, A.M.; Sawata, M.; Mendonça, M.; Padilha, F.F. Beer molecules and its sensory and biological properties: A review. Molecules 2019, 24, 1568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wannenmacher, J.; Gastl, M.; Becker, T. Phenolic substances in beer: Structural diversity, reactive potential and relevance for brewing process and beer quality. CRFSFS 2018, 17, 953–988. [Google Scholar] [CrossRef] [Green Version]
- Rehmanji, M.; Gopal, C.; Mola, A. Beer stabilization technology—Clearly a matter of choice. MBAA TQ 2015, 42, 332–338. [Google Scholar]
- Vilela, A.; Cosme, F.; Pinto, T. The colloidal state and the micro-science in the beverage industry: Emulsions, foams, and suspensions. In Prime Archives in Chemistry; Lakem, A.E., Ed.; Vide Leaf: Hyderabad, India, 2020. [Google Scholar]
- Eagland, D. The colloidal state. Contemp. Phys. 1973, 14, 119–148. [Google Scholar] [CrossRef]
- Petrucci, R.; William, H.; Herring, F.; Madura, J. General Chemistry: Principles and Modern Applications, 9th ed.; Pearson: London, UK, 2007. [Google Scholar]
- Young, R.O. Colloids and colloidal systems in human health and nutrition. Int. J. Complement. Alt. Med. 2016, 3, 00095. [Google Scholar] [CrossRef]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Chemical composition of alcoholic beverages, additives and contaminants. In Alcohol Drinking; IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 44; International Agency for Research on Cancer: Lyon, France, 1988. Available online: https://www.ncbi.nlm.nih.gov/books/NBK531662 (accessed on 20 November 2021).
- Zhang, N.; Yang, D.; Wang, D.; Miao, Y.; Shao, J.; Zhou, X.; Xu, Z.; Li, Q.; Feng, H.; Li, S.; et al. Whole transcriptomic analysis of the plant-beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 during enhanced biofilm formation regulated by maize root exudates. BMC Genom. 2015, 16, 685. [Google Scholar] [CrossRef] [Green Version]
- Lukinac, J.; Mastanjević, K.; Mastanjević, K.; Nakov, G.; Jukić, M. Computer vision method in beer quality evaluation—A review. Beverages 2019, 5, 38. [Google Scholar] [CrossRef] [Green Version]
- Blanco, L.; Vinas, M.; Villa, T.G. Proteins influencing foam formation in wine and beer: The role of yeast. Int. Biol. 2011, 14, 61–71. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, I.M.; Jorge, K.; Nogueira, L.C.; Silva, F.; Trugo, L.C. Effects of the combination of hydrophobic polypeptides, iso-alpha acids, and malto-oligosaccharides on beer foam stability. J. Agric. Food Chem. 2005, 53, 4976–4981. [Google Scholar] [CrossRef]
- Evans, E.; Bamforth, C.W. Beer foam, achieving a suitable head. In Beer: A Quality Perspective; Bamforth, C.W., Ed.; Academic Press: Burlington, MA, USA, 2009; pp. 7–66. [Google Scholar]
- Sorensen, S.B.; Bech, L.M.; Muldbjerb, M.; Beenfeldt, T.; Breddam, K. Barley lipid transfer protein 1 is involved in beer foam formation. Tech. Quart. Master Brew. Ass. Am. 1993, 30, 136–145. [Google Scholar]
- Leiper, K.A.; Miedl, M. Colloidal stability of beer. In Handbook of Alcoholic Beverages Series, Beer: A Quality Perspective; Bamforth, C.W., Russell, I., Stewart, G., Eds.; Elsevier Ltd.: San Diego, CA, USA, 2009; pp. 111–161. [Google Scholar] [CrossRef]
- Hao, J.; Li, Q.; Dong, J.; Yu, J.; Gu, G.; Fan, W.; Chen, J. Identification of the major proteins in beer foam by mass spectrometry following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J. Am. Soc. Brew. Chem. 2006, 64, 166–174. [Google Scholar] [CrossRef]
- Wu, G.; Robertson, A.J.; Liu, X.; Zheng, P.; Wilen, R.W.; Nesbitt, N.T.; Gusta, L.V. A lipid transfer protein gene BG-14 is differentially regulated by abiotic stress, ABA, anisomycin and sphingosine in bromegrass (Bromus inermis). J. Plant Physiol. 2004, 161, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Burns, J.K. Isolation and characterization of a cDNA encoding a lipid transfer protein expressed in ‘Valencia’ orange during abscission. J. Exp. Bot. 2003, 54, 1183–1191. [Google Scholar] [CrossRef] [Green Version]
- Kirubakaran, S.I.; Begum, S.M.; Ulaganathan, K.; Sakthivel, N. Characterization of a new antifungal lipid transfer protein from wheat. Plant Physiol. Biochem. 2008, 46, 918–927. [Google Scholar] [CrossRef]
- Yang, X.; Wang, X.; Li, X.; Zhang, B.; Xiao, Y.; Li, D.; Xie, C.; Pei, Y. Characterization and expression of an nsLTPs-like antimicrobial protein gene from motherwort (Leonurus japonicus). Plant Cell Rep. 2008, 27, 759–766. [Google Scholar] [CrossRef] [PubMed]
- Thoma, S.; Kaneko, Y.; Somerville, C. A non-specific lipid transfer protein from Arabidopsis is a cell wall protein. Plant J. 1993, 3, 427–436. [Google Scholar] [CrossRef]
