Use of Visual Electrophysiology to Monitor Retinal and Optic Nerve Toxicity
Abstract
:1. Introduction
2. Alcohol
3. Amiodarone
4. Cefuroxime
5. Cisplatin
6. Deferoxamine
7. Digoxin
8. Ethambutol
9. Hydroxychloroquine
10. Isotretinoin
11. Ocular Siderosis
12. Pentosan
13. PDE5 Inhibitors
14. Phenothiazines (Chlorpromazine and Thioridazine)
15. Quinine
16. Tamoxifen
17. Topiramate
18. Vigabatrin
19. Vitamin A Deficiency
20. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karimi, S.; Arabi, A.; Shahraki, T. Alcohol and the Eye. J. Ophthalmic. Vis. Res. 2021, 16, 260–270. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.W.; Uhm, K.B. A case of optic nerve atrophy with severe disc cupping after methanol poisoning. Korean J. Ophthalmol. 2011, 25, 146–150. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Marasini, S.; Sharma, A.K.; Shrestha, J.K.; Nepal, B.P. Methanol poisoning: Ocular and neurological manifestations. Optom. Vis. Sci. 2012, 89, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Feng, K.; Wang, J.; Zhang, M.; Hong, J.; Zhang, H. Comprehensive visual electrophysiological measurements discover crucial changes caused by alcohol addiction in humans: Clinical values in early prevention of alcoholic vision decline. Front. Neural Circuits 2022, 16, 912883. [Google Scholar] [CrossRef]
- Liu, D.M.; Zhou, S.; Chen, J.M.; Peng, S.Y.; Xia, W.T. The Intoxication Effects of Methanol and Formic Acid on Rat Retina Function. J. Ophthalmol. 2016, 2016, 4087096. [Google Scholar] [CrossRef]
- Urban, P.; Zakharov, S.; Diblik, P.; Pelclova, D.; Ridzon, P. Visual evoked potentials in patients after methanol poisoning. Int. J. Occup. Med. Environ. Health 2016, 29, 471–478. [Google Scholar] [CrossRef]
- Stromland, K. Ocular involvement in the fetal alcohol syndrome. Surv. Ophthalmol. 1987, 31, 277–284. [Google Scholar] [CrossRef]
- Hug, T.E.; Fitzgerald, K.M.; Cibis, G.W. Clinical and electroretinographic findings in fetal alcohol syndrome. J. Am. Assoc. Pediatr. Ophthalmol. Strabismus 2000, 4, 200–204. [Google Scholar] [CrossRef]
- Cohen-Lehman, J.; Dahl, P.; Danzi, S.; Klein, I. Effects of amiodarone therapy on thyroid function. Nat. Rev. Endocrinol. 2010, 6, 34–41. [Google Scholar] [CrossRef]
- Papiris, S.A.; Triantafillidou, C.; Kolilekas, L.; Markoulaki, D.; Manali, E.D. Amiodarone: Review of pulmonary effects and toxicity. Drug Saf. 2010, 33, 539–558. [Google Scholar] [CrossRef]
- Mantyjarvi, M.; Tuppurainen, K.; Ikaheimo, K. Ocular side effects of amiodarone. Surv. Ophthalmol. 1998, 42, 360–366. [Google Scholar] [CrossRef]
- Shaikh, S.; Shaikh, N.; Chun, S.H.; Spin, J.M.; Blumenkranz, M.S.; Marmor, M.F. Retinal evaluation of patients on chronic amiodarone therapy. Retina 2003, 23, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Ku, J.Y.; Wong, S.W.; Steeples, L.R.; Delaney, C.; Parry, N.R.A.; Fenerty, C. High dose cefuroxime causing retinal toxicity in a patient undergoing trabeculectomy. Am. J. Ophthalmol. Case Rep. 2022, 25, 101343. [Google Scholar] [CrossRef] [PubMed]
- Delyfer, M.N.; Rougier, M.B.; Leoni, S.; Zhang, Q.; Dalbon, F.; Colin, J.; Korobelnik, J.F. Ocular toxicity after intracameral injection of very high doses of cefuroxime during cataract surgery. J. Cataract Refract. Surg. 2011, 37, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, F.; Clark, D. Macular infarction after inadvertent intracameral cefuroxime. J. Cataract Refract. Surg. 2011, 37, 1168–1169. [Google Scholar] [CrossRef] [PubMed]
- Diez-Alvarez, L.; Salva-Palomeque, T.; Jaumandreu, L.; Gomez-Mariscal, M.; Munoz-Negrete, F.J.; Rebolleda, G. Ocular toxicity after inadvertent overdose of intracameral cefuroxime during cataract surgery. Arch. Soc. Esp. Oftalmol. 2021, 96, 571–577. [Google Scholar] [CrossRef]
