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Abstract: Leber hereditary optic neuropathy (LHON) is a rare syndrome that results in vision loss.
A necessary but not sufficient condition for its onset is the existence of known mitochondrial DNA
mutations that affect complex I biomolecular structure. Cybrids with LHON mutations generate
higher rates of reactive oxygen species (ROS). This study models how ROS, particularly H2O2,
could signal and execute the axonal degeneration process that underlies LHON. We modeled and
explored several hypotheses regarding the influence of H2O2 on the dynamics of propagation of
axonal degeneration in LHON. Zonal oxidative stress, corresponding to H2O2 gradients, correlated
with the morphology of injury exhibited in the LHON pathology. If the axonal membrane is highly
permeable to H2O2 and oxidative stress induces larger production of H2O2, small injuries could
trigger cascading failures of neighboring axons. The cellular interdependence created by H2O2

diffusion, and the gradients created by tissue variations in H2O2 production and scavenging, result in
injury patterns and surviving axonal loss distributions similar to LHON tissue samples. Specifically,
axonal degeneration starts in the temporal optic nerve, where larger groups of small diameter fibers
are located and propagates from that region. These findings correlate well with clinical observations
of central loss of visual field, visual acuity, and color vision in LHON, and may serve as an in silico
platform for modeling the mechanism of action for new therapeutics.

Keywords: Leber hereditary optic neuropathy; mitochondrial disease; axonal degeneration; visual
fields; optic nerve simulation

1. Introduction

In 1988, in a first for genetically linked disorders, Wallace et al. [1] described the poten-
tial link between a rare optic neuropathy and a mutation in mitochondrial DNA (mtDNA).
The disease, known as Leber hereditary optic neuropathy (LHON), eponymously named
after the physician who first described it in 1873 [2], is a neurodegenerative disorder that
causes bilateral blindness by causing the death of retinal ganglion cells (RGCs). Although it
can occur at any age, it primarily affects young adults [3]. LHON is a clinical diagnosis that
begins with the onset of a cecocentral scotoma, though it is now definitively assessed by
DNA testing for known mtDNA mutations [4]. Once started, vision loss happens rapidly
over weeks or months, and although it usually begins in one eye, the contralateral eye
inevitably follows [4]. All LHON cases have predominately homoplastic mitochondrial
DNA point mutations that affect complex I subunits [1,5,6]. Three mutations are most
prevalent (m.11778G > A in ND4, m.14484T > G in ND6, and m.3460G > A in ND1) and
account for 95% of cases [7]. No known nuclear DNA mutations cause LHON [8], yet inter-
play with nuclear genetic factors is likely [9]. The deleterious effects of mtDNA mutations
have also been established in animal models through transferring mutant human mtDNA
ND4 [10] or mutant mtDNA ND6 genes [11] to mice, which caused visual loss similar to
the effects experienced by LHON patients. Although the genetic defects are a necessary pre-
condition for the disease, as the mitochondrial mutations are present in all LHON-affected
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patients, not all carriers of the defects exhibit the illness [12]. Penetrance of the disease is
low in female carriers of the mutations [13], and a mitochondrial biogenesis compensatory
mechanism is present in both carriers and affected cases [12]. People that have any of the
LHON mitochondrial mutations exhibit more copies of their mtDNA than control cases [12].
Affected individuals, although they show more mtDNA per cell than controls, exhibit less
mtDNA than carriers, implying a reduced mitochondrial compensation capacity [12].

Much progress has been made in unravelling LHON pathophysiology, molecular
and environmental triggers, but the causal chain leading to the illness and the roots of
its sudden onset and progression are still unelucidated [4]. While neuroretinal effects of
the disease are well established [14,15], and studies of postmortem optic nerve samples
have been published [16], the actual dynamics of injury propagation in RGCs and the
biochemistry of the process that leads to RGC apoptosis are still unknown [7,17].

LHON-linked mtDNA mutations affect critical components of the mitochondrial
electron transport chain, and, as a result, energetic imbalance and oxidative stress have
been used to explain the death of affected RGCs [18,19]. The clinical findings in LHON
(loss of visual acuity, cecocentral visual field loss, and dyschromatopsia) reflect the loss of
small diameter axons, which led the Sadun group [16,17,20] to hypothesize that the axonal
diameter predisposes the axon to death because of energy imbalance. In this hypothesis,
and consistent with the axonal stress index (NFL-SI) that the Sadun group developed [16],
axons undergo degeneration because of an imbalance between energy requirements, which
are proportional to the axonal surface, and ATP production, which is proportionate to
axonal volume. The axonal stress index (NFL-SI) is a good predictor of the bias towards
injury of smaller diameter axons in LHON. However, the disease also has axonal loss
topological characteristics that cannot be explained by the index alone. In particular, the
ATP deficit hypothesis and the NFL-SI index can account for increased death susceptibility
of smaller axons but does not account for the clustering of RGC loss seen in LHON optic
nerve histology [21].

Experimental data from rats demonstrates that, in optic nerve axons, mitochondrial
volume is directly proportional to the axon section volume in both myelinated and un-
myelinated segments [22]. However, in cybrids with LHON mutations, overall cellular
ATP production is normal, although ATP production per mitochondrion is impaired [23,24].
“However, in cybrids with LHON mutations, overall cellular ATP production is normal,
although ATP production per mitochondrion is impaired [23,24]. Animal models with
the 14484T > G (ND6) mutation, created by the Sadun group [24], and models with the
3460G > A (ND1) mutation, created by Zhang et al. [23], maintain levels of ATP produc-
tion but cellular ROS levels increase. Maintaining overall cell ATP production can be
explained by a mitochondrial compensatory mechanism [12], where the mitochondrial
volume increases, compensating for the lower output per mitochondrion.

The role of reactive oxygen species (ROS) in the genesis and evolution of LHON is a
promising alternative to the ATP deficit hypothesis [8,25]. Mitochondria are the site of oxida-
tive phosphorylation and the source of most cellular superoxide (O−2 ) production [26,27], a
precursor to all ROS compounds [28]. Although ROS compounds have intracellular signal-
ing roles in fundamental cellular processes [29,30], it has also been recognized that higher
concentrations lead to oxidative stress and can trigger cell death [31]. We used both O−2 and
hydrogen peroxide (H2O2) as a stress-inducing species, recognizing that H2O2 physical
properties make it a more likely candidate as the oxidative stress species. The range of ROS
concentrations with beneficial physiological outcomes is relatively narrow. For example,
H2O2 concentrations ([H2O2]) between 1 nM to 10 nM benefit neuronal development, while
concentrations below 1 nM and over 100 nM led to tissue pathology [32].