- Pyee, J.; Yu, H.; Kolattukudy, P.E. Identification of a lipid transfer protein as the major protein in the surface wax of broccoli (Brassica oleracea) leaves. Arch. Biochem. Biophys. 1994, 311, 460–468. [Google Scholar] [CrossRef]
- Park, S.Y.; Jauh, G.Y.; Mollet, J.C.; Eckard, K.J.; Nothnagel, E.A.; Walling, L.L.; Lord, E.M. A lipid transfer-like protein is necessary for lily pollen tube adhesion to an in vitro stylar matrix. Plant Cell 2000, 12, 151–164. [Google Scholar] [CrossRef]
- Debono, A.; Yeats, T.H.; Rose, J.K.; Bird, D.; Jetter, R.; Kunst, L.; Samuels, L. Arabidopsis LTPG is a glycosylphosphatidylinositol-anchored lipid transfer protein required for export of lipids to the plant surface. Plant Cell 2009, 21, 1230–1238. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.B.; Go, Y.S.; Bae, H.J.; Park, J.H.; Cho, S.H.; Cho, H.J.; Lee, D.S.; Park, O.K.; Hwang, I.; Suh, M.C. Disruption of glycosylphosphatidylinositol-anchored lipid transfer protein gene altered cuticular lipid composition, increased plastoglobules, and enhanced susceptibility to infection by the fungal pathogen Alternaria brassicicola. Plant Physiol. 2009, 150, 42–54. [Google Scholar] [CrossRef] [Green Version]
- Edstam, M.M.; Laurila, M.; Hoglund, A.; Raman, A.; Dahlstrom, K.M.; Salminen, T.A.; Edqvist, J.; Blomqvist, K. Characterization of the GPI-anchored lipid transfer proteins in the moss Physcomitrella patens. Plant Physiol. Biochem. 2014, 75, 55–69. [Google Scholar] [CrossRef]
- Tsuboi, S.; Osafune, T.; Tsugeki, R.; Nishimura, M.; Yamada, M. Nonspecific lipid transfer protein in castor bean cotyledon cells: Subcellular localization and a possible role in lipid metabolism. J. Biochem. 1992, 111, 500–508. [Google Scholar] [CrossRef]
- Carvalho, A.O.; Gomes, V.M. Role of plant lipid transfer proteins in plant cell physiology—A concise review. Peptides 2007, 28, 1144–1153. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.O.; Machado, O.L.T.; Da Cunha, M.; Santos, I.S.; Gomes, V.M. Antimicrobial peptides and immunolocalization of a LTP in Vigna unguiculata seeds. Plant Physiol. Biochem. 2001, 39, 137–146. [Google Scholar] [CrossRef]
- Carvalho, A.O.; Souza-Filho, G.A.; Ferreira, B.S.; Branco, A.T.; Araujo, I.S.; Fernandes, K.V.; Retamal, C.A.; Gomes, V.M. Cloning and characterization of a cowpea seed lipid transfer protein cDNA: Expression analysis during seed development and under fungal and cold stresses in seedlings’ tissues. Plant Physiol. Biochem. 2006, 44, 732–742. [Google Scholar] [CrossRef] [PubMed]
- Kielbowicz-Matuk, A.; Rey, P.; Rorat, T. The organ-dependent abundance of a Solanum lipid transfer protein is up-regulated upon osmotic constraints and associated with cold acclimation ability. J. Exp. Bot. 2008, 59, 2191–2203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pagnussat, L.; Burbach, C.; Baluška, F.; De la Canal, L. An extracellular lipid transfer protein is relocalized intracellularly during seed germination. J. Exp. Bot. 2012, 63, 6555–6563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pagnussat, L.A.; Lombardo, C.; Regente, M.; Pinedo, M.; Martín, M.; De la Canal, L. Unexpected localization of a lipid transfer protein in germinating sunflower seeds. J. Plant Physiol. 2009, 166, 797–806. [Google Scholar] [CrossRef]
- Diz, M.S.; Carvalho, A.O.; Ribeiro, S.F.; Da Cunha, M.; Beltramini, L.; Rodrigues, R.; Nascimento, V.V.; Machado, O.L.; Gomes, V.M. Characterisation, immunolocalisation and antifungal activity of a lipid transfer protein from chili pepper (Capsicum annuum) seeds with novel alpha-amylase inhibitory properties. Physiol. Plant 2011, 142, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhang, X.; Lu, C.; Zeng, X.; Li, Y.; Fu, D.; Wu, G. Non-specific lipid transfer proteins in plants: Presenting new advances and an integrated functional analysis. J. Exp. Bot. 2015, 66, 5663–5681. [Google Scholar] [CrossRef] [Green Version]
- Edstam, M.M.; Viitanen, L.; Salminen, T.A.; Edqvist, J. Evolutionary history of the non-specific lipid transfer proteins. Mol. Plant 2011, 4, 947–964. [Google Scholar] [CrossRef] [Green Version]
- Edstam, M.M.; Blomqvist, K.; Eklo, F.A.; Wennergren, U.; Edqvist, J. Coexpression patterns indicate that GPI-anchored non-specific lipid transfer proteins are involved in accumulation of cuticular wax, suberin and sporopollenin. Plant Mol. Biol. 2013, 83, 625–649. [Google Scholar] [CrossRef]
- Boutrot, F.; Chantret, N.; Gautier, M.F. Genome-wide analysis of the rice and Arabidopsis non-specific lipid transfer protein (nsLtp) gene families and identification of wheat nsLtp genes by EST data mining. BMC Genom. 2008, 9, 86. [Google Scholar] [CrossRef] [Green Version]