- Faure, C.; Perreira, D.; Audo, I. Retinal toxicity after intracameral use of a standard dose of cefuroxime during cataract surgery. Doc. Ophthalmol. 2015, 130, 57–63. [Google Scholar] [CrossRef]
- Wang, M.Y.; Arnold, A.C.; Vinters, H.V.; Glasgow, B.J. Bilateral blindness and lumbosacral myelopathy associated with high-dose carmustine and cisplatin therapy. Am. J. Ophthalmol. 2000, 130, 367–368. [Google Scholar] [CrossRef]
- Alkan, A.; Talaz, S. Cilioretinal artery occlusion associated with cisplatin. J. Oncol. Pharm. Pract. 2019, 25, 969–971. [Google Scholar] [CrossRef]
- Caraceni, A.; Martini, C.; Spatti, G.; Thomas, A.; Onofrj, M. Recovering optic neuritis during systemic cisplatin and carboplatin chemotherapy. Acta Neurol. Scand. 1997, 96, 260–261. [Google Scholar] [CrossRef]
- Kwan, A.S.; Sahu, A.; Palexes, G. Retinal ischemia with neovascularization in cisplatin related retinal toxicity. Am. J. Ophthalmol. 2006, 141, 196–197. [Google Scholar] [CrossRef] [PubMed]
- Yazici, A.; Sogutlu-Sari, E.; Yay, A.; Aksit, H.; Kilic, A.; Aksit, D.; Yildiz, O.; Ermis, S.S. The protective effect of selenium in cisplatin-related retinotoxicity. Cutan. Ocul. Toxicol. 2014, 33, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Dulz, S.; Asselborn, N.H.; Dieckmann, K.P.; Matthies, C.; Wagner, W.; Weidmann, J.; Seidel, C.; Oing, C.; Berger, L.A.; Alsdorf, W.; et al. Retinal toxicity after cisplatin-based chemotherapy in patients with germ cell cancer. J. Cancer Res. Clin. Oncol. 2017, 143, 1319–1325. [Google Scholar] [CrossRef] [PubMed]
- Maiese, K.; Walker, R.W.; Gargan, R.; Victor, J.D. Intra-arterial cisplatin--associated optic and otic toxicity. Arch. Neurol. 1992, 49, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Hilliard, L.M.; Berkow, R.L.; Watterson, J.; Ballard, E.A.; Balzer, G.K.; Moertel, C.L. Retinal toxicity associated with cisplatin and etoposide in pediatric patients. Med. Pediatr. Oncol. 1997, 28, 310–313. [Google Scholar] [CrossRef]
- Miller, D.F.; Bay, J.W.; Lederman, R.J.; Purvis, J.D.; Rogers, L.R.; Tomsak, R.L. Ocular and orbital toxicity following intracarotid injection of BCNU (carmustine) and cisplatinum for malignant gliomas. Ophthalmology 1985, 92, 402–406. [Google Scholar] [CrossRef]
- Di Nicola, M.; Barteselli, G.; Dell’Arti, L.; Ratiglia, R.; Viola, F. Functional and Structural Abnormalities in Deferoxamine Retinopathy: A Review of the Literature. BioMed Res. Int. 2015, 2015, 249617. [Google Scholar] [CrossRef]
- Haimovici, R.; D’Amico, D.J.; Gragoudas, E.S.; Sokol, S.; Deferoxamine Retinopathy Study, G. The expanded clinical spectrum of deferoxamine retinopathy. Ophthalmology 2002, 109, 164–171. [Google Scholar] [CrossRef]
- Lakhanpal, V.; Schocket, S.S.; Jiji, R. Deferoxamine (Desferal)-induced toxic retinal pigmentary degeneration and presumed optic neuropathy. Ophthalmology 1984, 91, 443–451. [Google Scholar] [CrossRef]
- Davies, S.C.; Marcus, R.E.; Hungerford, J.L.; Miller, M.H.; Arden, G.B.; Huehns, E.R. Ocular toxicity of high-dose intravenous desferrioxamine. Lancet 1983, 2, 181–184. [Google Scholar] [CrossRef]
- Dettoraki, M.; Kattamis, A.; Ladas, I.; Maragkos, K.; Koutsandrea, C.; Chatzistefanou, K.; Laios, K.; Brouzas, D.; Moschos, M.M. Electrophysiological assessment for early detection of retinal dysfunction in beta-thalassemia major patients. Graefes Arch. Clin. Exp. Ophthalmol. 2017, 255, 1349–1358. [Google Scholar] [CrossRef] [PubMed]