There is experimental evidence that increases in ROS concentration are involved in
LHON pathophysiology, although the actual mechanism mediating this process is un-
known. For example, in animal models, ROS production increases by 48% when the
14484T > G (ND6) mutation is present [24], and by about 30% when the 3460G > A (ND1)
mutation is present [23]. Data also points to lower antioxidant defenses in LHON cases, as
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exhibited by cybrids carrying LHON mutations, which can also lead to increased ROS [19].
It has also been shown that cigarette toxicity, often considered an environmental factor in
the emergence of LHON, reduces ROS scavenging capacity [13]. Searches for therapeutic
measures to prevent or stop its development have also concentrated on antioxidants and
oxidative stress-reducing medication, although other approaches targeting estrogen recep-
tors [33] and gene therapy have recently been studied [34]. Currently, the only marketed
LHON therapy (authorized under exceptional circumstances in Europe) is idebenone, a
synthetic analogue of CoQ10 that reduces oxidative stress [34], although the mechanism by
which this action is achieved is unclear [35,36].

The basis for the present study is the hypothesis that LHON axonal degeneration
has specific characteristics that might be explained by ROS spreading from one axon to
another. Analysis of axonal diameter loss shows that, although smaller diameters are
affected disproportionately, the effect highly depends on the optic nerve areas where the
loss occurs [16]. Small optic nerve fibres are alive in unaffected areas, while larger diameter
RGCs are dead in affected areas, which show complete RGC loss [16]. In other words, the
loss of axons is area-specific and not solely diameter-specific.

We previously modeled the wave-like propagation of LHON [37], with a good cor-
relation between clinically observed patterns of RGC loss and the size-dependent model
presented by the Sadun group [16]. Our previous model [37] operated on a 2-dimensional
(2D) section of the optic nerve and studied the propagation of axonal degeneration in the
optic nerve from a selected initial point of injury. The present study extends the model-
ing from [37] 2D to 3 dimensions (3D), adds axonal membrane properties, a quantitative
biochemical model, a more complex biological model for axonal sections, and the ability
to generate ROS outside the axonal space. The 3D model also allows the study of pro-
cesses around the nodes of Ranvier, present in the myelinated part of the optic nerve [38],
calculates the time spent in the sample’s biology, allowing us to judge the timescales of
the processes under study. With these enhancements, we studied the connection between
the mitochondrial volume increases that are present in carriers and afflicted LHON pa-
tients [12]. We also studied under what conditions axonal fibers degenerate independently
and when degeneration is zonal. Finally, we investigated possible triggers for the wave-like
propagation of the illness. Both O−2 and H2O2 were used as oxidative agents. Finally, an
unresolved question is the location of the initial injury for LHON along the optic nerve.
The present study explored if the injury starts in the unmyelinated prelaminar region or
the myelinated region of the optic nerve, using a computational approach.

2. Methods
2.1. Biochemical Modeling of Optic Nerve Reactive Oxygen Species
2.1.1. Background and Rationale

Reactive oxygen species (ROS) have long been the focus as a possible cause of var-
ious physiological conditions and illnesses [27,39]. Mitochondria generate them during
oxidative respiration and other intracellular and extracellular sources [26,29]. The chemical
transformations from the primordial ROS species, O−2 , to several derived chemical com-
pounds, are established [28]. The loci for ROS production and their effects on organelle and
tissue pathophysiology, particularly for neurodegenerative disorders, are areas of active
research [40,41].

Multiple ROS species are derived from O−2 of which H2O2 is the most prevalent [42].
Our proposed model simplifies the full biochemical ROS transformation models [28,29,42]
and only considers O−2 and H2O2 as ROS species of interest (Figure 1), with dismutation of
O−2 to H2O2 by mitochondrial superoxide dismutase 2 (SOD2) [43].
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Figure 1. The biochemical model uses two ROS species, O−2 and H2O2. Mitochondria are considered
the main source of O−2 . The dismutation of O−2 results in H2O2. While there are other H2O2 sources,
the current study explores only the effects of H2O2 produced from O−2 . Facilitated diffusion of
H2O2 is conducted through aquaporin (AQ) channels. Low quantities of O−2 diffuse through anionic
channels (AC), such as subsets of chloride-conducting channels.

Excess concentrations of H2O2 induce pores that permit the efflux of cytochrome c [44].
The model used local H2O2 concentrations thresholds ([H2O2]) in axonal segments as the
element that forces mitochondria to release mediator(s), which induce axonal degeneration
(Figure 1). We hypothesized that local H2O2 concentrations vary significantly in the axon
and that oxidative stress in relatively small areas can trigger this mitochondria-based
axonal degeneration.

2.1.2. Reactive Oxygen Species Diffusion

The two ROS species’ chemical dynamics were modeled using first-order differential
equations. The starting point of the derivations was a continuous-time representation of
single species reaction-diffusion systems of the form described by Equation (1) [45], where
[C] represents the concentration of a species, f([C], R) is the reaction function (R represents
other reactants), and D is a diffusion tensor.

∂t[C] = ∇·(D∇[C]) + f ([C], R) (1)

Equation (1) was discretized in space and time to obtain a computable form, accounting
for the permeability of the axonal membrane and optic nerve cross section anisotropy. All
points in the model are initialized to the same concentration value c0.

ROS concentrations ([ROS]) were tracked at each (i, j, k) voxel position. There were 3
different operating equations for each species: Equations (2)–(4) modeled O−2 dynamics,
while Equations (5)–(7) modeled H2O2 dynamics. Only one equation is used at a voxel.

The simulation environment implemented only one set of 3 equations. Given that
Equations (2)–(7) are similar, it was possible to simulate both O−2 dynamics or H2O2
dynamics in the tissue using a single system implementation. However, we focused
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on H2O2 dynamics because this species is less labile and has a longer range signaling
capacity [46].

