Galectin-10 as a Potential Biomarker for Eosinophilic Diseases
Abstract
:1. Introduction
2. Assessing Eosinophilic Inflammation
3. Abundance and Distribution of Galectin-10 in Human Eosinophils
4. Release of Galectin-10 Is Not Mediated through Secretory Systems
5. Detection of Cytolytic ETosis Using Immunohistochemical Staining
6. Clinical Significance of Galectin-10 as a Clinical Biomarker
Disease | Sample | Methods | Purpose/Outcome | Reference |
---|---|---|---|---|
Aspirin-induced asthma | Serum | qRT-PCR | Distinguishing AIA from ATA | [91] |
Asthma with or without ABPA | Sputum | Western blot | Correlation with the sputum eosinophil count | [83] |
Asthma | Sputum | Inhouse ELISA | Correlation with the sputum eosinophil counts | [92] |
Severe asthma | Sputum | RNA transcriptome | The most upregulated gene in severe asthma | [82] |
Eosinophilic asthma | Serum | Commercial ELISA | Monitoring after mepolizumab treatment | [84] |
Eosinophilic esophagitis | Plasma | Inhouse ELISA | Distinguishing EoE | [88] |
Eosinophilic esophagitis | Luminal secretions (esophageal string test) | Inhouse ELISA | Diagnosis of EoE in children | [93] |
Eosinophilic esophagitis | Luminal secretions (esophageal string test) | Inhouse ELISA | Distinguishing active EoE in children and adult | [94] |
CRSwNP | Nasal secretions | Commercial ELISA | Predicting the glucocorticoid response | [87] |
CRSwNP | Nasal brushing | qRT-PCR | Predictive factor for recurrence | [89] |
CRSwNP | Nasal polyps | Western blot, qRT-PCR, IHC | Predictive factor for the phenotype | [95] |
CRSwNP | Nasal polyps | Commercial ELISA | Correlation with Asp f 1 | [90] |
CRSwNP | Nasal secretions | IHC | Correlation with severity | [96] |
Nonallergic rhinitis with eosinophilia syndrome | Nasal secretions | ELISA | Correlation with severity and treatment | [97] |
Atopic dermatitis | Skin specimens, serum | IHC, commercial ELISA | Diagnosis, correlation with severity | [39] |
Eosinophilic granulomatosis with polyangiitis | Serum | Commercial ELISA | Correlation with disease activity | [72] |
7. Biological Functions of CLCs and Galectin-10
8. Lessons from Eosinophilic Gastrointestinal Disorders
9. Myeloproliferative Diseases and CLCs
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AML | acute myeloid leukemia |
CLCs | Charcot–Leyden crystals |
CML | chronic myeloid leukemia |
CRSwNP | chronic rhinosinusitis with nasal polyps |
EETosis | eosinophil extracellular trap cell death |
ETosis | extracellular trap cell death |
EDN | eosinophil-derived neurotoxin |
EGPA | eosinophilic granulomatosis with polyangiitis |
EoE | eosinophilic esophagitis |
IL | interleukin |
MBP | major basic protein |
NETosis | neutrophil extracellular trap cell death |
References
- Albers, F.C.; Licskai, C.; Chanez, P.; Bratton, D.J.; Bradford, E.S.; Yancey, S.W.; Kwon, N.; Quirce, S. Baseline blood eosinophil count as a predictor of treatment response to the licensed dose of mepolizumab in severe eosinophilic asthma. Respir. Med. 2019, 159, 105806. [Google Scholar] [CrossRef]
- Castro, M.; Corren, J.; Pavord, I.D.; Maspero, J.; Wenzel, S.; Rabe, K.F.; Busse, W.W.; Ford, L.; Sher, L.; Fitzgerald, J.M.; et al. Dupilumab Efficacy and Safety in Moderate-to-Severe Uncontrolled Asthma. N. Engl. J. Med. 2018, 378, 2486–2496. [Google Scholar] [CrossRef]
- Humbert, M.; Taillé, C.; Mala, L.; Le Gros, V.; Just, J.; Molimard, M.; STELLAIR Investigators. Omalizumab effectiveness in patients with severe allergic asthma according to blood eosinophil count: The STELLAIR study. Eur. Respir. J. 2018, 51, 1702523. [Google Scholar] [CrossRef]
- Benson, V.S.; Hartl, S.; Barnes, N.; Galwey, N.; Van Dyke, M.K.; Kwon, N. Blood eosinophil counts in the general population and airways disease: A comprehensive review and meta-analysis. Eur. Respir. J. 2021, 59, 2004590. [Google Scholar] [CrossRef]
- Abidi, K.; Khoudri, I.; Belayachi, J.; Madani, N.; Zekraoui, A.; Zeggwagh, A.A.; Abouqal, R. Eosinopenia is a reliable marker of sepsis on admission to medical intensive care units. Crit. Care 2008, 12, R59. [Google Scholar] [CrossRef]
- Wibrow, B.A.; Ho, K.M.; Flexman, J.P.; Keil, A.D.; Kohrs, D.L. Eosinopenia as a Diagnostic Marker of Bloodstream Infection in Hospitalised Paediatric and Adult Patients: A Case-Control Study. Anaesth. Intensive Care 2011, 39, 224–230. [Google Scholar] [CrossRef]
- Takayasu, S.; Mizushiri, S.; Watanuki, Y.; Yamagata, S.; Usutani, M.; Nakada, Y.; Asari, Y.; Murasawa, S.; Kageyama, K.; Daimon, M. Eosinophil counts can be a predictive marker of immune checkpoint inhibitor-induced secondary adrenal insufficiency: A retrospective cohort study. Sci. Rep. 2022, 12, 1294. [Google Scholar] [CrossRef]