- Arden, G.B.; Wonke, B.; Kennedy, C.; Huehns, E.R. Ocular changes in patients undergoing long-term desferrioxamine treatment. Br. J. Ophthalmol. 1984, 68, 873–877. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.J.; Keenan, N.K.; Gallant, T.; Skarf, B.; Freedman, M.H.; Logan, W.J. Subclinical VEP abnormalities in patients on chronic deferoxamine therapy: Longitudinal studies. Electroencephalogr. Clin. Neurophysiol. 1987, 68, 81–87. [Google Scholar] [CrossRef]
- Economou, M.; Zafeiriou, D.I.; Kontopoulos, E.; Gompakis, N.; Koussi, A.; Perifanis, V.; Athanassiou-Metaxa, M. Neurophysiologic and intellectual evaluation of beta-thalassemia patients. Brain Dev. 2006, 28, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Renard, D.; Rubli, E.; Voide, N.; Borruat, F.X.; Rothuizen, L.E. Spectrum of digoxin-induced ocular toxicity: A case report and literature review. BMC Res. Notes 2015, 8, 368. [Google Scholar] [CrossRef] [PubMed]
- Lawrenson, J.G.; Kelly, C.; Lawrenson, A.L.; Birch, J. Acquired colour vision deficiency in patients receiving digoxin maintenance therapy. Br. J. Ophthalmol. 2002, 86, 1259–1261. [Google Scholar] [CrossRef]
- Piltz, J.R.; Wertenbaker, C.; Lance, S.E.; Slamovits, T.; Leeper, H.F. Digoxin toxicity. Recognizing the varied visual presentations. J. Clin. Neuroophthalmol. 1993, 13, 275–280. [Google Scholar]
- Butler, V.P., Jr.; Odel, J.G.; Rath, E.; Wolin, M.J.; Behrens, M.M.; Martin, T.J.; Kardon, R.H.; Gouras, P. Digitalis-induced visual disturbances with therapeutic serum digitalis concentrations. Ann. Intern. Med. 1995, 123, 676–680. [Google Scholar] [CrossRef]
- Weleber, R.G.; Shults, W.T. Digoxin retinal toxicity. Clinical and electrophysiological evaluation of a cone dysfunction syndrome. Arch. Ophthalmol. 1981, 99, 1568–1572. [Google Scholar] [CrossRef]
- Lee, E.J.; Kim, S.J.; Choung, H.K.; Kim, J.H.; Yu, Y.S. Incidence and clinical features of ethambutol-induced optic neuropathy in Korea. J. Neuroophthalmol. 2008, 28, 269–277. [Google Scholar] [CrossRef]
- Chen, S.C.; Lin, M.C.; Sheu, S.J. Incidence and prognostic factor of ethambutol-related optic neuropathy: 10-year experience in southern Taiwan. Kaohsiung J. Med. Sci. 2015, 31, 358–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vistamehr, S.; Walsh, T.J.; Adelman, R.A. Ethambutol neuroretinopathy. Semin. Ophthalmol. 2007, 22, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Hennekes, R. Clinical ERG findings in ethambutol intoxication. Graefes Arch. Clin. Exp. Ophthalmol. 1982, 218, 319–321. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.E. Visual electrophysiology and psychophysics in chronic alcoholics and in patients on tuberculostatic chemotherapy. Am. J. Optom. Physiol. Opt. 1984, 61, 576–585. [Google Scholar] [CrossRef] [PubMed]
- Kakisu, Y.; Adachi-Usami, E.; Mizota, A. Pattern electroretinogram and visual evoked cortical potential in ethambutol optic neuropathy. Doc. Ophthalmol. 1987, 67, 327–334. [Google Scholar] [CrossRef]
- Lai, T.Y.; Ngai, J.W.; Lai, R.Y.; Lam, D.S. Multifocal electroretinography changes in patients on ethambutol therapy. Eye 2009, 23, 1707–1713. [Google Scholar] [CrossRef]
- Behbehani, R.S.; Affel, E.L.; Sergott, R.C.; Savino, P.J. Multifocal ERG in ethambutol associated visual loss. Br. J. Ophthalmol. 2005, 89, 976–982. [Google Scholar] [CrossRef]
- Lai, T.Y.; Chan, W.M.; Lam, D.S.; Lim, E. Multifocal electroretinogram demonstrated macular toxicity associated with ethambutol related optic neuropathy. Br. J. Ophthalmol. 2005, 89, 774–775. [Google Scholar] [CrossRef]
- Yen, M.Y.; Wang, A.G.; Chiang, S.C.; Liu, J.H. Ethambutol retinal toxicity: An electrophysiologic study. J. Formos. Med. Assoc. 2000, 99, 630–634. [Google Scholar]