Voxels that modeled mitochondria used Equation (2) or Equation (5). All non-
mitochondrial intracellular voxels used Equation (3) or Equation (6). Intercellular spaces
not occupied by intercellular mitochondria used Equation (4) or Equation (7).

d
[
O−2

]
i,j,k

dt
= ∇·

(
DO−2 i,j,k∇

2[O−2 ]
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)
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)
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[
O−2

]
i,j,k (7)

The above equations were implemented in the simulation from user-specified inputs.
ROS production (RP), e.g., RP = ks2[SOD2]i,j,k

[
O−2

]
i,j,k in Equation (2), was user-specified

in µM/s. ROS scavenging (RS), such as RSSh2 = ksh2[GPX]i,j,k in Equation (5), was user-
specified in 1/s.

2.1.3. Oxidative Stress States

Physiological H2O2 concentrations were divided into 2 overlapping ranges, oxidative
distress and oxidative eustress [47]. Neurons, like other cells, enter oxidative distress at
H2O2 concentrations over 100 nM and enter oxidative death at H2O2 concentrations over
1 µM [32]. However, H2O2 concentrations have gradients in the simulation model that
limit the use of an average model concentration. Concentrations averaged over the entire
model are therefore denoted as [H2O2]MODEL.

Axonal segments were assigned one of 3 states to account for the concept of oxidative
distress: “Healthy” [H], “Oxidative Stress” [S] (which corresponds to oxidative distress), or
“Dead” [D] (Figure 2) each of which could have different ROS production, scavenging and
membrane diffusion coefficients. ROS production ceased in the [D] state. The transition
into the [D] state abstracts the moment when mitochondria stop functioning permanently.
Transitioning to the [D] state for axonal segments marks the loss of mitochondrial function.
State changes between the [H], [S], and [D] states (Figure 2) were based on concentration
thresholds or time spent in the [S] state. Specifically, the [D] state could be reached in
two ways: if the ROS concentrations ([ROS]) reach a user-specified threshold, for example,
1 µM [32]; or if the axonal segment was exposed for sufficient time to sufficient [ROS] to
cause oxidative stress but below the concentration known to induce irreversible axonal de-
generation outright. Our model allowed testing of the hypothesis that axonal degeneration
starts when the axon is under oxidative stress conditions for extended periods.
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Figure 2. State-dependent ROS production and scavenging rates were assigned to individual voxels:
Healthy (H), Oxidative Stress (S) or Dead (D). State changes were dynamic, based on either threshold
conditions or triggered by the expiration of timers.

Mitochondrial in glia were placed in the inter-axonal space but without demarcating
glial cell boundaries. Each glial mitochondrion could be in one of 3 states (Figure 2), similar
to axonal mitochondria. For glial mitochondria, the transition to the [D] state marked the
mitochondrial death and cessation of its ROS production.

All voxels in an axonal segment were assigned the same state. This assumption limited
the 3D axonal mitochondria topologies that could be simulated because mitochondria are
dispersed along the axon, and [ROS] can vary substantially along the axon. At the nodes of
Ranvier, mitochondria are present next to but not at the node [22]. Energetic requirements
are dominated by signal conduction. Nearby mitochondria support the nodes to reduce
the time for diffusion of ATP, while mitochondria that are farther from the node in the
internodal region will have lower energy requirements [48]. The model implements this
energetic requirement by allowing different ROS production and scavenging values along
the axon. Setting thresholds only for the segments closer to the node is sufficient because
those segments will experience higher oxidative stress due to higher requirements for ATP.

2.2. Topological Modeling of Optic Nerve Axons and Mitochondria
2.2.1. Modeling Axons

The complex geometry of the optic nerve (ON) makes three-dimensional (3D) mod-
eling of the entire ON difficult. The current work simplified the problem by restricting
modeling to axonal sections in the region, starting at the optic nerve head (ONH) and
extending to but not including the chiasm. In the model, all axons are parallel, a reasonable
abstraction for small optic nerve sections.

Samples were mapped to 3D meshes, with equal mesh steps in the X and Y dimensions,
while the Z dimension mesh step could be set independently. Thus, each point in the mesh
is a voxel corresponding to a rectangular cuboid of the optic nerve. For example, if the XY
resolution was 7 pixels/µm and Z resolution was 1 pixel/µm, each pixel represented a
physical cuboid of sizes dx = dy = 1/7 µm, dz = 1 µm, and volume V = 1/49 µm3.

In the optic nerve, RGC axon diameter distributions differ between optic nerve ar-
eas [16]. To model axonal placements in the ON, the stochastic placement algorithm created
by Coussa et al. [37] was used, reproducing the ON axonal distributions reported by
Pan et al. [16]. The algorithm models axons as non-overlapping circles and places them in
a representation of an ON. In out implementation, the algorithm was extended to account
for the axonal membrane by accounting for the voxels that formed the perimeter of the
axons and given these voxels membrane-specific properties.

Healthy young adult optic nerves contain 1.2 million RGCs [49]. Models that include
such numerous axons are computationally demanding. If diamON denotes the optic nerve
diameter, then an “x”% model of that optic nerve is a model of diameter diamON

x
100 .

Such reduced models have the same axonal diameter distributions as the full optic nerve.
However, the number of axons in the model is reduced by approximately

( x
100

)2 relative to
a full optic nerve model.
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2.2.2. Modeling Axonal Mitochondria

Axonal mitochondria have a tubular-like appearance with diameters between 50 nm
and 300 nm [22,50] and lengths less than 2 µm [51]. The size in our model was set to
1 µm, close to the reported median [51]. Mitochondria were simulated as a “single volume”
model, and all their biochemical properties were compacted in a single simulation voxel.
By consolidating the mitochondrion to a single voxel, larger tissue-level models could be
simulated at the expense of abstracting the intricacies of the mitochondria biochemistry.
Compacting a mitochondrion in a voxel creates a modelling limitation for the geometries
which can be supported, and necessarily links the dimensions of the mitochondrial model
to the model resolution. This was done to improve throughput in the simulation procedure.

A stochastic algorithm determined the mitochondrial placement within axons by cre-
ating them with a probability p(x < mitoaxon), where mitoaxon was a user-defined percentage
of the axonal mitochondrial volume ratio. The same algorithm was employed to place
glial (extra-axonal) mitochondria. Mitochondria were placed in the optic nerve volume
not occupied by axonal mass with a probability p(x < mitoglia), where mitoglia represents the
desired mitochondria percentage of the overall extra-axonal volume.