- Varricchi, G.; Galdiero, M.R.; Loffredo, S.; Lucarini, V.; Marone, G.; Mattei, F.; Marone, G.; Schiavoni, G. Eosinophils: The unsung heroes in cancer? OncoImmunology 2017, 7, e1393134. [Google Scholar] [CrossRef]
- Marichal, T.; Mesnil, C.; Bureau, F. Homeostatic Eosinophils: Characteristics and Functions. Front. Med. 2017, 4, 101. [Google Scholar] [CrossRef]
- Holgate, S.T.; Wenzel, S.; Postma, D.S.; Weiss, S.T.; Renz, H.; Sly, P.D. Asthma. Nat. Rev. Dis. Primers 2015, 1, 15025. [Google Scholar] [CrossRef]
- Venge, P.; Håkansson, L.; Peterson, C.G. Eosinophil Activation in Allergic Disease. Int. Arch. Allergy Immunol. 1987, 82, 333–337. [Google Scholar] [CrossRef]
- Nagase, H.; Ueki, S.; Fujieda, S. The roles of IL-5 and anti-IL-5 treatment in eosinophilic diseases: Asthma, eosinophilic granulomatosis with polyangiitis, and eosinophilic chronic rhinosinusitis. Allergol. Int. 2020, 69, 178–186. [Google Scholar] [CrossRef]
- Neves, J.S.; Perez, S.A.C.; Spencer, L.A.; Melo, R.; Reynolds, L.; Ghiran, I.; Mahmudi-Azer, S.; Odemuyiwa, S.O.; Dvorak, A.M.; Moqbel, R.; et al. Eosinophil granules function extracellularly as receptor-mediated secretory organelles. Proc. Natl. Acad. Sci. USA 2008, 105, 18478–18483. [Google Scholar] [CrossRef]
- Chihara, J.; Nakajima, S. Induction of Hypodense Eosinophils and Nuclear Hypersegmentation of Eosinophils by Various Chemotactic Factors and Lymphokines In Vitro. Allergy Asthma Proc. 1989, 10, 27–32. [Google Scholar] [CrossRef]
- Saito, N.; Kayaba, H.; Honda, K.; Yamada, Y.; Cui, C.-H.; Kamada, Y.; Kuwasaki, T.; Oyamada, H.; Chihara, J. Whole-Blood Flow-Cytometric Analysis of Induction of Adhesion Molecules Expression on Eosinophils Stimulated by Phorbol-12-Myristate-13-Acetate/Ionomycin. Int. Arch. Allergy Immunol. 1999, 120, 27–29. [Google Scholar] [CrossRef]
- Kayaba, H.; Yamada, Y.; Cui, C.-H.; Saito, N.; Honda, K.; Kobayashi, Y.; Urayama, O.; Chihara, J. Expression of VLA-4 on Eosinophils Decreases in Patients with Eosinophilia. Int. Arch. Allergy Immunol. 2001, 125 (Suppl. 1), 33–37. [Google Scholar] [CrossRef]
- Sannohe, S.; Adachi, T.; Hamada, K.; Honda, K.; Yamada, Y.; Saito, N.; Cui, C.; Kayaba, H.; Ishikawa, K.; Chihara, J. Upregulated response to chemokines in oxidative metabolism of eosinophils in asthma and allergic rhinitis. Eur. Respir. J. 2003, 21, 925–931. Available online: http://www.ncbi.nlm.nih.gov/pubmed/12797483 (accessed on 30 June 2022). [CrossRef]
- Kankaanranta, H.; Lindsay, M.A.; Giembycz, M.A.; Zhang, X.; Moilanen, E.; Barnes, P.J. Delayed eosinophil apoptosis in asthma. J. Allergy Clin. Immunol. 2000, 106, 77–83. [Google Scholar] [CrossRef]
- Saito, N.; Yamada, Y.; Sannohe, S.; Honda, K.; Adachi, T.; Kayaba, H.; Chihara, J. Possible Involvement of C-C Chemokines in Functional Augmentation of Adhesion Molecules in Asthmatic Patients. Lung 2002, 180, 251–263. [Google Scholar] [CrossRef]
- Griffin, E.; Håkansson, L.; Formgren, H.; Jörgensen, K.; Venge, P. Increased chemokinetic and chemotactic responses of eosinophils in asthmatic patients. Allergy 1991, 46, 255–265. [Google Scholar] [CrossRef]
- Miranda, C.; Busacker, A.; Balzar, S.; Trudeau, J.; Wenzel, S.E. Distinguishing severe asthma phenotypes: Role of age at onset and eosinophilic inflammation. J. Allergy Clin. Immunol. 2004, 113, 101–108. [Google Scholar] [CrossRef]
- Pavord, I.D.; Buhl, R.; Kraft, M.; Prazma, C.M.; Price, R.G.; Howarth, P.H.; Yancey, S.W. Evaluation of sputum eosinophil count as a predictor of treatment response to mepolizumab. ERJ Open Res. 2022, 8, 00560–02021. [Google Scholar] [CrossRef]
- Hoekstra, M.O.; Grol, M.H.; Hovenga, H.; Bouman, K.; Stijnen, T.; Koëter, G.H.; Gerritsen, J.; Kauffman, H.F. Eosinophil and mast cell parameters in children with stable moderate asthma. Pediatric Allergy Immunol. 1998, 9, 143–149. [Google Scholar] [CrossRef]
- Wada, T.; Toma, T.; Muraoka, M.; Matsuda, Y.; Yachie, A. Elevation of fecal eosinophil-derived neurotoxin in infants with food protein-induced enterocolitis syndrome. Pediatric Allergy Immunol. 2014, 25, 617–619. [Google Scholar] [CrossRef]
- Rycyk, A.; Cudowska, B.; Lebensztejn, D.M. Eosinophil-Derived Neurotoxin, Tumor Necrosis Factor Alpha, and Calprotectin as Non-Invasive Biomarkers of Food Protein-Induced Allergic Proctocolitis in Infants. J. Clin. Med. 2020, 9, 3147. [Google Scholar] [CrossRef]