- Petrera, J.E.; Fledelius, H.C.; Trojaborg, W. Serial pattern evoked potential recording in a case of toxic optic neuropathy due to ethambutol. Electroencephalogr. Clin. Neurophysiol. 1988, 71, 146–149. [Google Scholar] [CrossRef]
- Rosenbaum, J.T.; Costenbader, K.H.; Desmarais, J.; Ginzler, E.M.; Fett, N.; Goodman, S.M.; O’Dell, J.R.; Schmajuk, G.; Werth, V.P.; Melles, R.B.; et al. American College of Rheumatology, American Academy of Dermatology, Rheumatologic Dermatology Society, and American Academy of Ophthalmology 2020 Joint Statement on Hydroxychloroquine Use With Respect to Retinal Toxicity. Arthritis Rheumatol. 2021, 73, 908–911. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, I.H.; Sharma, S.; Luqmani, R.; Downes, S.M. Hydroxychloroquine retinopathy. Eye 2017, 31, 828–845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsang, A.C.; Ahmadi Pirshahid, S.; Virgili, G.; Gottlieb, C.C.; Hamilton, J.; Coupland, S.G. Hydroxychloroquine and chloroquine retinopathy: A systematic review evaluating the multifocal electroretinogram as a screening test. Ophthalmology 2015, 122, 1239–1251.e4. [Google Scholar] [CrossRef] [PubMed]
- Maturi, R.K.; Yu, M.; Weleber, R.G. Multifocal electroretinographic evaluation of long-term hydroxychloroquine users. Arch. Ophthalmol. 2004, 122, 973–981. [Google Scholar] [CrossRef]
- Adamptey, B.; Rudnisky, C.J.; MacDonald, I.M. Effect of stopping hydroxychloroquine therapy on the multifocal electroretinogram in patients with rheumatic disorders. Can. J. Ophthalmol. 2020, 55, 38–44. [Google Scholar] [CrossRef]
- Chang, W.H.; Katz, B.J.; Warner, J.E.; Vitale, A.T.; Creel, D.; Digre, K.B. A novel method for screening the multifocal electroretonogram in patients using hydroxychloroquine. Retina 2008, 28, 1478–1486. [Google Scholar] [CrossRef]
- Nebbioso, M.; Livani, M.L.; Steigerwalt, R.D.; Panetta, V.; Rispoli, E. Retina in rheumatic diseases: Standard full field and multifocal electroretinography in hydroxychloroquine retinal dysfunction. Clin. Exp. Optom. 2011, 94, 276–283. [Google Scholar] [CrossRef]
- Heravian, J.; Saghafi, M.; Shoeibi, N.; Hassanzadeh, S.; Shakeri, M.T.; Sharepoor, M. A comparative study of the usefulness of color vision, photostress recovery time, and visual evoked potential tests in early detection of ocular toxicity from hydroxychloroquine. Int. Ophthalmol. 2011, 31, 283–289. [Google Scholar] [CrossRef]
- Leyden, J.J.; Del Rosso, J.Q.; Baum, E.W. The use of isotretinoin in the treatment of acne vulgaris: Clinical considerations and future directions. J. Clin. Aesthet. Dermatol. 2014, 7, S3–S21. [Google Scholar]
- Weleber, R.G.; Denman, S.T.; Hanifin, J.M.; Cunningham, W.J. Abnormal retinal function associated with isotretinoin therapy for acne. Arch. Ophthalmol. 1986, 104, 831–837. [Google Scholar] [CrossRef]
- Teo, K.; Yazdabadi, A. Isotretinoin and night blindness. Australas J. Dermatol 2014, 55, 222–224. [Google Scholar] [CrossRef]
- Brown, R.D.; Grattan, C.E. Visual toxicity of synthetic retinoids. Br. J. Ophthalmol 1989, 73, 286–288. [Google Scholar] [CrossRef] [PubMed]
- Mollan, S.P.; Woodcock, M.; Siddiqi, R.; Huntbach, J.; Good, P.; Scott, R.A. Does use of isotretinoin rule out a career in flying? Br. J. Ophthalmol 2006, 90, 957–959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hope-Ross, M.; Mahon, G.J.; Johnston, P.B. Ocular siderosis. Eye 1993, 7 Pt 3, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Schechner, R.; Miller, B.; Merksamer, E.; Perlman, I. A long term follow up of ocular siderosis: Quantitative assessment of the electroretinogram. Doc. Ophthalmol. 1990, 76, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Imaizumi, M.; Matsumoto, C.S.; Yamada, K.; Nanba, Y.; Takaki, Y.; Nakatsuka, K. Electroretinographic assessment of early changes in ocular siderosis. Ophthalmologica 2000, 214, 354–359. [Google Scholar] [CrossRef]