- Egger, M.; Hauser, M.; Mari, A.; Ferreira, F.; Gadermaier, G. The role of lipid transfer proteins in allergic diseases. Curr. Allergy Asthma Rep. 2010, 10, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Skypala, I.J.; Cecchi, L.; Shamji, M.H.; Scala, E.; Till, S. Lipid transfer protein allergy in the United Kingdom: Characterization and comparison with a matched Italian cohort. Allergy 2019, 74, 1340–1351. [Google Scholar] [CrossRef] [Green Version]
- Rizzi, A.; Chini, R.; Inchingolo, R.; Carusi, V.; Pandolfi, F.; Gasbarrini, A.; Nucera, E. Nickel allergy in lipid transfer protein sensitized patients: Prevalence and clinical features. Int. J. Immunopathol. Pharmacol. 2020, 34, 2058738420974895. [Google Scholar] [CrossRef]
- Azofra, J.; Berroa, F.; Gastaminza, G.; Saiz, N.; Gamboa, P.M.; Vela, C.; García, B.E.; Lizarza, S.; Echenagusia, M.A.; Joral, A.; et al. Lipid transfer protein syndrome in a non-Mediterranean area. Int. Arch. Allergy Immunol. 2016, 169, 181–188. [Google Scholar] [CrossRef]
- Scheurer, S.; Van Ree, R.; Vieths, S. The role of lipid transfer proteins as food and pollen allergens outside the Mediterranean area. Curr. Allergy Asthma Rep. 2021, 21, 7. [Google Scholar] [CrossRef]
- Odintsova, T.I.; Slezina, M.P.; Istomina, E.A.; Korostyleva, T.V.; Kovtun, A.S.; Kasianov, A.S.; Shcherbakova, L.A.; Kudryavtsev, A.M. Non-specific lipid transfer proteins in Triticum kiharae Dorof. et Migush.: Identification, characterization and expression profiling in response to pathogens and resistance inducers. Pathogens 2019, 8, 221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duo, J.; Xiong, H.; Wu, X. Genome-wide identification and expression profile under abiotic stress of the barley non-specific lipid transfer protein gene family and its Qingke Orthologues. BMC Genom. 2021, 22, 674. [Google Scholar] [CrossRef] [PubMed]
- Salminen, T.A.; Blomqvist, K.; Edqvist, J. Lipid transfer proteins: Classification, nomenclature, structure, and function. Planta 2016, 244, 971–997. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.Y.; Min, K.; Cha, H.; Shin, D.H.; Hwang, K.Y.; Suh, S.W. Rice non-specific lipid transfer protein: The 1.6 A crystal structure in the unliganded state reveals a small hydrophobic cavity. J. Mol. Biol. 1998, 276, 437–448. [Google Scholar] [CrossRef]
- Smith, L.J.; Roby, Y.; Allison, J.R.; Van Gunsteren, W.F. Molecular dynamics simulations of barley and maize lipid transfer proteins show different ligand binding preferences in agreement with experimental data. Biochemistry 2013, 52, 5029–5038. [Google Scholar] [CrossRef]
- Finkina, E.I.; Melnikova, D.N.; Bogdanov, I.V.; Ovchinnikova, T.V. Lipid transfer proteins as components of the plant innate immune system: Structure, functions, and applications. Acta Naturae 2016, 8, 47–61. [Google Scholar] [CrossRef]
- Neugrodda, C.; Gastl, M.; Becker, T. Protein profile characterization of hop (Humulus Lupulus L.) varieties. J. Am. Soc. Brew. Chem. 2014, 72, 184–191. [Google Scholar] [CrossRef]
- Lu, Y.; Bergenståhl, B.; Nilsson, L. Interfacial properties and interaction between beer wort protein fractions and iso-humulone. Food Hydrocoll. 2020, 103, 105648. [Google Scholar] [CrossRef]
- Eriksen, R.L.; Padgitt-Cobb, L.K.; Townsend, M.S. Gene expression for secondary metabolite biosynthesis in hop (Humulus lupulus L.) leaf lupulin glands exposed to heat and low-water stress. Sci. Rep. 2021, 11, 5138. [Google Scholar] [CrossRef]
- Champagne, A.; Boutry, M.A. Comprehensive proteome map of glandular trichomes of hop (Humulus lupulus L.) female cones: Identification of biosynthetic pathways of the major terpenoid-related compounds and possible transport proteins. Proteomics 2017, 17, 1600411. [Google Scholar] [CrossRef] [PubMed]
- Hong, K.; Wang, L.; Johnpaul, A.; Lv, C.; Ma, C. Key enzymes involved in the synthesis of hops phytochemical compounds: From structure, functions to applications. Int. J. Mol. Sci. 2021, 22, 9373. [Google Scholar] [CrossRef] [PubMed]
- Neudecker, P.; Schweimer, K.; Nerkamp, J.; Scheurer, S.; Vieths, S.; Sticht, H.; Rosch, P. Allergic cross-reactivity made visible. J. Biol. Chem. 2001, 276, 22756–22763. [Google Scholar] [CrossRef] [Green Version]
- Mogensen, J.E.; Wimmer, R.; Larsen, J.N.; Spangfort, M.D.; Otzen, D.E. The major birch allergen, Bet v 1, shows affinity for a broad spectrum of physiological ligands. J. Biol. Chem. 2002, 277, 23684–23692. [Google Scholar] [CrossRef] [Green Version]
- Niu, C.; Han, Y.; Wang, J.; Zheng, F.; Liu, C.; Li, Y.; Li, Q. Comparative analysis of the effect of protein Z4 from barley malt and recombinant Pichia pastoris on beer foam stability: Role of N-glycosylation and glycation. Int. J. Biol. Macromol. 2018, 106, 241–247. [Google Scholar] [CrossRef]