Unmyelinated and myelinated axonal regions
The study modeled both myelinated and unmyelinated regions of the ON. Unmyeli-

nated RGC axonal segments contain greater mitochondria concentrations, reflecting their
increased metabolic rate imposed by axonal conduction requirements [22,52]. In the un-
myelinated region, given that an axon’s energetic needs do not change along the course of
the axon (i.e., the Z-axis), the use of models with one or multiple stacked voxels in the Z
dimension did not change the simulation results. Thus, all simulations for unmyelinated
regions were performed with a single voxel in the Z dimension to reduce computational
load. Myelinated axons were modeled as if they contained a single node, midway between
the proximal and distal extents of the axon. The node’s length in the Z dimension was set
to 1 µm, the median of reported values [53].

2.3. Visualization of Simulation Processing and Results

The simulation software contained a visualization module which displayed ROS
concentrations and axonal states while running simulations. 3D ROS concentrations could
be examined through 2D cuts in the 3 anatomical planes: coronal, transverse and sagittal
(Figure 3). Coronal plane views are split into 8 zones called “octants”: temporal (T) octant
on the left, the nasal (N) octant on the right, the superior (S) octant at the top, and the inferior
(I) octant at the bottom. In other words, a right optic nerve viewed from the front was
always modeled.

Axons were also grouped into 8 octants for data processing, each covering a 45◦ angle
circle sector. From left to right in the clockwise direction, the octants were temporal (T),
superior-temporal (ST), superior (S), superior-nasal (SN), nasal (N), inferior-nasal (IN), inferior
(I) and inferior-temporal (IT) (Figure 3). In each of the eight coronal octants, axonal loss is
measured as LossOctant = max(10 × log10(NAlive[Octant]/NTotal[Octant]), −101) and measured in
dB. The lower limit for loss was selected because the logarithm would be minus infinity
when the loss in an octant is complete. A lower limit was needed for display, and the
number (−101) chosen is less than the dB value if only one axon in an octant survives.
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Figure 3. ROS concentrations can be visualized using a heatmap (a) or single-color intensity (b).
Sample physical dimensions are mapped to the same number of pixels, resulting in square images
even if the sample cut would be a rectangle. In all pictures, black denotes a zero concentration of
species. The top of the transverse images represents the model’s proximal side, while the bottom
of the image shows the model’s distal side. The transverse view’s left side shows the temporal (T)
octant, while the right side of the image corresponds to the nasal (N) octant. In the sagittal views, the
picture’s left shows the proximal plane, while the picture’s right shows the distal part. The image
top corresponds to the superior (S) octant and the bottom of the image to the inferior (I) octant.
Superimposed on the sample is a Cartesian system of coordinates. The coordinate system origin is in
the left corner of the coronal plane. The X-axis runs left to right along the top line of the coronal cut,
while the Y-axis runs from top to bottom in the same view. Thus, the coronal plane cut displays the
XY plane. The Z-axis runs along the proximal to distal direction, with the origin on the axis at the
proximal side.
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2.4. Model Calibration
2.4.1. Diffusion and Permeability

Each voxel had a three-dimensional diffusion vector (Dxx, Dyy, Dzz). Diffusion values
for the X and Y directions were always equal (Dxx = Dyy), while the diffusion in the Z
direction could be set independently. Thus, the model space was anisotropic.

Membrane permeability is related to diffusion through the formula Pm = Dm/L [54],
where Pm is the permeability of the species, and L denotes the thickness of the membrane.
Cellular membrane thickness varies between 4 to 10 nm [55,56], while the myelin thickness
is about 25% of the axon diameter in data from the optic nerve of mice [57]. In our models,
given that membranes are simply voxels, and the only medium property is diffusion,
permeability was modeled by setting diffusion in the membrane voxels independently
from the rest of the model. All diffusion voxels were constrained to Dzz = 0 µm2s−1, i.e.,
diffusion through the membrane voxels was only in the XY plane. In the rest of this paper,
membrane diffusion values, denoted by Dm, represent diffusion constants in the X and Y
directions for membrane voxels.

The diffusion coefficient in water for O−2 is Dm = 2000 µm2s−1 [54]. Because of their
similar molecular mass values, the same diffusion coefficient value was used for H2O2 and
O−2 in simulations.

Thus, the diffusion coefficients in the membrane voxels were set to:

Dm = Pm ∗ L =
Pm

resxx
(8)

Reported values for passive permeability of H2O2 through cellular membranes vary.
Literature searches have yielded no values for neurons. Cellular membrane permeability
to H2O2 is between 2.8 µm s−1 and 16 µm s−1 [58,59]. However, active transport is the
primary mechanism for water permeability in astrocytes, with a reported water permeabil-
ity of 500 µm s−1 [60]. Thus, reported H2O2 permeability constants may underestimate
actual species transport capabilities for axons because of the large density of ion chan-
nels in the axonal membrane. As the reported values are in a large range, with values
for axons unknown, the current work explores H2O2 diffusion values in the range from
2/resxx µm2s−1 to 200/resxx µm2s−1. The permeability decreases in myelinated segments
because the myelin comprises many cellular membranes wrapped around the axon. An
average myelin thickness of 0.2 µm [57] and a membrane thickness of 10 nm results in an
average of 10 myelin folds around the axon. Thus, through myelin, there is a 20× reduction
in H2O2 permeability.

Membrane permeability to O−2 , measured to be around J = 2.1× 10−2 µm s−1 [61] is so
small that most references quote it as zero [62]. The resolution of 10 pixels/µm corresponds
to a diffusion value of Dm = 2.1 × 10−3 µm2s−1. As there is no difference in simulation
results when using Dm = 2.1 × 10−3 µm2s−1 or the results Dm = 0 µm2s−1 results sections
will use Dm = 0 µm2s−1 as the membrane diffusion for O−2 .

2.4.2. Reactive Oxygen Species Production

The current work explores two hypotheses regarding mitochondrial ROS production.
In the baseline hypothesis, ROS production per unit of mitochondrial volume is inde-
pendent of the axon characteristics. Hence, if the mitochondria have the same volume,
they will produce equal amounts of ROS. Simulations that use this hypothesis are marked
with RPSAME.