- Gao, J.; Wu, F. Association between fractional exhaled nitric oxide, sputum induction and peripheral blood eosinophil in uncontrolled asthma. Allergy Asthma Clin. Immunol. 2018, 14, 21. [Google Scholar] [CrossRef]
- Kephart, G.M.; Alexander, J.A.; Arora, A.S.; Romero, Y.; Smyrk, T.C.; Talley, N.J.; Kita, H. Marked Deposition of Eosinophil-Derived Neurotoxin in Adult Patients With Eosinophilic Esophagitis. Am. J. Gastroenterol. 2010, 105, 298–307. [Google Scholar] [CrossRef]
- Kato, M.; Kephart, G.M.; Morikawa, A.; Gleich, G.J. Eosinophil Infiltration and Degranulation in Normal Human Tissues: Evidence for Eosinophil Degranulation in Normal Gastrointestinal Tract. Int. Arch. Allergy Immunol. 2001, 125, 55–58. [Google Scholar] [CrossRef]
- Barondes, S.H.; Cooper, D.N.; Gitt, M.A.; Leffler, H. Galectins. Structure and function of a large family of animal lectins. J. Biol. Chem. 1994, 269, 20807–20810. [Google Scholar] [CrossRef]
- Johannes, L.; Jacob, R.; Leffler, H. Galectins at a glance. J. Cell Sci. 2018, 131, jcs208884. [Google Scholar] [CrossRef] [Green Version]
- Nishi, N.; Shoji, H.; Seki, M.; Itoh, A.; Miyanaka, H.; Yuube, K.; Hirashima, M.; Nakamura, T. Galectin-8 modulates neutrophil function via interaction with integrin M. Glycobiology 2003, 13, 755–763. [Google Scholar] [CrossRef]
- Niki, T.; Tsutsui, S.; Hirose, S.; Aradono, S.; Sugimoto, Y.; Takeshita, K.; Nishi, N.; Hirashima, M. Galectin-9 Is a High Affinity IgE-binding Lectin with Anti-allergic Effect by Blocking IgE-Antigen Complex Formation. J. Biol. Chem. 2009, 284, 32344–32352. [Google Scholar] [CrossRef]
- Acharya, K.R.; Ackerman, S.J. Eosinophil Granule Proteins: Form and Function. J. Biol. Chem. 2014, 289, 17406–17415. [Google Scholar] [CrossRef]
- Leonidas, D.D.; Elbert, B.L.; Zhou, Z.; Leffler, H.; Ackerman, S.J.; Acharya, K. Crystal structure of human Charcot–Leyden crystal protein, an eosinophil lysophospholipase, identifies it as a new member of the carbohydrate-binding family of galectins. Structure 1995, 3, 1379–1393. [Google Scholar] [CrossRef]
- Dvorak, A.M.; Furitsu, T.; Letourneau, L.; Ishizaka, T.; Ackerman, S.J. Mature eosinophils stimulated to develop in human cord blood mononuclear cell cultures supplemented with recombinant human interleukin-5. Part I. Piecemeal degranulation of specific granules and distribution of Charcot-Leyden crystal protein. Am. J. Pathol. 1991, 138, 69–82. [Google Scholar]
- Ueki, S.; Tokunaga, T.; Melo, R.; Saito, H.; Honda, K.; Fukuchi, M.; Konno, Y.; Takeda, M.; Yamamoto, Y.; Hirokawa, M.; et al. Charcot-Leyden crystal formation is closely associated with eosinophil extracellular trap cell death. Blood 2018, 132, 2183–2187. [Google Scholar] [CrossRef]
- Calafat, J.; Janssen, H.; Knol, E.F.; Weller, P.F.; Egesten, A. Ultrastructural localization of Charcot—Leyden crystal protein in human eosinophils and basophils. Eur. J. Haematol. 2009, 58, 56–66. [Google Scholar] [CrossRef]
- Lao, L.-M.; Kumakiri, M.; Nakagawa, K.; Ishida, H.; Ishiguro, K.; Yanagihara, M.; Ueda, K. The ultrastructural findings of Charcot-Leyden crystals in stroma of mastocytoma. J. Dermatol. Sci. 1998, 17, 198–204. [Google Scholar] [CrossRef]
- Noh, S.; Jin, S.; Park, C.O.; Lee, Y.S.; Lee, N.; Lee, J.; Shin, J.U.; Kim, S.H.; Na Yun, K.; Kim, J.Y.; et al. Elevated Galectin-10 Expression of IL-22-Producing T Cells in Patients with Atopic Dermatitis. J. Investig. Dermatol. 2016, 136, 328–331. [Google Scholar] [CrossRef]
- Kubach, J.; Lutter, P.; Bopp, T.; Stoll, S.; Becker, C.; Huter, E.; Richter, C.; Weingarten, P.; Warger, T.; Knop, J.; et al. Human CD4+CD25+ regulatory T cells: Proteome analysis identifies galectin-10 as a novel marker essential for their anergy and suppressive function. Blood 2007, 110, 1550–1558. [Google Scholar] [CrossRef]
- Arroyo-Hornero, R.; Aegerter, H.; Hamad, I.; Corte-Real, B.; Staes, K.; van der Woning, B.; Verstraete, K.; Savvides, S.N.; Lambrecht, B.N.; Kleinewietfeld, M. The Charcot–Leyden crystal protein galectin-10 is not a major determinant of human regulatory T-cell function. Allergy 2022, 77, 2818–2821. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, S.J.; Weil, G.J.; Gleich, G.J. Formation of Charcot-Leyden crystals by human basophils. J. Exp. Med. 1982, 155, 1597–1609. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, K.; Takahashi, K.; Maeda, M.; Kimura, I. Formation of Charcot-Leyden crystals by human basophils in sputum and peripheral blood. Acta Med. Okayama 1993, 47, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Ueki, S.; Miyabe, Y.; Yamamoto, Y.; Fukuchi, M.; Hirokawa, M.; Spencer, L.A.; Weller, P.F. Charcot-Leyden Crystals in Eosinophilic Inflammation: Active Cytolysis Leads to Crystal Formation. Curr. Allergy Asthma Rep. 2019, 19, 35. [Google Scholar] [CrossRef]