- Pearce, W.A.; Chen, R.; Jain, N. Pigmentary Maculopathy Associated with Chronic Exposure to Pentosan Polysulfate Sodium. Ophthalmology 2018, 125, 1793–1802. [Google Scholar] [CrossRef]
- Hanif, A.M.; Armenti, S.T.; Taylor, S.C.; Shah, R.A.; Igelman, A.D.; Jayasundera, K.T.; Pennesi, M.E.; Khurana, R.N.; Foote, J.E.; O’Keefe, G.A.; et al. Phenotypic Spectrum of Pentosan Polysulfate Sodium-Associated Maculopathy: A Multicenter Study. JAMA Ophthalmol. 2019, 137, 1275–1282. [Google Scholar] [CrossRef]
- Abou-Jaoude, M.M.; Davis, A.M.; Fraser, C.E.; Leys, M.; Hinkle, D.; Odom, J.V.; Maldonado, R.S. New Insights Into Pentosan Polysulfate Maculopathy. Ophthalmic Surg. Lasers Imaging Retin. 2021, 52, 13–22. [Google Scholar] [CrossRef]
- Kerr, N.M.; Danesh-Meyer, H.V. Phosphodiesterase inhibitors and the eye. Clin. Exp. Ophthalmol. 2009, 37, 514–523. [Google Scholar] [CrossRef]
- Luu, J.K.; Chappelow, A.V.; McCulley, T.J.; Marmor, M.F. Acute effects of sildenafil on the electroretinogram and multifocal electroretinogram. Am. J. Ophthalmol. 2001, 132, 388–394. [Google Scholar] [CrossRef]
- Vobig, M.A.; Klotz, T.; Staak, M.; Bartz-Schmidt, K.U.; Engelmann, U.; Walter, P. Retinal side-effects of sildenafil. Lancet 1999, 353, 375. [Google Scholar] [CrossRef]
- Tamminga, C.A.; Carlsson, A. Partial dopamine agonists and dopaminergic stabilizers, in the treatment of psychosis. Curr. Drug Targets CNS Neurol. Disord. 2002, 1, 141–147. [Google Scholar] [CrossRef]
- Meltzer, H.Y.; Sachar, E.J.; Frantz, A.G. Dopamine antagonism by thioridazine in schizophrenia. Biol. Psychiatry 1975, 10, 53–57. [Google Scholar] [PubMed]
- Richa, S.; Yazbek, J.C. Ocular adverse effects of common psychotropic agents: A review. CNS Drugs 2010, 24, 501–526. [Google Scholar] [CrossRef]
- Holopigian, K.; Clewner, L.; Seiple, W.; Kupersmith, M.J. The effects of dopamine blockade on the human flash electroretinogram. Doc. Ophthalmol. 1994, 86, 1–10. [Google Scholar] [CrossRef]
- Meredith, T.A.; Aaberg, T.M.; Willerson, W.D. Progressive chorioretinopathy after receiving thioridazine. Arch. Ophthalmol. 1978, 96, 1172–1176. [Google Scholar] [CrossRef]
- Bartel, P.; Blom, M.; Robinson, E.; Van der Meyden, C.; Sommers, D.O.; Becker, P. Effects of chlorpromazine on pattern and flash ERGs and VEPs compared to oxazepam and to placebo in normal subjects. Electroencephalogr. Clin. Neurophysiol. 1990, 77, 330–339. [Google Scholar] [CrossRef]
- Warner, R.; Laugharne, J.; Peet, M.; Brown, L.; Rogers, N. Retinal function as a marker for cell membrane omega-3 fatty acid depletion in schizophrenia: A pilot study. Biol. Psychiatry 1999, 45, 1138–1142. [Google Scholar] [CrossRef]
- Bartel, P.; Blom, M.; van der Meyden, C.; de Klerk, S. Effects of single doses of diazepam, chlorpromazine, imipramine and trihexyphenidyl on visual-evoked potentials. Neuropsychobiology 1988, 20, 212–217. [Google Scholar] [CrossRef]
- Filip, V.; Balik, J. Possible indication of dopaminergic blockade in man by electroretinography. Int. Pharm. 1978, 13, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Saletu, B.; Saletu, M.; Simeon, J.; Viamontes, G.; Itil, T.M. Comparative symptomatological and evoked potential studies with d-amphetamine, thioridazine, and placebo in hyperkinetic children. Biol. Psychiatry 1975, 10, 253–275. [Google Scholar] [PubMed]
- Audo, I.; Robson, A.G.; Holder, G.E.; Moore, A.T. The negative ERG: Clinical phenotypes and disease mechanisms of inner retinal dysfunction. Surv. Ophthalmol. 2008, 53, 16–40. [Google Scholar] [CrossRef] [PubMed]