- Iimure, T.; Kihara, M.; Ichikawa, S.; Ito, K.; Takeda, K.; Sato, K. Development of DNA markers associated with beer foam stability for barley breeding. Theor. Appl. Genet. 2011, 122, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Evans, D.E.; Sheehan, M.C.; Stewart, D.C. The impact of malt derived proteins on beer foam quality. Part II: The influence of malt foam-positive proteins and non-starch polysaccharides on beer foam quality. J. Inst. Brew. 1999, 105, 171–177. [Google Scholar] [CrossRef]
- Bamforth, C.W. The relative significance of physics and chemistry for beer foam excellence: Theory and practice. J. Inst. Brew. 2014, 110, 259–266. [Google Scholar] [CrossRef]
- Iimure, T.; Nankaku, N.; Watanabe-Sugimoto, M.; Hirota, N.; Tiansu, Z.; Makoto, K.; Hayashi, K.; Ito, K.; Sato, K. Identification of novel haze-active beer proteins by proteome analysis. J. Cereal Sci. 2009, 49, 141–147. [Google Scholar] [CrossRef]
- Zheng, Y.; Du, J.; Li, M. Haze-active protein and turbidity in commercial barley and wheat beers at different storage temperatures. Int. Food Res. J. 2020, 27, 295–307. [Google Scholar]
- Klose, C.; Thiele, F.; Arendt, E.K. Changes in the protein profile of oats and barley during brewing and fermentation. J. Am. Soc. Brew. Chem. 2010, 68, 119–124. [Google Scholar] [CrossRef]
- Niu, C.; Han, Y.; Wang, J.; Zheng, F.; Liu, C.; Li, Y.; Li, Q. Malt derived proteins: Effect of protein Z on beer foam stability. Food Biosci. 2018, 25, 21–27. [Google Scholar] [CrossRef]
- Curioni, A.; Pressi, G.; Furegon, L.; Peruffo, A.D.B. Major proteins of beer and their precursors in barley: Electrophoretic and immunological studies. J. Agric. Food Chem. 2005, 43, 2620–2626. [Google Scholar] [CrossRef]
- Tanaka, Y.; Kohler, J.J. Photoactivatable crosslinking sugars for capturing glycoprotein interactions. J. Am. Chem. Soc. 2008, 130, 3278–3279. [Google Scholar] [CrossRef]
- Yokoi, S.; Tsugita, A.; Kamada, K.; Shizuoka, Y. Characterization of major proteins and peptides in beer. J. Am. Soc. Brew. Chem. 1988, 46, 99. [Google Scholar] [CrossRef]
- Sorensen, S.B.; Pedersen, T.G.; Ottensen, M. Fractionation of protein components from beer by density gradient centrifugation. Carlsberg Res. Commun. 1982, 47, 227–231. [Google Scholar] [CrossRef] [Green Version]
- Nemet, I.; Strauch, C.M.; Monnier, V.M. Favored and disfavored pathways of protein crosslinking by glucose: Glucose lysine dimer (GLUCOLD) and crossline versus glucosepane. Amino Acids 2011, 40, 167–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cyran, M.; Izydorczyk, M.S.; Macgregor, A.W. Structural characteristics of water-extractable non-starch polysaccharides from barley malt. Cereal Chem. 2002, 79, 359–366. [Google Scholar] [CrossRef]
- Jin, Y.-L.; Speers, R.A.; Paulson, A.T.; Stewart, R.J. Effects of β-glucans and environmental factors on the viscosities of wort and beer. J. Inst. Brew. 2004, 110, 104–116. [Google Scholar] [CrossRef]
- Voragen, A.G.J.; Schols, H.A.; Marijs, J.; Rombouts, F.M.; Angelino, S.A.G.F. Non-starch polysaccharides from barley: Structural features and breakdown during malting. J. Inst. Brew. 1987, 93, 202–208. [Google Scholar] [CrossRef]
- Izydorczyk, M.S.; Biliaderis, C.G.; Bushuk, W. Physical properties of water-soluble pentosans from different wheat varieties. Cereal Chem. 1991, 68, 145–150. [Google Scholar]
- Habschied, K.; Jože Košir, I.; Krstanović, V.; Kumrić, G.; Mastanjević, K. Beer polyphenols—Bitterness, astringency, and off-flavors. Beverages 2021, 7, 38. [Google Scholar] [CrossRef]
- Goiris, K.; Jaskula-Goiris, B.; Syryn, E.; Van Opstaele, F.; De Rouck, G.; Aerts, G.; De Cooman, L. The flavoring potential of hop polyphenols in beer. J. Am. Soc. Brew. Chem. 2014, 72, 135–142. [Google Scholar] [CrossRef]
- Buanafina, M. Feruloylation in grasses: Current and future perspectives. Mol. Plant 2009, 2, 861–872. [Google Scholar] [CrossRef] [PubMed]
- Carvajal-Millan, E.; Landillon, V.; Morel, M.H.; Rouau, X.; Doublier, J.L.; Micard, V. Arabinoxylan gels: Impact of the feruloylation degree on their structure and properties. Biomacromolecules 2005, 6, 309–317. [Google Scholar] [CrossRef]
- Vansteenkiste, E.; Babot, C.; Rouau, X.; Micard, V. Oxidative gelation of feruloylated arabinoxylan as affected by protein. Influence on protein enzymatic hydrolysis. Food Hydrocoll. 2004, 18, 557–564. [Google Scholar] [CrossRef]
- Li, M.; Du, J.; Han, Y.; Li, J.; Bao, J.; Zhang, K. Non-starch polysaccharides in commercial beers on China market: Mannose polymers content and its correlation with beer physicochemical indices. J. Food Compos. Anal. 2009, 79, 122–127. [Google Scholar] [CrossRef]
- Comino, P.; Collins, H.; Lahnstein, J.; Beahan, C.; Gidley, M.J. Characterisation of soluble and insoluble cell wall fractions from rye, wheat and hull-less barley endosperm flours. Food Hydrocoll. 2014, 41, 219–226. [Google Scholar] [CrossRef] [Green Version]