- Wilkerson, E.M.; Johansson, M.W.; Hebert, A.S.; Westphall, M.S.; Mathur, S.K.; Jarjour, N.N.; Schwantes, E.A.; Mosher, D.F.; Coon, J.J. The Peripheral Blood Eosinophil Proteome. J. Proteome Res. 2016, 15, 1524–1533. [Google Scholar] [CrossRef]
- Straub, C.; Pazdrak, K.; Young, T.W.; Stafford, S.J.; Wu, Z.; Wiktorowicz, J.E.; Haag, A.M.; English, R.D.; Soman, K.V.; Kurosky, A. Toward the proteome of the human peripheral blood eosinophil. Proteom. Clin. Appl. 2009, 3, 1151–1173. [Google Scholar] [CrossRef]
- Dvorak, A.M.; Letourneau, L.; Login, G.R.; Weller, P.F.; Ackerman, S.J. Ultrastructural localization of the Charcot-Leyden crystal protein (lysophospholipase) to a distinct crystalloid-free granule population in mature human eosinophils. Blood 1988, 72, 150–158. [Google Scholar] [CrossRef]
- Dvorak, A.M.; Ackerman, S.J.; Furitsu, T.; Estrella, P.; Letourneau, L.; Ishizaka, T. Mature eosinophils stimulated to develop in human-cord blood mononuclear cell cultures supplemented with recombinant human interleukin-5. II. Vesicular transport of specific granule matrix peroxidase, a mechanism for effecting piecemeal degranulation. Am. J. Pathol. 1992, 140, 795–807. [Google Scholar]
- Melo, R.C.N.; Weller, P.F. Contemporary understanding of the secretory granules in human eosinophils. J. Leukoc. Biol. 2018, 104, 85–93. [Google Scholar] [CrossRef]
- Melo, R.C.N.; Wang, H.; Silva, T.P.; Imoto, Y.; Fujieda, S.; Fukuchi, M.; Miyabe, Y.; Hirokawa, M.; Ueki, S.; Weller, P.F. Galectin-10, the protein that forms Charcot-Leyden crystals, is not stored in granules but resides in the peripheral cytoplasm of human eosinophils. J. Leukoc. Biol. 2020, 108, 139–149. [Google Scholar] [CrossRef]
- Melo, R.C.N.; Morgan, E.; Monahan-Earley, R.; Dvorak, A.M.; Weller, P.F. Pre-embedding immunogold labeling to optimize protein localization at subcellular compartments and membrane microdomains of leukocytes. Nat. Protoc. 2014, 9, 2382–2394. [Google Scholar] [CrossRef]
- Spencer, L.A.; Bonjour, K.; Melo, R.C.N.; Weller, P.F. Eosinophil Secretion of Granule-Derived Cytokines. Front. Immunol. 2014, 5, 496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyabe, Y.; Kobayashi, Y.; Fukuchi, M.; Saga, A.; Moritoki, Y.; Saga, T.; Akuthota, P.; Ueki, S. Eosinophil-mediated inflammation in the absence of eosinophilia. Asia Pac. Allergy 2021, 11, e30. [Google Scholar] [CrossRef] [PubMed]
- Erjefalt, J.S.; Greiff, L.; Andersson, M.; Ädelroth, E.; Jeffery, P.K.; Persson, C.G.A. Degranulation patterns of eosinophil granulocytes as determinants of eosinophil driven disease. Thorax 2001, 56, 341–344. [Google Scholar] [CrossRef] [PubMed]
- Saffari, H.; Hoffman, L.H.; Peterson, K.A.; Fang, J.C.; Leiferman, K.M.; Pease, L.F.; Gleich, G.J. Electron microscopy elucidates eosinophil degranulation patterns in patients with eosinophilic esophagitis. J. Allergy Clin. Immunol. 2014, 133, 1728–1734.e1. [Google Scholar] [CrossRef]
- Persson, C.; Uller, L. Theirs But to Die and Do: Primary Lysis of Eosinophils and Free Eosinophil Granules in Asthma. Am. J. Respir. Crit. Care Med. 2014, 189, 628–633. [Google Scholar] [CrossRef]
- Ueki, S.; Melo, R.; Ghiran, I.; Spencer, L.A.; Dvorak, A.M.; Weller, P.F. Eosinophil extracellular DNA trap cell death mediates lytic release of free secretion-competent eosinophil granules in humans. Blood 2013, 121, 2074–2083. [Google Scholar] [CrossRef]
- Ueki, S.; Tokunaga, T.; Fujieda, S.; Honda, K.; Hirokawa, M.; Spencer, L.A.; Weller, P.F. Eosinophil ETosis and DNA Traps: A New Look at Eosinophilic Inflammation. Curr. Allergy Asthma Rep. 2016, 16, 54. [Google Scholar] [CrossRef]
- Neves, V.H.; Palazzi, C.; Bonjour, K.; Ueki, S.; Weller, P.F.; Melo, R.C.N. In Vivo ETosis of Human Eosinophils: The Ultrastructural Signature Captured by TEM in Eosinophilic Diseases. Front. Immunol. 2022, 13, 938691. [Google Scholar] [CrossRef]
- Yamauchi, Y.; Ueki, S.; Konno, Y.; Ito, W.; Takeda, M.; Nakamura, Y.; Nishikawa, J.; Moritoki, Y.; Omokawa, A.; Saga, T.; et al. The effect of hepatocyte growth factor on secretory functions in human eosinophils. Cytokine 2016, 88, 45–50. [Google Scholar] [CrossRef]