- Verdon, W. Clinical electrophysiology in quinine induced retinal toxicity. Optom. Vis. Sci. 2008, 85, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Freund, P.R.; Wright, T.; Margolin, E.A. Toxic Optic Neuropathy From Quinine Overdose. J. Neuroophthalmol. 2020, 40, 258–261. [Google Scholar] [CrossRef] [PubMed]
- Saeed, M.U.; Noonan, C.; Hagan, R.; Brown, M. Relatively spared central multifocal electroretinogram responses in acute quinine toxicity. BMJ Case Rep. 2011, 2011, bcr0420114166. [Google Scholar] [CrossRef]
- Gangitano, J.L.; Keltner, J.L. Abnormalities of the pupil and visual-evoked potential in quinine amblyopia. Am. J. Ophthalmol. 1980, 89, 425–430. [Google Scholar] [CrossRef]
- Canning, C.R.; Hague, S. Ocular quinine toxicity. Br. J. Ophthalmol. 1988, 72, 23–26. [Google Scholar] [CrossRef]
- Arora, S.; Surakiatchanukul, T.; Arora, T.; Errera, M.H.; Agrawal, H.; Lupidi, M.; Chhablani, J. Retinal toxicities of systemic anticancer drugs. Surv. Ophthalmol. 2022, 67, 97–148. [Google Scholar] [CrossRef]
- Caramoy, A.; Scholz, P.; Fauser, S.; Kirchhof, B. Imaging tamoxifen retinopathy using spectral-domain optical coherence tomography. GMS Ophthalmol. Cases 2011, 1, Doc07. [Google Scholar] [CrossRef]
- Salomao, S.R.; Watanabe, S.E.; Berezovsky, A.; Motono, M. Multifocal electroretinography, color discrimination and ocular toxicity in tamoxifen use. Curr. Eye Res. 2007, 32, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, S.E.; Berezovsky, A.; Motono, M.; Sacai, P.Y.; Pereira, J.M.; Sallum, J.M.; Gebrim, L.H.; Salomao, S.R. Retinal function in patients treated with tamoxifen. Doc. Ophthalmol. 2010, 120, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Bentley, C.R.; Davies, G.; Aclimandos, W.A. Tamoxifen retinopathy: A rare but serious complication. BMJ 1992, 304, 495–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKeown, C.A.; Swartz, M.; Blom, J.; Maggiano, J.M. Tamoxifen retinopathy. Br. J. Ophthalmol. 1981, 65, 177–179. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, N.; Chen, Y. The optical imaging and clinical features of tamoxifen associated macular hole: A case report and review of the literatures. Photodiagn. Photodyn. Ther. 2017, 17, 35–38. [Google Scholar] [CrossRef]
- Hesami, O.; Hosseini, S.S.; Kazemi, N.; Hosseini-Zijoud, S.M.; Moghaddam, N.B.; Assarzadegan, F.; Mokhtari, S.; Fakhraee, S. Evaluation of Ocular Side Effects in the Patients on Topiramate Therapy for Control of Migrainous Headache. J. Clin. Diagn. Res. 2016, 10, NC01-04. [Google Scholar] [CrossRef]
- Abtahi, M.A.; Abtahi, S.H.; Fazel, F.; Roomizadeh, P.; Etemadifar, M.; Jenab, K.; Akbari, M. Topiramate and the vision: A systematic review. Clin. Ophthalmol. 2012, 6, 117–131. [Google Scholar] [CrossRef]
- Rosenberg, K.; Maguire, J.; Benevento, J. Topiramate-induced macular neurosensory retinal detachment. Am. J. Ophthalmol. Case Rep. 2017, 7, 31–37. [Google Scholar] [CrossRef]
- Tsui, I.; Casper, D.; Chou, C.L.; Tsang, S.H. Electronegative electroretinogram associated with topiramate toxicity and vitelliform maculopathy. Doc. Ophthalmol. 2008, 116, 57–60. [Google Scholar] [CrossRef]
- Kjellstrom, S.; Bruun, A.; Isaksson, B.; Eriksson, T.; Andreasson, S.; Ponjavic, V. Retinal function and histopathology in rabbits treated with Topiramate. Doc. Ophthalmol. 2006, 113, 179–186. [Google Scholar] [CrossRef]
- De Luca, C.; Gori, S.; Mazzucchi, S.; Dini, E.; Cafalli, M.; Siciliano, G.; Papa, M.; Baldacci, F. Supersaturation of VEP in Migraine without Aura Patients Treated with Topiramate: An Anatomo-Functional Biomarker of the Disease. J. Clin. Med. 2021, 10, 769. [Google Scholar] [CrossRef] [PubMed]