- Huismann, M.; Gormley, F.; Dzait, D.; Willoughby, N.; Stewart, K.; Speers, R.A.; Maskell, D.L. Unfilterable beer haze part II: Identifying suspect cell wall proteins. J. Am. Soc. Brew. Chem. 2021. [Google Scholar] [CrossRef]
- Krebs, G.; Müller, M.; Becker, T.; Gastl, M. Characterization of the macromolecular and sensory profile of non-alcoholic beers produced with various methods. Food Res. Int. 2019, 116, 508–517. [Google Scholar] [CrossRef]
- Beer, M.U.; Wood, P.J.; Weisz, J. Molecular weight distribution and (1→3)(1→4)-β-D-glucan content of consecutive extracts of various oat and barley cultivars. Cereal Chem. 1997, 74, 476–480. [Google Scholar] [CrossRef]
- Izawa, M.; Kano, Y.; Kamimura, M. β-Glucan responsible for haze formation in beer. Curr. Dev. Malt. Brew. Distill. 1990, 3, 427–430. [Google Scholar]
- Habschied, K.; Lalić, A.; Horvat, D.; Mastanjević, K.; Lukinac, J.; Jukić, M.; Krstanović, V. β-glucan degradation during malting of different purpose barley varieties. Fermentation 2020, 6, 21. [Google Scholar] [CrossRef] [Green Version]
- Poncet-Legrand, C.T.; Doco, T.; Williams, P.; Vernhet, A. Inhibition of grape seed tannin aggregation by wine mannoproteins: Effect of polysaccharide molecular weight. Am. J. Enol. Vitic. 2007, 58, 87–91. [Google Scholar]
- Siebert, K.J.; Carrasco, A.; Lynn, P.Y. Formation of protein polyphenol haze in beverages. J. Agric. Food Chem. 1996, 44, 1997–2005. [Google Scholar] [CrossRef]
- Speers, R.A.; Jin, Y.L.; Paulson, A.T.; Stewart, R.J. Effects of β-glucan, shearing and environmental factors on turbidity of wort and beer. J. Inst. Brew. 2003, 109, 236–244. [Google Scholar] [CrossRef]
- Sadosky, P.; Schwarz, P.; Horsley, R. Effect of arabinoxylans, β-glucans, and dextrins on the viscosity and membrane filterability of a beer model solution. J. Am. Soc. Brew. Chem. 2002, 60, 153–162. [Google Scholar] [CrossRef]
- Langenaeken, N.A.; De Schepper, C.F.; De Schutter, D.P.; Courtin, C.M. Carbohydrate content and structure during malting and brewing: A mass balance study. J. Inst. Brew. 2020, 126, 253–262. [Google Scholar] [CrossRef]
- Curcio, M.; Puoci, F.; Iemma, F.; Parisi, O.I.; Cirillo, G.; Spizzirri, U.G.; Picci, N. Covalent insertion of antioxidant molecules on chitosan by a free radical grafting procedure. J. Agric. Food Chem. 2009, 57, 5933–5938. [Google Scholar]
- Choi, S.J.; Kim, H.J.; Park, K.H.; Moon, T.W. Molecular characteristics of ovalbumin–dextran conjugates formed through the Maillard reaction. Food Chem. 2005, 92, 93–99. [Google Scholar] [CrossRef]
- Lee, D.S.; Je, J.Y. Gallic acid-grafted-chitosan inhibits foodborne pathogens by a membrane damage mechanism. J. Agric. Food Chem. 2013, 61, 6574–6579. [Google Scholar] [CrossRef]
- Liu, F.; Ma, C.; Gao, Y.; McClements, D.J. Food-grade covalent complexes and their application as nutraceutical delivery systems: A review. CRFSFS 2017, 16, 76–95. [Google Scholar] [CrossRef]
- Shepherd, R.; Robertson, A.; Ofman, D. Dairy glycoconjugate emulsifiers: Casein-maltodextrins. Food Hydrocoll. 2000, 14, 281–286. [Google Scholar] [CrossRef]
- Budryn, G.; Rachwal-Rosiak, D. Interactions of hydroxycinnamic acids with proteins and their technological and nutritional implications. Food Rev. Int. 2013, 29, 217–230. [Google Scholar] [CrossRef]
- Bandyopadhyay, P.; Ghosh, A.K.; Ghosh, C. Recent developments on polyphenol–protein interactions: Effects on tea and coffee taste, antioxidant properties and the digestive system. Food Funct. 2012, 3, 592–605. [Google Scholar] [CrossRef]
- Ozdal, T.; Capanoglu, E.; Altay, F. A review on protein-phenolic interactions and associated changes. Food Res. Int. 2013, 51, 954–970. [Google Scholar] [CrossRef]
- Liu, F.; Wang, D.; Sun, C.; McClements, D.J.; Gao, Y. Utilization of interfacial engineering to improve physicochemical stability of β-carotene emulsions: Multilayer coatings formed using protein and protein-polyphenol conjugates. Food Chem. 2016, 205, 129–139. [Google Scholar] [CrossRef]
- Carvalho, D.O.; Curto, A.F.; Guido, L.F. Determination of phenolic content in different barley varieties and corresponding malts by liquid chromatography-diode array detection-electrospray ionization tandem mass spectrometry. Antioxidants 2015, 4, 563–576. [Google Scholar] [CrossRef] [Green Version]
- Lund, M.; Andersen, M. Detection of thiol groups in beer and their correlation with oxidative stability. J. Am. Soc. Brew. Chem. 2011, 69, 163. [Google Scholar] [CrossRef]
- Schad, G.J.; Bollig, B. Fast and simple determination of free amino acids in beer. Chromatography 2015, 1417, 49–56. [Google Scholar] [CrossRef]