- Ueki, S.; Konno, Y.; Takeda, M.; Moritoki, Y.; Hirokawa, M.; Matsuwaki, Y.; Honda, K.; Ohta, N.; Yamamoto, S.; Takagi, Y.; et al. Eosinophil extracellular trap cell death–derived DNA traps: Their presence in secretions and functional attributes. J. Allergy Clin. Immunol. 2015, 137, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, M.; Lacy, P.; Ueki, S. Eosinophil Extracellular Traps and Inflammatory Pathologies—Untangling the Web! Front. Immunol. 2018, 9, 2763. [Google Scholar] [CrossRef] [PubMed]
- Hellmark, T.; Ohlsson, S.; Pettersson, Å.; Hansson, M.; Johansson, C.M. Eosinophils in anti-neutrophil cytoplasmic antibody associated vasculitis. BMC Rheumatol. 2019, 3, 9. [Google Scholar] [CrossRef] [PubMed]
- Esnault, S.; Fichtinger, P.S.; Barretto, K.T.; Fogerty, F.J.; Bernau, K.; Mosher, D.F.; Mathur, S.K.; Sandbo, N.; Jarjour, N.N. Autophagy Protects against Eosinophil Cytolysis and Release of DNA. Cells 2022, 11, 1821. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, M.; Bulir, D.C.; Radford, K.; Kjarsgaard, M.; Huang, C.M.; Jacobsen, E.A.; Ochkur, S.I.; Catuneanu, A.; Lamothe-Kipnes, H.; Mahony, J.; et al. Sputum autoantibodies in patients with severe eosinophilic asthma. J. Allergy Clin. Immunol. 2018, 141, 1269–1279. [Google Scholar] [CrossRef]
- Choi, Y.; Le Pham, D.; Lee, D.-H.; Lee, S.-H.; Kim, S.-H.; Park, H.-S. Biological function of eosinophil extracellular traps in patients with severe eosinophilic asthma. Exp. Mol. Med. 2018, 50, 104. [Google Scholar] [CrossRef]
- Muniz, V.S.; Silva, J.C.; Braga, Y.A.; Melo, R.C.; Ueki, S.; Takeda, M.; Hebisawa, A.; Asano, K.; Figueiredo, R.T.; Neves, J.S. Eosinophils release extracellular DNA traps in response to Aspergillus fumigatus. J. Allergy Clin. Immunol. 2018, 141, 571–585.e7. [Google Scholar] [CrossRef]
- Omokawa, A.; Ueki, S.; Kikuchi, Y.; Takeda, M.; Asano, M.; Sato, K.; Sano, M.; Ito, H.; Hirokawa, M. Mucus plugging in allergic bronchopulmonary aspergillosis: Implication of the eosinophil DNA traps. Allergol. Int. 2018, 67, 280–282. [Google Scholar] [CrossRef]
- Ohta, N.; Ueki, S.; Konno, Y.; Hirokawa, M.; Kubota, T.; Tomioka-Matsutani, S.; Suzuki, T.; Ishida, Y.; Kawano, T.; Miyasaka, T.; et al. ETosis-derived DNA trap production in middle ear effusion is a common feature of eosinophilic otitis media. Allergol. Int. 2018, 67, 414–416. [Google Scholar] [CrossRef]
- Takeda, M.; Ueki, S.; Yamamoto, Y.; Nara, M.; Fukuchi, M.; Nakayama, K.; Omori, Y.; Takahashi, N.; Hirokawa, M. Hypereosinophilic syndrome with abundant Charcot-Leyden crystals in spleen and lymph nodes. Asia Pac. Allergy 2020, 10, e24. [Google Scholar] [CrossRef]
- Wouters, J.; Waelkens, E.; Vandoninck, S.; Segaert, S.; Oord, J. Mass Spectrometry of Flame Figures. Acta Derm. Venereol. 2015, 95, 734–735. [Google Scholar] [CrossRef] [PubMed]
- Fukuchi, M.; Kamide, Y.; Ueki, S.; Miyabe, Y.; Konno, Y.; Oka, N.; Takeuchi, H.; Koyota, S.; Hirokawa, M.; Yamada, T.; et al. Eosinophil ETosis–Mediated Release of Galectin-10 in Eosinophilic Granulomatosis with Polyangiitis. Arthritis Rheumatol. 2021, 73, 1683–1693. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, T.; Ueki, S.; Kamide, Y.; Miyabe, Y.; Fukuchi, M.; Yokoyama, Y.; Furukawa, T.; Azuma, N.; Oka, N.; Takeuchi, H.; et al. Increased Circulating Cell-Free DNA in Eosinophilic Granulomatosis with Polyangiitis: Implications for Eosinophil Extracellular Traps and Immunothrombosis. Front. Immunol. 2022, 12, 801897. [Google Scholar] [CrossRef]
- Takeda, M.; Sakamoto, S.; Ueki, S.; Miyabe, Y.; Fukuchi, M.; Okuda, Y.; Asano, M.; Sato, K.; Nakayama, K. Eosinophil extracellular traps in a patient with chronic eosinophilic pneumonia. Asia Pac. Allergy 2021, 11, e24. [Google Scholar] [CrossRef] [PubMed]
- Nogawa, H.; Suzuki, H.; Kawabata, Y.; Ota, T.; Yuki, Y.; Katagiri, Y.; Hino, T.; Yanagawa, N.; Ueki, S. An unusual case of eosinophilic lung disease with multiple cyst formation. Respir. Med. Case Rep. 2020, 31, 101300. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, Y.; Koya, T.; Nagano, K.; Abe, S.; Kimura, Y.; Shima, K.; Toyama-Kosaka, M.; Hasegawa, T.; Sasaki, T.; Shinbori, K.; et al. Two cases of dupilumab-associated eosinophilic pneumonia in asthma with eosinophilic chronic rhinosinusitis: IL-5-driven pathology? Allergol. Int. 2022, 71, 548–551. [Google Scholar] [CrossRef] [PubMed]
- Echevarría, L.U.; Leimgruber, C.; González, J.G.; Nevado, A.; Álvarez, R.; Garcia, L.; Quintar, A.; Maldonado, C.A. Evidence of eosinophil extracellular trap cell death in COPD: Does it represent the trigger that switches on the disease? Int. J. Chronic Obstr. Pulm. Dis. 2017, 12, 885–896. [Google Scholar] [CrossRef]