- Yee, J.M.; Agulian, S.; Kocsis, J.D. Vigabatrin enhances promoted release of GABA in neonatal rat optic nerve. Epilepsy Res. 1998, 29, 195–200. [Google Scholar] [CrossRef]
- Maciel, C.B.; Teixeira, F.J.P.; Dickinson, K.J.; Spana, J.C.; Merck, L.H.; Rabinstein, A.A.; Sergott, R.; Shan, G.; Miao, G.; Peloquin, C.A.; et al. Early vigabatrin augmenting GABA-ergic pathways in post-anoxic status epilepticus (VIGAB-STAT) phase IIa clinical trial study protocol. Neurol. Res. Pract. 2022, 4, 4. [Google Scholar] [CrossRef] [PubMed]
- Foroozan, R. Vigabatrin: Lessons Learned From the United States Experience. J. Neuroophthalmol. 2018, 38, 442–450. [Google Scholar] [CrossRef]
- Ben-Menachem, E. Mechanism of action of vigabatrin: Correcting misperceptions. Acta Neurol. Scand. Suppl. 2011, 124, 5–15. [Google Scholar] [CrossRef]
- Heim, M.K.; Gidal, B.E. Vigabatrin-associated retinal damage: Potential biochemical mechanisms. Acta Neurol. Scand. 2012, 126, 219–228. [Google Scholar] [CrossRef]
- Tao, Y.; Yang, J.; Ma, Z.; Yan, Z.; Liu, C.; Ma, J.; Wang, Y.; Yang, Z.; Huang, Y.F. The Vigabatrin Induced Retinal Toxicity is Associated with Photopic Exposure and Taurine Deficiency: An In Vivo Study. Cell Physiol. Biochem. 2016, 40, 831–846. [Google Scholar] [CrossRef]
- Vogel, K.R.; Ainslie, G.R.; Schmidt, M.A.; Wisor, J.P.; Gibson, K.M. mTOR Inhibition Mitigates Molecular and Biochemical Alterations of Vigabatrin-Induced Visual Field Toxicity in Mice. Pediatr. Neurol. 2017, 66, 44–52.e41. [Google Scholar] [CrossRef]
- Yang, J.; Naumann, M.C.; Tsai, Y.T.; Tosi, J.; Erol, D.; Lin, C.S.; Davis, R.J.; Tsang, S.H. Vigabatrin-induced retinal toxicity is partially mediated by signaling in rod and cone photoreceptors. PLoS ONE 2012, 7, e43889. [Google Scholar] [CrossRef]
- Daneshvar, H.; Racette, L.; Coupland, S.G.; Kertes, P.J.; Guberman, A.; Zackon, D. Symptomatic and asymptomatic visual loss in patients taking vigabatrin. Ophthalmology 1999, 106, 1792–1798. [Google Scholar] [CrossRef]
- Sergott, R.C.; Westall, C.A. Primer on visual field testing, electroretinography, and other visual assessments for patients treated with vigabatrin. Acta Neurol. Scand. Suppl. 2011, 124, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Clayton, L.M.; Devile, M.; Punte, T.; de Haan, G.J.; Sander, J.W.; Acheson, J.F.; Sisodiya, S.M. Patterns of peripapillary retinal nerve fiber layer thinning in vigabatrin-exposed individuals. Ophthalmology 2012, 119, 2152–2160. [Google Scholar] [CrossRef] [PubMed]
- Morong, S.; Westall, C.A.; Nobile, R.; Buncic, J.R.; Logan, W.J.; Panton, C.M.; Abdolell, M. Longitudinal changes in photopic OPs occurring with vigabatrin treatment. Doc. Ophthalmol. 2003, 107, 289–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonagh, J.; Stephen, L.J.; Dolan, F.M.; Parks, S.; Dutton, G.N.; Kelly, K.; Keating, D.; Sills, G.J.; Brodie, M.J. Peripheral retinal dysfunction in patients taking vigabatrin. Neurology 2003, 61, 1690–1694. [Google Scholar] [CrossRef]
- Kjellstrom, U.; Andreasson, S.; Ponjavic, V. Electrophysiological evaluation of retinal function in children receiving vigabatrin medication. J. Pediatr. Ophthalmol. Strabismus 2011, 48, 357–365. [Google Scholar] [CrossRef]
- Moskowitz, A.; Hansen, R.M.; Eklund, S.E.; Fulton, A.B. Electroretinographic (ERG) responses in pediatric patients using vigabatrin. Doc. Ophthalmol. 2012, 124, 197–209. [Google Scholar] [CrossRef]
- Harding, G.F.; Wild, J.M.; Robertson, K.A.; Lawden, M.C.; Betts, T.A.; Barber, C.; Barnes, P.M. Electro-oculography, electroretinography, visual evoked potentials, and multifocal electroretinography in patients with vigabatrin-attributed visual field constriction. Epilepsia 2000, 41, 1420–1431. [Google Scholar] [CrossRef]