- Moura-Nunes, N.; Brito, T.C.; Da Fonseca, N.D.; De Aguiar, P.F.; Monteiro, M.; Perrone, D.; Torres, A.G. Phenolic compounds of Brazilian beers from different types and styles and application of chemometrics for modeling antioxidant capacity. Food Chem. 2016, 199, 105–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.; Hansen, P.E.; Wang, G.; Qiu, L.; Dong, J.; Yin, H.; Qian, Z.; Yang, M. Pharmacological profile of xanthohumol, a prenylated flavonoid from hops (Humulus lupulus). Molecules 2015, 20, 754–779. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Chen, W.; Lu, J.; Zhao, M. Phenolic profiles and antioxidant activities of commercial beers. Food Chem. 2010, 119, 1150–1158. [Google Scholar] [CrossRef]
- Waters, M.T.; Heasman, A.P.; Hughes, P.S. Comparison of (+)-catechin and ferulic acid as natural antioxidants and their impact on beer flavor stability. Part 1: Forced-aging. J. Am. Soc. Brew. Chem. 1997, 55, 83–89. [Google Scholar]
- Neto, O.J.R.; Oliveira, T.S.; Ghedini, P.C.; Vaz, B.G.; Gil, E.S. Antioxidant and vasodilatory activity of commercial beers. J. Funct. Foods 2017, 34, 130–138. [Google Scholar] [CrossRef]
- Davidov-Pardo, G.; Pérez-Ciordia, S.; Marín-Arroyo, M.R.; McClements, D.J. Improving resveratrol bioaccessibility using biopolymer nanoparticles and complexes: Impact of protein-carbohydrate Maillard conjugation. J. Agric. Food Chem. 2015, 63, 3915–3923. [Google Scholar] [CrossRef]
- Kazemi, F.; Morteza Naghib, S.; Zare, Y.; Rhee, K.Y. Biosensing applications of polyaniline (PANI)-based nanocomposites: A review. Polym. Rev. 2021, 61, 553–597. [Google Scholar] [CrossRef]
- Burek, M.; Wandzik, I. Synthetic hydrogels with covalently incorporated saccharides studied for biomedical applications—15 year overview. Polym. Rev. 2018, 58, 3537–3586. [Google Scholar] [CrossRef]
- Andersen, M.; Gundermann, M.; Danielsen, B.; Lund, M. Kinetic models for the role of protein thiols during oxidation in beer. J. Agric. Food Chem. 2017, 65, 10820–10828. [Google Scholar] [CrossRef]
- Boronat, A.; Soldevila-Domenech, N.; Rodríguez-Morató, J.; Martínez-Huélamo, M.; Lamuela-Raventós, R.M.; de la Torre, R. Beer phenolic composition of simple phenols, prenylated flavonoids and alkylresorcinols. Molecules 2020, 25, 2582. [Google Scholar] [CrossRef]
- Higgs, T.; Stantic, B.; Hoque, M.T.; Sattar, A. Hydrophobic-hydrophilic forces and their effects on protein structural similarity. Suppl. Conf. Proc. 2008, 1–12. [Google Scholar]
- Gernet, M.; Gribkova, I.; Zakharov, M.; Kobelev, K. Research of hop polyphenols impact on malt hopped wort aroma formation model experiments. Potravinarstvo 2021, 15, 262–273. [Google Scholar] [CrossRef]
- Okabe, S.; Ochiai, Y.; Aida, M.; Park, K.; Kim, S.J.; Nomura, T.; Suganuma, M.; Fujiki, H. Mechanistic aspects of green tea as a cancer preventive: Effect of components on human stomach cancer cell lines. Jpn. J. Cancer Res. 1999, 90, 733–739. [Google Scholar] [CrossRef]
- Gosslau, A.; En Jao, D.L.; Huang, M.T. Effects of the black tea polyphenol theaflavin-2 on apoptotic and inflammatory pathways in vitro and in vivo. Mol. Nutr. Food Res. 2011, 55, 198–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambert, J.D.; Elias, R.J. The antioxidant and pro-oxidant activities of green tea polyphenols: A role in a cancer prevention. Arch. Biochem. Biophys. 2010, 501, 65–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dvorakova, M.; Hulin, P.; Karabin, M.; Dostálek, P. Determination of polyphenols in beer by an effective method based on solid-phase extraction and high performance liquid chromatography with diode-array detection. Czech J. Food Sci. 2007, 25, 182–188. [Google Scholar] [CrossRef] [Green Version]
- Styburski, D.; Janda, K.; Baranowska-Bosiacka, I. Beer as a potential source of macroelements in a diet: The analysis of calcium, chlorine, potassium, and phosphorus content in a popular low-alcoholic drink. Eur. Food Res. Technol. 2018, 244, 1853–1860. [Google Scholar] [CrossRef]
- Włodyka-Bergier, A.; Bergier, T. Characteristics of the precursors of volatile by-products of water chlorination in the water supply network of Krakow. Environ. Protect. 2011, 3, 29–33. [Google Scholar]
- Vedat, U.; Kamil, D. Formation of disinfection byproducts (DBPs) in surface water sources: Differential ultraviolet (UV) absorbance approach. Environ. Forensics 2014, 15, 52–65. [Google Scholar] [CrossRef]
- Volkov, V. Quantitative description of ion transport via plasma membrane of yeast and small cells. Front. Plant Sci. 2015, 11, 425. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, N. Neurotransmitters in alcoholism: A review of neurobiological and genetic studies. Indian J. Hum. Genet. 2014, 20, 20–31. [Google Scholar] [CrossRef] [Green Version]