- Porter, L.M.; Cowburn, A.S.; Farahi, N.; Deighton, J.; Farrow, S.N.; Fiddler, C.A.; Juss, J.K.; Condliffe, A.M.; Chilvers, E.R. Hypoxia causes IL-8 secretion, Charcot Leyden crystal formation, and suppression of corticosteroid-induced apoptosis in human eosinophils. Clin. Exp. Allergy 2017, 47, 770–784. [Google Scholar] [CrossRef]
- Davis, M.D.; Plager, D.A.; George, T.J.; Weiss, E.A.; Gleich, G.J.; Leiferman, K.M. Interactions of eosinophil granule proteins with skin: Limits of detection, persistence, and vasopermeabilization. J. Allergy Clin. Immunol. 2003, 112, 988–994. [Google Scholar] [CrossRef]
- Baines, K.J.; Simpson, J.L.; Wood, L.G.; Scott, R.J.; Fibbens, N.L.; Powell, H.; Cowan, D.C.; Taylor, D.R.; Cowan, J.O.; Gibson, P.G. Sputum gene expression signature of 6 biomarkers discriminates asthma inflammatory phenotypes. J. Allergy Clin. Immunol. 2014, 133, 997–1007. [Google Scholar] [CrossRef]
- Lemonnier, N.; Melén, E.; Jiang, Y.; Joly, S.; Ménard, C.; Aguilar, D.; Acosta-Perez, E.; Bergström, A.; Boutaoui, N.; Bustamante, M.; et al. A novel whole blood gene expression signature for asthma, dermatitis, and rhinitis multimorbidity in children and adolescents. Allergy 2020, 75, 3248–3260. [Google Scholar] [CrossRef] [PubMed]
- Baines, K.J.; Fricker, M.; McDonald, V.M.; Simpson, J.L.; Wood, L.G.; Wark, P.A.; Macdonald, H.E.; Reid, A.; Gibson, P.G. Sputum transcriptomics implicates increased p38 signalling activity in severe asthma. Respirology 2019, 25, 709–718. [Google Scholar] [CrossRef]
- Chua, J.C.; Douglass, J.A.; Gillman, A.; O’Hehir, R.E.; Meeusen, E.N. Galectin-10, a Potential Biomarker of Eosinophilic Airway Inflammation. PLoS ONE 2012, 7, e42549. [Google Scholar] [CrossRef]
- Kobayashi, K.; Nagase, H.; Sugimoto, N.; Yamamoto, S.; Tanaka, A.; Fukunaga, K.; Atsuta, R.; Tagaya, E.; Hojo, M.; Gon, Y.; et al. Mepolizumab decreased the levels of serum galectin-10 and eosinophil cationic protein in asthma. Asia Pac. Allergy 2021, 11, e31. [Google Scholar] [CrossRef] [PubMed]
- Koya, T.; Kimura, Y.; Hayashi, M.; Hasegawa, T.; Kikuchi, T. The impact of mepolizumab on the sputum level of eosinophil-derived protein in three cases of severe asthma. Allergol. Int. 2020, 69, 639–641. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, S.J.; Kagalwalla, A.F.; Hirano, I.; Gonsalves, N.; Katcher, P.M.; Gupta, S.; Wechsler, J.B.; Grozdanovic, M.; Pan, Z.; Masterson, J.C.; et al. One-Hour Esophageal String Test: A Nonendoscopic Minimally Invasive Test That Accurately Detects Disease Activity in Eosinophilic Esophagitis. Am. J. Gastroenterol. 2019, 114, 1614–1625. [Google Scholar] [CrossRef]
- Wechsler, J.B.; Ackerman, S.J.; Chehade, M.; Amsden, K.; Riffle, M.E.; Wang, M.; Du, J.; Kleinjan, M.L.; Alumkal, P.; Gray, E.; et al. Noninvasive biomarkers identify eosinophilic esophagitis: A prospective longitudinal study in children. Allergy 2021, 76, 3755–3765. [Google Scholar] [CrossRef]
- Furuta, G.T.; Kagalwalla, A.F.; Lee, J.J.; Alumkal, P.; Maybruck, B.T.; Fillon, S.; Masterson, J.C.; Ochkur, S.; Protheroe, C.; Moore, W.; et al. The oesophageal string test: A novel, minimally invasive method measures mucosal inflammation in eosinophilic oesophagitis. Gut 2012, 62, 1395–1405. [Google Scholar] [CrossRef]
- Persson, E.K.; Verstraete, K.; Heyndrickx, I.; Gevaert, E.; Aegerter, H.; Percier, J.-M.; Deswarte, K.; Verschueren, K.H.G.; Dansercoer, A.; Gras, D.; et al. Protein crystallization promotes type 2 immunity and is reversible by antibody treatment. Science 2019, 364, eaaw4295. [Google Scholar] [CrossRef]
- Wu, D.; Yan, B.; Wang, Y.; Zhang, L.; Wang, C. Charcot-Leyden crystal concentration in nasal secretions predicts clinical response to glucocorticoids in patients with chronic rhinosinusitis with nasal polyps. J. Allergy Clin. Immunol. 2019, 144, 345–348.e8. [Google Scholar] [CrossRef]
- Qi, S.; Yan, B.; Liu, C.; Wang, C.; Zhang, L. Predictive significance of Charcot-Leyden Crystal mRNA levels in nasal brushing for nasal polyp recurrence. Rhinol. J. 2019, 58, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Miyabe, Y.; Tomizawa, H.; Saito, H.; Yamada, T.; Shiina, K.; Koizumi, K.; Kawasaki, Y.; Suzuki, S.; Fukuchi, M.; Ueki, S.; et al. Quantification of Aspergillus fumigatus antigen Asp f 1 in airway tissue and allergic inflammation. Allergy 2022. [Google Scholar] [CrossRef]