In the constant neuronal firing frequency hypothesis, the amount of ROS produced in
a unit of time by mitochondria is related to ATP production because mitochondrial ROS
generation is relative to electron flow down the mitochondrial respiratory chain. Because
the total amount of ATP produced is proportional to the energetic requirements of the
segment, if more mitochondria are present, each mitochondrion will need to produce fewer
ATP molecules per unit of time.
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The energy needs of an axon are dominated by signal conduction [22], and the conduc-
tion energy requirements per unit of axonal length (L) are proportional to the axon surface
area (2πRL), the total ROS produced per unit of time and unit of axonal length will be
proportionate to the axonal membrane area and the neuron firing frequency (f). In the un-
myelinated region, the volume of mitochondria in a unit of axonal length is πR2LxMitoaxon%.
Thus, per unit of volume, the mitochondria will produce ROS proportional to:

ROS ∝
fneuron_ f ire

R×Mitoaxon%
(9)

Therefore, the production rate for mitochondria in an axon of radius R is inversely
proportional to the axon radii:

RPH,S(R) =
α× fneuron_ f ire

R×Mitoaxon%
(10)

Under the constant neuronal firing frequency hypothesis for two axons of radii R1 and
R2, which fire at the same frequency f, and for axonal segments where the Mitoaxon% values
are the same, mitochondrial ROS production in two axons is related through Equation (11).

RPH,S(R) =
R2

R1
RPH,S(R2) (11)

Simulations conducted under the constant firing hypothesis were marked with RPFCONST.
Sadun et al. [16] proposed a novel LHON axonal degeneration predictor that they

named the axonal stress index (NFL-SI). The index resembles Equation (9) in that there
is inverse proportionality with the axonal radius. Applying NFL-SI framework to the
mitochondria, we can observe that, in the RPFCONST hypothesis, mitochondria in smaller
axons will experience greater oxidative stress.

One goal of our study was to explore if ROS generation rates that change as a function
of the overall ROS concentrations affect general loss patterns. It is unclear, from available
data, if the mitochondria ROS generation rate remains the same when it is subject to
oxidative stress conditions. We group the ROS Stress state production behaviors into two
categories as defined below. By running simulations with both hypotheses and comparing
the results against known patterns of axonal loss, we can determine if either of these
behaviors is more probable in LHON inception and propagation. As, in extremis, raising
the ROS production rates can lead to very high ROS concentrations, well above pathological
bounds, we have limited both the decreases and the increases in ROS productions to 30%
of the RPH values.

1. If the overall ROS generation in the Stress state is decreased (RPS = 0.7 × RPH), the
simulation was annotated with NFRP.

2. If the overall ROS generation in the Stress state stays the same or increases (RPS = RPH
or RPS = 1.3 × RPH), the simulation was annotated with PFRP.

2.5. Simulation Platform

The simulation program was coded in C# and C [63] and was developed using Microsoft
Visual Studio 2019 [64] and CUDAv11 [65]. An open-source package, Cudafy.Net [66], was
used to connect the C# environment and CUDA. Simulations were executed on a PC
equipped with an NVIDIA RTX2060 GPU containing 6 GB of onboard memory.

3. Results
3.1. Superoxide Alone Cannot Explain LHON Injury Patterns

Superoxide is the primary ROS generated by complex I, and its production is increased
in LHON cybrids [23,24]. However, O−2 is an electrically charged species that does not
diffuse through cellular membranes [61] and can be dismutated to H2O2. To test if O−2
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can explain the zonal loss patterns observed in LHON pathologies, we ran simulations
that generated O−2 only intra-axonally and did not allow O−2 to migrate to the inter-axonal
space (i.e., Pm set to 0 µm s−1). We set the O−2 concentration threshold at which axonal
degeneration would occur to 10−1 nM because reported cellular concentrations of O−2 are
in the 10−2 nM range [47], and there are no known concentration thresholds that would
trigger pathological issues because O−2 is rapidly converted to H2O2 in vivo [42]. Given
the lack of knowledge about whether stressed axons produced more or less ROS than
health axons, we compared the results of simulations where there was increased (PFRP)
or decreased (NFRP) O−2 production, to check the sensitivity of results to ROS production
changes in the Stress state.

Loss patterns were similar irrespective of the mitochondrial ROS production patterns
because axonal loss depends only on each axon’s ROS production and is not influenced by
superoxide diffusion from other cells (Figure 4a,b). However, if all mitochondria produced
ROS at the same rate (RPSAME), larger diameter axons were affected in higher numbers
(Figure 4a simulations marked with RPSAME), which is uncharacteristic for LHON. The
axonal loss was uniform across all optic nerve octants (Figure 4b), and at the end of simula-
tions, each octant had more mid-diameter axons alive than small or large diameters. The
loss patterns were also atypical for LHON [16,37]. Interestingly, although all simulations
presented in Figure 4a had similar surviving axonal ratios (around −6dB for each octant),
they had markedly different patterns in the coronal sections of the optic nerve, with the
experiments where larger diameter axons degenerated showing a more sparse appearance
(i.e., a lot more “blue” areas in Figure 4a) Although less numerous, larger diameter axons
occupied significant portions of the overall optic nerve area. If they are affected, a signifi-
cant portion of the optic nerve area loses neurons, and the remaining axons are sparsely
distributed among areas where no other axons are present. When mitochondria produced
O−2 at the same rates, larger diameter axons were disproportionately affected (Figure 4c,d).

When O−2 production uses the constant neuronal firing frequency hypothesis (RPFCONST),
axonal loss is heavily correlated with the axonal diameter and skewed towards lower di-
ameter axons. The affected axons demonstrated extreme diameter selectivity (Figure 4c),
with smaller axons completely degenerating while larger diameters were unaffected. Thus,
optic nerve octants were affected in proportion to their smaller diameter axons. Surviving
and dead axons intersperse, with no area of complete axonal loss. The observed patterns
differed from actual LHON axonal loss patterns, which show a total loss in large areas,
regardless of axonal diameters [16,37].

Thus, given simulation results that could not replicate actual LHON injury patterns
because of the inability of O−2 to diffuse across cell membranes, it is unlikely that O−2 is the
primary axonal damage agent in LHON. Because of the permeability of H2O2 through cell
membranes, subsequent simulations focused on it as a potential oxidative stress mediator
for axonal degeneration in LHON.
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Figure 4. Lack of membrane permeability to ROS species creates evenly distributed zonal loss in the
unmyelinated region (UR). NFRP and PFRP simulations have similar end states when the membrane
is impermeable: (a) Coronal view of axonal state with healthy axons in green and dead axons in
blue; (b) Coronal octant axonal loss is expressed in dB; (c) The distribution of axonal diameters, with
green bars representing healthy axons and the blue bars representing the dead axons; (d) Diameter
distributions for surviving axons.