- Costardi, J.V.V.; Teruaki Nampo, R.A.; Silva, G.L.; Ferreira Ribeiro, M.A.; Stella, H.G.; Breda Stella, M.; Pinheiro Malheiros, S.V. A review on alcohol: From the central action mechanism to chemical dependency. Revista da Associação Médica Brasileira 2015, 61, 381–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sobiesiak, M.; Soto-Hernandez, M.; Palma-Tenango, M.; Del Rosario Garcia-Mateos, M. Chemical structure of phenols and its consequence for sorption processes. In Phenolic Compounds—Natural Sources, Importance and Applications; IntechOpen Book Series; IntechOpen: London, UK, 2015. [Google Scholar] [CrossRef] [Green Version]
- Féchir, M.; Reglitz, K.; Mall, V.; Voigt, J.; Steinhaus, M. Molecular insights into the contribution of specialty barley malts to the aroma of bottom-fermented lager beers. J. Agric. Food Chem. 2021, 69, 8190–8199. [Google Scholar] [CrossRef]
- Piornos, J.A.; Balagiannis, D.P.; Methven, L.; Koussissi, E.; Brouwer, E.; Parker, J.K. Elucidating the odor-active aroma compounds in alcohol-free beer and their contribution to the worty flavor. J. Agric. Food Chem. 2020, 68, 10088–10096. [Google Scholar] [CrossRef]
- Fickert, B.; Schieberle, P. Identification of the key odorants in barley malt (caramalt) using GC/MS techniques and odour dilution analyses. Food Nahrung 1998, 42, 371–375. [Google Scholar] [CrossRef]
- Beal, A.D.; Mottram, D.S. Compounds contributing to the characteristic aroma of malted barley. J. Agric. Food Chem. 1994, 42, 2880–2884. [Google Scholar] [CrossRef]
- Wietstock, P.C.; Baldus, M.; Öhlschläger, M.; Methner, F.-J. Hop constituents suppress the formation of 3-methylbutanal and 2-furfural in wort-like model solutions. J. Am. Soc. Brew. Chem. 2017, 75, 41–51. [Google Scholar] [CrossRef]
- Chevance, F.; Guyot-Declerck, C.; Dupont, J.; Collin, S. Investigation of the β-damascenone level in fresh and aged commercial beers. J. Agric. Food Chem. 2002, 50, 3818–3821. [Google Scholar] [CrossRef] [PubMed]
- Kollmannsberger, H.; Biendl, M.; Nitz, S. Occurrence of glycosidically Bound flavour compounds in hops, hop products and beer. Monatsschrift für Brauwissenschaft 2006, 59, 83–89. [Google Scholar]
- Tomasino, E.; Bolman, S. The potential effect of β-ionone and β-damascenone on sensory perception of pinot noir wine aroma. Molecules 2021, 26, 1288. [Google Scholar] [CrossRef]
- Jones, P.R.; Gawel, R.; Francis, I.L.; Waters, E.J. The influence of interactions between major white wine components on the aroma, flavour and texture of model white wine. Food Qual. Prefer. 2008, 19, 596–607. [Google Scholar] [CrossRef]
- Vieno, P.; Toivo, J.; Lampi, A.-M. Plant sterols in cereals and cereal products. Cereal Chem. 2002, 79, 148–154. [Google Scholar] [CrossRef]
- Muller, R.; Walker, S.; Brauer, J.; Junquera, M. Does beer contain compounds that might interfere with cholesterol metabolism? J. Inst. Brew. 2007, 113, 102–109. [Google Scholar] [CrossRef]
- Mekhtiev, A.R.; Misharin, A.Y. Biologicheskaya aktivnost’ fitosterinov i ikh proizvodnykh (Biological activity of phytosterol and their derivatives). Biomeditsinskaya Khimiya 2007, 53, 497–521. [Google Scholar]
- Lu, B.; Zhang, Y.; Wu, X.; Shi, J. Separation and determination of diversiform phytosterols in food materials using supercritical carbon dioxide extraction and ultraperformance liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry. Anal. Chim. Acta 2007, 588, 50–63. [Google Scholar] [CrossRef]
- Rapota, M.O.; Eliseev, M.N. Determination of phytosterols in beer. RJPBCS 2016, 7, 328–337. [Google Scholar]
- Decloedt, A.I.; Van Landschoot, A.; Watson, H.; Vanderputten, D.; Vanhaecke, L. Plant-based beverages as good sources of free and glycosidic plant sterols. Nutrients 2017, 10, 21. [Google Scholar] [CrossRef] [Green Version]
- Decloedt, A.I.; Van Landschoot, A.; Vanhaecke, L. Fractional factorial design-based optimisation and application of an extraction and UPLC-MS/MS detection method for the quantification of phytosterols in food, feed and beverages low in phytosterols. Anal. Bioanal. Chem. 2016, 408, 7731–7744. [Google Scholar] [CrossRef]
- Foegeding, E.A.; Davis, J.P. Food protein functionality: A comprehensive approach. Food Hydrocoll. 2011, 25, 1853–1864. [Google Scholar] [CrossRef]
- Karami, Z.; Akbari-Adergani, B. Bioactive food derived peptides: A review on correlation between structure of bioactive peptides and their functional properties. J. Food Sci. Technol. 2019, 56, 535–547. [Google Scholar] [CrossRef]
- May, S.; Harries, D.; Ben-Shaul, A. Lipid demixing and protein-protein interactions in the adsorption of charged proteins on mixed membranes. Biophys. J. 2000, 79, 1747–1760. [Google Scholar] [CrossRef] [Green Version]
- Abarca-Cabrera, L.; Fraga-García, P.; Berensmeier, S. Bio-nano interactions: Binding proteins, polysaccharides, lipids and nucleic acids onto magnetic nanoparticles. Biomater. Res. 2021, 25, 12. [Google Scholar] [CrossRef]