- Devouassoux, G.; Pachot, A.; Laforest, L.; Diasparra, J.; Freymond, N.; Van Ganse, E.; Mougin, B.; Pacheco, Y. Galectin-10 mRNA is overexpressed in peripheral blood of aspirin-induced asthma. Allergy 2007, 63, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Nyenhuis, S.M.; Alumkal, P.; Du, J.; Maybruck, B.T.; Vinicky, M.; Ackerman, S.J. Charcot–Leyden crystal protein/galectin-10 is a surrogate biomarker of eosinophilic airway inflammation in asthma. Biomark. Med. 2019, 13, 715–724. [Google Scholar] [CrossRef] [PubMed]
- Li, C.H.; Liu, X.; Wu, W.X.; Wang, Y.J.; Ai, Y.F.; Liu, H.B. Expression and pathological role of galectin-10 in different types of nasal polyps. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 2020, 55, 837–844. [Google Scholar] [CrossRef]
- Gelardi, M.; Netti, G.S.; Giancaspro, R.; Spadaccino, F.; Pennella, A.; Fiore, V.; La Gatta, E.; Grilli, G.M.; Cassano, M.; Ranieri, E. Chronic rhinosinusitis with nasal polyposis (CRSwNP): The correlation between expression of Galectin-10 and Clinical-Cytological Grading (CCG). Am. J. Rhinol. Allergy 2021, 36, 229–237. [Google Scholar] [CrossRef]
- Zhang, M.; Yan, B.; Wang, Y.; Wang, C.; Zhang, L. Charcot-Leyden Crystal Protein in Nasal Secretions of Patients with Nonallergic Rhinitis with Eosinophilia Syndrome. Int. Arch. Allergy Immunol. 2020, 181, 888–896. [Google Scholar] [CrossRef]
- Rodríguez-Alcázar, J.F.; Ataide, M.; Engels, G.; Schmitt-Mabmunyo, C.; Garbi, N.; Kastenmüller, W.; Latz, E.; Franklin, B.S. Charcot–Leyden Crystals Activate the NLRP3 Inflammasome and Cause IL-1β Inflammation in Human Macrophages. J. Immunol. 2018, 202, 550–558. [Google Scholar] [CrossRef]
- Gevaert, E.; Delemarre, T.; De Volder, J.; Zhang, N.; Holtappels, G.; De Ruyck, N.; Persson, E.; Heyndrickx, I.; Verstraete, K.; Aegerter, H.; et al. Charcot-Leyden crystals promote neutrophilic inflammation in patients with nasal polyposis. J. Allergy Clin. Immunol. 2019, 145, 427–430.e4. [Google Scholar] [CrossRef]
- Mulay, S.R.; Anders, H.-J. Crystallopathies. N. Engl. J. Med. 2016, 374, 2465–2476. [Google Scholar] [CrossRef]
- Grozdanovic, M.M.; Doyle, C.B.; Liu, L.; Maybruck, B.T.; Kwatia, M.A.; Thiyagarajan, N.; Acharya, K.R.; Ackerman, S.J. Charcot-Leyden crystal protein/galectin-10 interacts with cationic ribonucleases and is required for eosinophil granulogenesis. J. Allergy Clin. Immunol. 2020, 146, 377–389.e10. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, Y.; Oouchi, S.; Fujisawa, T. Eosinophilic gastrointestinal diseases—Pathogenesis, diagnosis, and treatment. Allergol. Int. 2019, 68, 420–429. [Google Scholar] [CrossRef] [PubMed]
- Pesek, R.D.; Reed, C.C.; Muir, A.B.; Fulkerson, P.C.; Menard-Katcher, C.; Falk, G.W.; Kuhl, J.; Martin, E.K.; Magier, A.Z.; Ahmed, F.; et al. Increasing Rates of Diagnosis, Substantial Co-Occurrence, and Variable Treatment Patterns of Eosinophilic Gastritis, Gastroenteritis, and Colitis Based on 10-Year Data Across a Multicenter Consortium. Am. J. Gastroenterol. 2019, 114, 984–994. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Nishi, A.; Ebara, Y.; Kato, M.; Yamamoto, H.; Morita, H.; Nomura, I.; Matsumoto, K.; Hirato, J.; Hatakeyama, S.-I.; et al. Eosinophilic Gastrointestinal Disorders in Infants: A Japanese Case Series. Int. Arch. Allergy Immunol. 2011, 155, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y. Unique features of non-IgE-mediated gastrointestinal food allergy during infancy in Japan. Curr. Opin. Allergy Clin. Immunol. 2020, 20, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Izumiya, Y.; Okuda, Y.; Ueki, S.; Takeda, M.; Sato, K.; Nakayama, K. Unusual morphologies of blood eosinophils in GM-CSF-producing lung cancer. QJM: Int. J. Med. 2020, 114, 42–44. [Google Scholar] [CrossRef] [PubMed]
- Kuk, J.; MacEachern, J.; Soamboonsrup, P.; McFarlane, A.; Benger, A.; Patterson, W.; Yang, L.; Trus, M. Chronic eosinophilic leukemia presenting with autoimmune hemolytic anemia and erythrophagocytosis by eosinophils. Am. J. Hematol. 2006, 81, 458–461. [Google Scholar] [CrossRef] [PubMed]
- Sandberg, Y.; Weerkamp, F. Charcot-Leyden crystals in chronic eosinophilic leukemia. Blood 2021, 137, 1985. [Google Scholar] [CrossRef]
- Lyall, H.; O’Connor, S.; Clark, D. Charcot-Leyden crystals in the trephine biopsy of a patient with a FIP1L1-PDGFRA? positive myeloproliferative disorder. Br. J. Haematol. 2007, 138, 405. [Google Scholar] [CrossRef]
- Pujol-Moix, N.; Brunet, S.; Ayats, R. Bone marrow necrosis with Charcot-Leyden crystals in a patient with idiopathic hypereosinophilic syndrome. Haematologica 2003, 88, Eim12. [Google Scholar]
- Charot, J.M. Observation de leucocythemie. CR Soc. Biol. 1853, 5, 44–50. Available online: https://cir.nii.ac.jp/crid/1570009749420231808 (accessed on 30 June 2022).