3.2. The Constant Neuronal Firing Frequency Hypothesis Predicts Higher Oxidative Stress in the
Temporal Optic Nerve

We considered two ROS production hypotheses, one in which all mitochondria pro-
duced ROS at the same rate (RPSAME), and one where mitochondria produced ROS in
proportion to the axonal energy requirements (RPFCONST). To determine which of the two
production models was more relevant to LHON, we ran simulations with identical initial
topology and biochemistry but with different H2O2 production models and measured the
oxidative stress produced by the mitochondria. Both unmyelinated (Figure 5a) and myeli-
nated (Figure 5b) topological models were used for this purpose. Axonal mitochondria
volume ratio (mito%) was measured as a proportion of the axonal volume it occupies [22].
Simulations were calibrated at 4% mito% in the unmyelinated region [22] so that, regardless
of the ROS production strategy, mean H2O2 concentrations were the same (Figure 5a).
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Figure 5. Sample H2O2 concentrations ([H2O2]) depend on mitochondrial volume ratio for ROS
production models RPSAME and RPFCONST: (a) Mean H2O2 concentrations for simulations of un-
myelinated regions (UR); (b) Mean H2O2 concentrations for simulations of myelinated regions (MR).

All simulations demonstrated the formation of nonuniform H2O2 concentration gradi-
ents in the nerve, ranging from 5–100 nM. Axonal mitochondrial volume ratios (mito%)
influenced the gradients in ways that depended on the production model and the myeli-
nation of the region (Figure 5). When all mitochondria produced H2O2 at the same rate
(RPSAME), H2O2 concentrations increased as mito% increased (Figures 5 and 6). This phe-
nomenon happened in both unmyelinated and myelinated regions because the total H2O2
produced was proportional to the total amount of mitochondria present when the rate of
mitochondrial ROS production was fixed. Under this production model, carriers of LHON
mutations would experience higher oxidative stress than LHON cases. Given that local-
ized H2O2 concentrations can be higher than the mean concentration, many axons could
experience high oxidative stress levels, increasing the probability of axonal degeneration
(Figure 6c). The constant neuronal firing frequency assumption (RPFCONST) demonstrated
inverse correlations between mean H2O2 concentrations and mito%.

Other differences between the RPFCONST and RPSAME production models were
observed. Higher concentrations of O−2 in the temporal nerve relative to the nasal nerve
were observed in all simulations that used the RPFCONST hypothesis (Figure 6), while in
the RPSAME production hypothesis, these zonal gradients were undetectable for mito%
above 4% (Figure 6c). The axonal diameter was positively correlated with oxidative stress in
the RPSAME cases (Figure 6c) and inversely correlated in the RPFCONST cases (Figure 6c).

Increasing the axonal membrane permeability allowed higher rates of ROS diffusion
between the axon and the extra-axonal space, which reduced [H2O2] gradients in unmyeli-
nated and myelinated model simulations because it moved the H2O2 from its mitochondrial
source in the axon to a larger scavenging volume. The differences between the mean ROS
concentration and the distribution of individual voxel concentrations illustrate the chal-
lenge of using means as a figure of merit in this case. For example, H2O2 concentrations
inside axons can be above the threshold for degeneration, yet the mean concentration across
the entire simulated volume can be significantly below those values. Thus locally, H2O2
can damage axons, while the axons remain intact in other parts of the model.
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Figure 6. Coronal plane views of simulations show [H2O2] gradients from the RPSAME and RPFCONST

ROS production models in both myelinated (MR) and unmyelinated regions (UR): (a) [H2O2] varia-
tions at an axonal mitochondria volume ratio (mito%) of 4%; (b) [H2O2] values and gradients when
the mito% doubles (8%); (c) [H2O2] values and gradients when the mito% is 12%. [H2O2] was highest
in simulations of unmyelinated regions which used the RPSAME production hypothesis, with many
localized values close to the oxidative stress threshold.

Under the hypothesis that high H2O2 concentrations trigger axonal degeneration, the
constant mitochondria production assumption (RPSAME) creates optic nerve ROS levels
that would result in more extensive optic nerve damage when the mito% is increased.
However, LHON carriers have higher mito% than LHON cases, even though both have the
same mutation [12], implying a lower oxidative load on the optic nerve. Thus, the RPSAME
production model is unlikely because it does not fit the data from studying LHON axonal
mitochondria volume ratios (mito%) and was not studied in subsequent simulations.

3.3. Unmyelinated Regions of the Optic Nerve Have Higher ROS Levels Than Myelinated Regions

The optic nerve has a narrow geometry, with a diameter less than 3% of its length. In
geometries where one dimension is significantly larger than others, diffusion processes
proceed faster on the smaller dimensions. Therefore, lengthy areas where scavenging is
present without significant ROS production might reduce the influence that high oxidative
stress regions can have on their surroundings. We hypothesized that H2O2 concentration
values and their changes in time in the unmyelinated region are largely decoupled from
the [H2O2] in the myelinated area.
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To study the hypothesis, simulations were performed with an abridged optic nerve
(X = 150 µm, Y = 150 µm, and Z = 410 µm) containing myelinated and unmyelinated regions.
Along the Z axis, the top 50 µm modeled the unmyelinated region, followed by 200 µm
axonal myelinated region, a 5 µm section comprising a node and another 155 µm region
modeling a myelinated axonal shaft. The node’s length was larger than the published data
from rats [53] because of limitations in the simulation setup for samples of this scale. The
internodal sizes were between reported values [53]. Nodes from all axons were aligned
in the same plane, which is not physiological, but serves to increase oxidative coupling
between axons, thus creating a more oxidative environment than in vivo. Therefore, this
limitation should not have changed the qualitative nature of the results.

In this simulation, the role of scavenging rates along the axon was also examined.
For this purpose, either similar scavenging rates across the model (Figure 7) or a 30% of
unmyelinated scavenging capacity in the myelinated regions (Figure 8) were assumed.