- Schwaminger, S.P.; García, P.F.; Merck, G.K.; Bodensteiner, F.A.; Heissler, S.; Günther, S. Nature of interactions of amino acids with bare magnetite nanoparticles. J. Phys. Chem. C 2015, 119, 23032–23041. [Google Scholar] [CrossRef]
- Krebs, G.; Gastl, M.; Becker, T. Chemometric modeling of palate fullness in lager beers. Food Chem. 2021, 342, 128–253. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Zielke, C.; Nilsson, L.; Lee, S. Characterization of the molar mass distribution of macromolecules in beer for different mashing processes using asymmetric flow field-flow fractionation (AF4) coupled with multiple detectors. Anal. Bioanal. Chem. 2017, 409, 4551–4558. [Google Scholar] [CrossRef] [PubMed]
Protein Fractions | Weight, Da | References | |
---|---|---|---|
Beer | Beer Foam | ||
- α/β-gliadin | - | - | [15,16] |
- serpin-Z4 | 43,220.6 43,277.1 * | - 43,277.1 * | |
- T06183 serpin | - | 42,821.1 * | |
- barley protein Z homolog | - | 31,114.3 * | |
- LTPs | 12,301.4 | - | |
9695.9 * | 9695.9 * | ||
- LTP precursor 1 - LTP 7a2b | - - | 14,208.4 * 12,330.5 * | |
- prolamins | 40,549.4 | - | |
- C-hordtin | 50,786.0 | - | |
- D–hordein | 75,043.0 * | - | |
- D-hordein precursor | |||
-γ-hordein-3 | 33,189.1 | 75,043.0 * | |
- γ-hordein-1 | 34,737.3 | - | |
- horgein B3 | 6196.4 | 3018.2 * | |
- hotdein gomolog | - | 30,182.2 * | |
- hordein B | 34,501.9 | - | |
- hordoindoline-a | 16,544.3 | - | |
- hordoindoline b | 16,126.9 | - | |
- β-hordothionin | 14,603.2 | - | |
- calmodulin | 16,831.8 | - | |
- calreticulin | - | 47,038.3 * | |
- dehydrin DHN3 | 16,162.6 | - | |
- γ-thionin | 8931.3 | - | |
- 1-Cys peroxiredoxin PER1 | 23,963.7 | - | |
- globulin Beg-1 precursor | 72,253.2 * | - | |
-ubiquitin/ribosomal protein S27a.2 * | 17,671.4 * | - | |
- enzymes | |||
- α-amylase | 15,499.9 | - | |
- β-amylase | 59,647.9 | - | |
- endochitinase | 33,402.8 | - | |
lipoxygenase | 96,749.3 | - | |
-glyceraldehyde-3-phosphate dehydrogenase 2, cytosolic (Fragment) | 33,236.1 | - | |
- glyceraldehyde-3-phosphate dehydrogenase 1, cytosolic | 36,514.0 | - | |
trypsin inhibitor CME precursor | 16,136.6 * | 16,136.6 * | |
betaine-aldehyde dehydrogenase (BADH) | 54,290.2 * | - | |
- metallothionein | 7530.5 | - | |
- trypsin inhibitor CME | 16,135.8 | 16,171.8 * | |
- α-amylase inhibitor BDAI-1 | 16,429.5 | - | |
- α-amylase/trypsin inhibitor CMA | 15,429.9 | 15,463.5* | |
- α-amylaseInhibitor BDAI-I precursor * | 16,430.0 * | 15,817.0 * | |
- α-amylase/subtilisin inhibitor | 22,164.1 | - | |
- α-amylase/trypsin inhibitor CMd | 18,525.8 | - | |
- α-amylase/trypsin inhibitor CMb precursor * | 16,527.1 * | 16,527.1 * | |
- α-amylase inhibitor BDAI-1 | 16,429.5 | 16,430.1 * | |
- subtilisin-chymotrypsin inhibitor C1-1A | - | 8883.2 * | |
starch synthase, chloroplastic/amyloplastic | 87,474.8 | - | |
serine/threonine-protein kinase | 92,872.2 | - | |
- ascorbate peroxidase | 27,639.6 | - | |
Ribosonal: glycine rich protein, RNA binding protein | 16,798.8 | - | |
embryo globulin | 72,253.2 | - | |
barley mRNA for B1-hordein (fragment) | 27,682.1 | - | |
ABA-inducible protein PHV A1 | 21,820.0 | - | |
putative late embryogenesis abundant protein | 52,220.9 | - | |
glycine rich protein, RNA binding protein | 16,798.8 | - | |
pathogenesis-related protein PRB1-3 | 17,697.0 | - | |
glutamyl-tRNA synthetase | 61,863.0 * | 61,863.7 * | |
DNA K-type molecular chaperone HSP70 | 67,016.8 * | - | |
RNA-dependent RNA polymerase P1-P2 fusion protein | 98,746.7 * | - |
Species | Total Samples Number | Type 1 | Type 2 | Type C | Type D | Type E | Type G | Type x |
---|---|---|---|---|---|---|---|---|
Hordeum vulgare | 40 | 16 | 5 | 0 | 11 | 0 | 8 | 0 |
Oryza sativa | 77 | 18 | 13 | 2 | 14 | 0 | 27 | 3 |
Zea mays | 63 | 8 | 9 | 2 | 15 | 0 | 26 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gribkova, I.N.; Eliseev, M.N.; Belkin, Y.D.; Zakharov, M.A.; Kosareva, O.A. The Influence of Biomolecule Composition on Colloidal Beer Structure. Biomolecules 2022, 12, 24. https://doi.org/10.3390/biom12010024
Gribkova IN, Eliseev MN, Belkin YD, Zakharov MA, Kosareva OA. The Influence of Biomolecule Composition on Colloidal Beer Structure. Biomolecules. 2022; 12(1):24. https://doi.org/10.3390/biom12010024
Chicago/Turabian StyleGribkova, Irina N., Michail N. Eliseev, Yuri D. Belkin, Maxim A. Zakharov, and Olga A. Kosareva. 2022. "The Influence of Biomolecule Composition on Colloidal Beer Structure" Biomolecules 12, no. 1: 24. https://doi.org/10.3390/biom12010024
APA StyleGribkova, I. N., Eliseev, M. N., Belkin, Y. D., Zakharov, M. A., & Kosareva, O. A. (2022). The Influence of Biomolecule Composition on Colloidal Beer Structure. Biomolecules, 12(1), 24. https://doi.org/10.3390/biom12010024