- Su, J. A Brief History of Charcot-Leyden Crystal Protein/Galectin-10 Research. Molecules 2018, 23, 2931. [Google Scholar] [CrossRef] [PubMed]
- Baumann, M.A.; Paul, C.C. The Aml14 and Aml14.3D10 Cell Lines: A Long-Overdue Model for the Study of Eosinophils and More. Stem Cells 1998, 16, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Ahluwalia, J.; Das, R.; Malhotra, P.; Verma, S.; Garewal, G. Charcot Leyden crystals in acute myeloid leukemia. Am. J. Hematol. 2003, 73, 141. [Google Scholar] [CrossRef] [PubMed]
- Vermeersch, P.; Zachee, P.; Brusselmans, C. Acute myeloid leukemia with bone marrow necrosis and Charcot Leyden crystals. Am. J. Hematol. 2007, 82, 1029. [Google Scholar] [CrossRef]
- Khrizman, P.; Altman, J.K.; Mohtashamian, A.; Peterson, L.; Chen, Y.-H.; Tallman, M.S. Charcot–Leyden crystals associated with acute myeloid leukemia: Case report and literature review. Leuk. Res. 2010, 34, e336–e338. [Google Scholar] [CrossRef]
- Radujkovic, A.; Bellos, F.; Andrulis, M.; Ho, A.D.; Hundemer, M. Charcot-Leyden crystals and bone marrow necrosis in acute myeloid leukemia. Eur. J. Haematol. 2011, 86, 451–452. [Google Scholar] [CrossRef]
- Manny, J.S.; Ellis, L.R. Acute myeloid leukemia with Charcot-Leyden crystals. Blood 2012, 120, 503. [Google Scholar] [CrossRef]
- Taylor, G.; Ivey, A.; Milner, B.; Grimwade, D.; Culligan, M. Acute myeloid leukaemia with mutated NPM1 presenting with extensive bone marrow necrosis and Charcot–Leyden crystals. Int. J. Hematol. 2013, 98, 267–268. [Google Scholar] [CrossRef]
- Van De Kerkhof, D.; Scharnhorst, V.; Huysentruyt, C.J.R.; Brands-Nijenhuis, A.V.M.; Ermens, A.A.M. Charcot-Leyden crystals in acute myeloid leukemia. Int. J. Lab. Hematol. 2015, 37, e100–e102. [Google Scholar] [CrossRef]
- Nashiro, T.; Hashimoto, H.; Horiuchi, H.; Usuki, K. Acute Myeloid Leukemia-associated Charcot-Leyden Crystals in the Bone Marrow. Intern. Med. 2016, 55, 1821–1822. [Google Scholar] [CrossRef] [PubMed]
- Dwyre, D.M.; Osman, M. AML with inv(16) with numerous Charcot-Leyden crystals. Blood 2019, 134, 1876. [Google Scholar] [CrossRef] [PubMed]
- Saito, K.; Sato, T.; Notohara, K.; Nannya, Y.; Ogawa, S.; Ueda, Y. Complete Bone Marrow Necrosis with Charcot-Leyden Crystals Caused by Myeloid Neoplasm with Mutated NPM1 and TET2. Intern. Med. 2022. [Google Scholar] [CrossRef] [PubMed]
- Arora, V.K.; Singh, N.; Bhatia, A. Charcot-Leyden Crystals in Fine Needle Aspiration Cytology. Acta Cytol. 1997, 41, 409–412. [Google Scholar] [CrossRef]
- Ali, N.D.; Weissmann, D. Charcot-Leyden crystals in T-cell lymphoblastic lymphoma. Blood 2017, 129, 394. [Google Scholar] [CrossRef]
- Kumar, S.; Birge, R.B. Efferocytosis. Curr. Biol. 2016, 26, R558–R559. [Google Scholar] [CrossRef]
- Klion, A.D.; Ackerman, S.J.; Bochner, B.S. Contributions of Eosinophils to Human Health and Disease. Annu. Rev. Pathol. Mech. Dis. 2020, 15, 179–209. [Google Scholar] [CrossRef]
- Soragni, A.; Yousefi, S.; Stoeckle, C.; Soriaga, A.B.; Sawaya, M.R.; Kozlowski, E.; Schmid, I.; Radonjic-Hoesli, S.; Boutet, S.; Williams, G.J.; et al. Toxicity of Eosinophil MBP Is Repressed by Intracellular Crystallization and Promoted by Extracellular Aggregation. Mol. Cell 2015, 57, 1011–1021. [Google Scholar] [CrossRef]
- Adamko, D.J.; Wu, Y.; Ajamian, F.; Ilarraza, R.; Moqbel, R.; Gleich, G.J. The effect of cationic charge on release of eosinophil mediators. J. Allergy Clin. Immunol. 2008, 122, 383–390.e4. [Google Scholar] [CrossRef]
Diagnosis | Sex/Age (y) | Tissue Findings | Disease Status | Reference |
---|---|---|---|---|
AML | F/45 | BM necrosis | Not described | [114] |
AML | M/66 | BM necrosis | Remission | [115] |
MDS/MPN transformed into AML | F/60 | BM extensive necrosis | Not described | [116] |
AML | M/59 | BM necrosis | Remission | [117] |
AML | F/70 | BM extensive necrosis | Died | [118] |
AML with mutated NPM1 | F/51 | BM mostly necrosis | Remission | [119] |
AML with mutated NPM1 | M/43 | BM necrotic hematopoietic tissue | Remission | [120] |
MDS transformed into AML | M/82 | BM necrosis | Died | [121] |
AML with inv (16) | M/35 | Hypercellular BM | Not described | [122] |
Myeloid neoplasm with mutated NPM1 and TET2 | M/46 | BM necrosis | Remission | [123] |
Chronic myelogenous leukemia | M/65 | BM necrosis | Not described | [124] |
T cell lymphoblastic lymphoma | M/49 | Focal cell necrosis in BM | Not described | [125] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomizawa, H.; Yamada, Y.; Arima, M.; Miyabe, Y.; Fukuchi, M.; Hikichi, H.; Melo, R.C.N.; Yamada, T.; Ueki, S. Galectin-10 as a Potential Biomarker for Eosinophilic Diseases. Biomolecules 2022, 12, 1385. https://doi.org/10.3390/biom12101385
Tomizawa H, Yamada Y, Arima M, Miyabe Y, Fukuchi M, Hikichi H, Melo RCN, Yamada T, Ueki S. Galectin-10 as a Potential Biomarker for Eosinophilic Diseases. Biomolecules. 2022; 12(10):1385. https://doi.org/10.3390/biom12101385
Chicago/Turabian StyleTomizawa, Hiroki, Yoshiyuki Yamada, Misaki Arima, Yui Miyabe, Mineyo Fukuchi, Haruka Hikichi, Rossana C. N. Melo, Takechiyo Yamada, and Shigeharu Ueki. 2022. "Galectin-10 as a Potential Biomarker for Eosinophilic Diseases" Biomolecules 12, no. 10: 1385. https://doi.org/10.3390/biom12101385
APA StyleTomizawa, H., Yamada, Y., Arima, M., Miyabe, Y., Fukuchi, M., Hikichi, H., Melo, R. C. N., Yamada, T., & Ueki, S. (2022). Galectin-10 as a Potential Biomarker for Eosinophilic Diseases. Biomolecules, 12(10), 1385. https://doi.org/10.3390/biom12101385