Simulations were run until [H2O2] reached a steady state. The unmyelinated regions
had significantly higher [H2O2] than the myelinated regions for both uniform scavenging
of H2O2 (Figure 7) and reduced H2O2 scavenging in the myelinated area (Figure 8). In both
cases, coronal plane views (Figures 7a and 8a) demonstrate [H2O2] gradients between the
temporal and nasal sides, with higher [H2O2] on the temporal side of the nerve.

Transverse (Figures 7b and 8b) and sagittal (Figures 7c and 8c) views demonstrate sig-
nificantly higher gradients along the Z axis than in the XY plane. H2O2 concentrations in the
myelinated and the unmyelinated regions were higher than the internodal concentrations
when scavenging enzymes were uniformly distributed in the sample (Figure 7b,c).

The mitochondria in the internodal region had lower H2O2 concentrations than the
paranodal mitochondria, which support signal conduction by providing ATP to the node
(Figures 7 and 8). The decrease in internodal scavenging increased H2O2 concentrations in
the internodal regions, while concentrations in other regions were similar and higher than
in the internodal regions (Figure 8). Coronal views of the unmyelinated region show no
change in H2O2 concentrations (top row of Figures 7a and 8a), although a coronal section
of the node shows a small increase (third row of Figures 7a and 8a).

In both cases, H2O2 concentrations in the internodal regions are lower than the values
reached in the unmyelinated region or at the node. As a result, the H2O2 gradients are
towards the internodal regions, and no gradient connects the myelinated and unmyelinated
regions. Therefore, decomposing the unmyelinated and myelinated regions into separate
models would not affect results.

The results from these simulations enable the separation of a nerve into separate mod-
els of its myelinated and unmyelinated regions, running the simulations on the 2 models
using the same biochemical setup and analyzing the results as if they were from a unified
model. Such a separation is useful for simulation throughout because large models have
high computational requirements.
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Figure 7. Models with unmyelinated and myelinated regions show distinct [H2O2] patterns in the
two regions, with higher concentrations of H2O2 in the unmyelinated region (Pm = 20 µm s−1,
uniform scavenging along the Z axis). The intensity map values are in nM. (a) Coronal plane [H2O2]
map at 3 places along the Z axis; (b) Transverse views show large [H2O2] differences along the Z axis.
(c) Sagittal views of [H2O2] demonstrate that peak concentrations are in the unmyelinated region,
similar to what is seen in the transverse views.
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Figure 8. Models with unmyelinated and myelinated regions have peak [H2O2] in the unmyelinated
regions and higher concentrations close to the nodes of Ranvier than in the internodal regions when
scavenging in the internodal regions is lower than in the rest of the model (Pm = 20 µm s−1, 30%
reduction in scavenging capacity in the internodal regions). (a) The coronal plane cuts show the
[H2O2] at 3 distinct Z locations along the axon; (b) Transverse views of [H2O2] gradients in the
unmyelinated and myelinated regions; (c) Sagittal view of [H2O2] and the differences between
unmyelinated and myelinated regions.

3.4. Myelinated Regions Are Unlikely Locations for Initiating Axonal Degeneration in LHON

The region where LHON optic nerve lesions are initiated and the dynamics of axonal
degeneration associated with the disease are unknown. Under the hypothesis that the
disease is triggered by oxidative stress in the axonal region of the optic nerve, we asked
if the myelinated or the unmyelinated regions are more prone to high oxidative stress.
Intuitively, higher axonal mitochondrial volume ratios (mito%) in the unmyelinated re-
gion [22,52] should have higher concentrations of ROS. However, as shown previously, the
ROS gradients within the confines of the axon can be very high and vary based on the axon
diameter. We also showed that when mitochondria produce ROS in proportion with the
axonal energy requirements, overall H2O2 levels decrease as the axonal mito% increases.
The myelinated region membranes are also less permeable to H2O2 because of the many
myelin layers surrounding them. From that perspective, the oxidative environment in the
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myelinated regions is greater. However, previous simulation results in the myelinated and
unmyelinated models showed higher oxidative stress in the unmyelinated region. Thus, we
hypothesized that mitochondria in the unmyelinated regions are more likely to suffer from
higher levels of oxidative stress, potentially triggering axonal degeneration and subsequent
neuronal apoptosis.

We tested this hypothesis on unmyelinated and myelinated models, running sim-
ulations that considered only the effects of H2O2 produced by axons while varying the
mitochondrial H2O2 in the Stress state (Figures 9 and 10). Myelinated region models were
created as coronal slices around a node, with an overall model thickness of 10 µm. A single
node was placed 6 µm from the proximal side of the model. Mitochondria were placed
symmetrically above and below the node, with no mitochondria present at the node.

Signal conduction energy requirements represent approximately 75% of neuronal
energy requirements, with the rest used for homeostatic cellular functions [67,68]. The
myelinated segment of the optic nerve dominates the axon length, with internodal dis-
tances between 100–200 µm for each node of 1–2 µm [53]. Therefore, in axonal segments
centered on a node, most internodal mitochondria produce 25% of the required ATP, while
the mitochondria close to the node produce 75% of the energetic needs of the segment.
Assigning an estimated 5% ROS production rate to the internodal mitochondria farther
from the node should account for the energy requirements of that segment.

To further explore myelinated vs. unmyelinated axons, we again assessed two models
for oxidatively stressed axons, one with increased oxidative production in the Stress state
(PFRP) and one with decreased production (NFRP). Simulations were performed to test the
possibility that mitochondria change their operating points when subject to oxidative stress.
For the PFRP cases, we ran simulations where the Stress and Healthy states had either the
same production values (Figure 10a) or increased production values (Figure 10b). To test
sensitivity to membrane permeability, we used two different H2O2 membrane permeability
values (Pm = 20 µm s−1 and Pm = 200 µm s−1).
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Figure 9. Axonal survival increases proportionally with the mitochondrial volume ratio (mito%)
when the H2O2 production rate in the Stress state is lower than in the Healthy state (NFRP). Mito%
varied between 4 and 20%. Myelinated region models experienced no loss. Simulations using
unmyelinated and myelinated models were performed with the same biochemical parameters.
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Figure 10. The proportion of surviving axons when the H2O2 production rate in the Healthy state is
lower or equal than in the Stress state (PFRP) increases as the mitochondrial volume ratio (mito%)
increases. Mito% varied between 4 and 20% for unmyelinated region simulations and 2 to 6% for
myelinated region simulations. (a) The proportion of surviving axons as a function of mito%, when
production rates in the Healthy and Stress states are equal; (b) The proportion of surviving axons as
a function of mito% when the H2O2 production rates in the Stress state are 30% higher than in the
Healthy state.