- Sommer, A. Vitamin a deficiency and clinical disease: An historical overview. J. Nutr. 2008, 138, 1835–1839. [Google Scholar] [CrossRef]
- McBain, V.A.; Egan, C.A.; Pieris, S.J.; Supramaniam, G.; Webster, A.R.; Bird, A.C.; Holder, G.E. Functional observations in vitamin A deficiency: Diagnosis and time course of recovery. Eye 2007, 21, 367–376. [Google Scholar] [CrossRef]
- Genead, M.A.; Fishman, G.A.; Lindeman, M. Fundus white spots and acquired night blindness due to vitamin A deficiency. Doc. Ophthalmol. 2009, 119, 229–233. [Google Scholar] [CrossRef]
- Gilbert, C. The eye signs of vitamin A deficiency. Community Eye Health 2013, 26, 66–67. [Google Scholar] [PubMed]
- Singer, J.R.; Bakall, B.; Gordon, G.M.; Reddy, R.K. Treatment of vitamin A deficiency retinopathy with sublingual vitamin A palmitate. Doc. Ophthalmol. 2016, 132, 137–145. [Google Scholar] [CrossRef] [PubMed]
Generic | Brand |
---|---|
Amiodarone | Cordarone Nextarone Pacearone |
Cefuroxime | Ceftin Kefurox Zinaceft |
Cisplatin | Platinol |
Desferoxamine, desferrioxamine | Desferal |
Digoxin | Cardoxin Digitek Digox Lanoxicaps Lanoxin |
Ethambutol | Myambutol |
Hydroxychloroquine | Quineprox Plaquenil Plaquenil Sulfate |
Isoretinoin | Absorica Accutane Amnesteem Claravis Myorisan Sotret Zenatane |
Pentosan Polysulfate Sodium | Elmiron |
Avanafil | Stendra |
Sildenafil | Revatio Viagra |
Tadalafil | Adcirca Cialis |
Vardenafil | Levitra Staxyn |
Chlorpromazine | Ormazine Thorazine Thorazine Spansule |
Thioridazine | Mellaril |
Quinine | QM-260 Qualaquin Quinamm |
Tamoxifen | Nolvadex Soltamox |
Topiramate | Eprontia Qudexy XR Topamax Trokendi XR Topiragen |
Vigabatrin | Sabril Vigadrone |
Substance | ffERG | mfERG | PERG | VEP | EOG | References |
---|---|---|---|---|---|---|
Alcohol | A−, I+ | A−, I+ | [3,6,8] | |||
Amiodarone | A− | [12] | ||||
Cefuroxime | A− | A− | [13,14,17] | |||
Cisplatin | A− | A−, I+ | A− | [20,23,24,26] | ||
Deferoxamine | A−, I+ | A−, I+ | I+ | A− | [28,31,32,33] | |
Digoxin | A−, I+ | A− | A− | [35,37,38] | ||
Ethambutol | A−, I+ | A−, I+ | [43,44,45,50] | |||
Hydroxychloroquine | A−, I+ | I+ | [53,54,56,57,58] | |||
Isotretinoin | A− | [60,62] | ||||
Ocular siderosis | A− | [64,65] | ||||
Pentosane | A− | A−, I+ | [67,68,69] | |||
PDE5 Inhibitors | A−, I+ | A−, I+ | [71,72] | |||
Phenothiazines | A−, I+ | A−, I+ | A−, I+ | A− | [76,77,78,80,81,82] | |
Quinine | A− | A− | I+ | A− | [83,84,85,86] | |
Tamoxifen | A− | [95] | ||||
Topiramate | A− | [99] | ||||
Vigabatrin | A− | A− | A− | [104,106,111,113,114,115,116,117] | ||
Vitamin A deficiency | A− | A− | A− | [119,120,122] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiang, T.-K.; White, K.M.; Kurup, S.K.; Yu, M. Use of Visual Electrophysiology to Monitor Retinal and Optic Nerve Toxicity. Biomolecules 2022, 12, 1390. https://doi.org/10.3390/biom12101390
Chiang T-K, White KM, Kurup SK, Yu M. Use of Visual Electrophysiology to Monitor Retinal and Optic Nerve Toxicity. Biomolecules. 2022; 12(10):1390. https://doi.org/10.3390/biom12101390
Chicago/Turabian StyleChiang, Tsun-Kang, Kayla Marie White, Shree K. Kurup, and Minzhong Yu. 2022. "Use of Visual Electrophysiology to Monitor Retinal and Optic Nerve Toxicity" Biomolecules 12, no. 10: 1390. https://doi.org/10.3390/biom12101390
APA StyleChiang, T. -K., White, K. M., Kurup, S. K., & Yu, M. (2022). Use of Visual Electrophysiology to Monitor Retinal and Optic Nerve Toxicity. Biomolecules, 12(10), 1390. https://doi.org/10.3390/biom12101390