Regardless of H2O2 production changes in the Stress state, the proportion of axonal
loss was significantly lower in simulations of myelinated axons than in unmyelinated
axons (Figures 9 and 10). Notably, there was no axonal loss in the myelinated regions in
NFRP simulations (Figure 9) or PFRP simulations (Figure 10a). In PFRP simulations with
increased stress levels, myelinated regions experienced loss only for the lower membrane
permeability value.

In unmyelinated regions, the higher energy needs imposed by less efficient axonal
conduction led to higher H2O2 production rates. For unmyelinated models, even if H2O2
production was reduced in the Stress state (NFRP), axonal degeneration occurred across a
wide range of mito% values (4% to 15%) (Figure 9). However, axonal survival increased
linearly with mito% (Figure 9).

Simulations where production in the Stress state stayed the same or increased (PFRP)
had greater variability in axonal survival than the NFRP simulations for the same mito%
(Figures 9 and 10). For the PFRP simulations, the proportion of surviving axons graphed
against the mito% had a more sigmoid shape. The proportion of surviving axons changes
more dramatically for small changes in mito% as the production of H2O2 increases in the
Stress state (Figure 10a,b). At the higher membrane permeability value (Pm = 200 µm s−1)
and for the case when production in the Stress state increases, there were abrupt changes in
survival for small variations in mito% around the 10% mito% value (Figure 10b). In this
case, slight topological changes resulting from re-running the axonal placement algorithm
for each run result in greatly different axonal survival ratios. The sensitivity of results
to small axonal placement changes suggests that the interplay between axonal topology,
membrane permeability and mito% are relevant to oxidative injury to axons.

Membrane permeability increases oxidative linkage between adjacent axons. Surpris-
ingly, higher membrane permeability increases axonal losses at lower mito% and decreases
axonal loss at higher mito% (Figures 9 and 10). This was true for both Stress state produc-
tion models. Specifically, in the NFRP production model, a higher membrane permeability
decreases axonal loss when mito% > 5% (Figure 9), in the Stress = Health model when
mito > 7% (Figure 10a), and in the PFRP model when mito% > 10% (Figure 10b). The exis-
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tence of a mito% value below which high membrane permeability is a deleterious factor in
axonal survival and above which membrane permeability has a positive effect demonstrates
that the many factors which contribute to the subcellular oxidative environment interact
with each other in nonobvious ways. In this case, the interaction between membrane diffu-
sion, optic nerve axonal topology, mito% and Stress state oxidative behavior nonlinearly
affect simulation outcomes.

The simulation results suggest that myelinated portions of RGC axons are unlikely to
be the starting point of the injury in LHON. It is more likely that the injury occurs in the
unmyelinated portion of the optic nerve and that axonal membrane permeability to H2O2
creates an oxidative environment which leads to axonal loss. It is also probable that during
the acute phase of the injury, mitochondria will produce the same or greater amounts of
H2O2, thus intensifying the overall oxidative stress environment of the nerve.

3.5. Increasing Physiological Coupling between Axons Increases Localized Axonal Degeneration

Results from previous sections show that axonal degeneration was strongly correlated
with axon diameter when the axonal membrane was impermeable to ROS (as with O−2 ).
Each coronal optic nerve octant had surviving axons (Figure 4b). However, if a ROS had
sufficient membrane permeability to diffuse through the axonal membrane (as with H2O2),
different axonal degeneration patterns occurred depending on ROS production in the Stress
state (PFRP vs. NFRP; Figure 11a,b).

The results also show that the interplay between several factors can create qualitatively
different loss outcomes. Changes in ROS production or scavenging can change the oxidative
state of the optic nerve and trigger oxidative degeneration in large areas of the optic nerve.
Regardless of the Stress state oxidative behavior, the temporal side octants suffered heavier
axonal losses (Figure 11b). Nevertheless, the extent of the loss and the patterns depended
heavily on the oxidative behavior in the Stress state.

If the intra-axonal H2O2 concentration was higher than outside the axon, permeability
through the axonal membrane allowed the transport of H2O2 to the inter-axonal space.
Conversely, if the intra-axonal H2O2 concentration was lower than outside the axon, axons
were affected by extra-axonal H2O2. This oxidative connection between a neuron and its
environment can be beneficial or deleterious. Under such conditions, adjacent axons create
a localized oxidative environment. This oxidative interdependence can lead to axonal
losses that are geometrically close, regardless of the diameters of the adjacent axons. Such
topological loss patterns were called “neighborhood losses.”

Loss of neighboring axons was present regardless of the Stress state production when-
ever the membrane was permeable (Figure 11c). For NFRP simulations, the effect was
less prevalent and not as visually striking due to its prevalence in areas where small and
medium diameter axons are grouped and lack of injury beyond small and medium diame-
ter axons. (NFRP simulations in Figure 11a). Areas of degeneration were many yet small
(PFRP marked simulations in Figure 11a). This pattern is atypical for LHON pathology [37].

In contrast, in simulations where H2O2 production increased in stressed axons (PFRP),
there was high neighborhood loss, and in most cases, the loss was complete in each octant
(PFRP simulations in Figure 11). This injury pattern (Figure 11a) resembles that seen in
LHON pathology [37]. Higher mito% provided more protection from injury and reduced
the extent of the injury patterns in proportion to the axonal mitochondrial volume ratios
(mito%). Giordano et al. [12] found that carriers of the LHON mutation who do not suffer
from visual loss have increased mito% relative to LHON patients. Although there is no
data correlating injury extent with mito% present in axons, our model correctly predicts
that there is a mito% where the injury does not appear. In all cases, axonal degeneration
started in the temporal size of the optic nerve, which also correlates with initial visual loss
in LHON [16,37] (Figure 11a).

At the end of a simulation, when a steady state was reached after completion of axonal
loss, the map of ROS concentration was lowest where the axonal loss was greatest, i.e.,
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axonal loss contributed to lowering the oxidative stress in the tissue, in both the NFRP and
PFRP paradigms (Figure 11e).

In summary, the neighborhood loss effect was stronger in the PFRP paradigm, and this
pattern better corresponded to LHON pathology, suggesting that no change or an increase
in ROS production in stressed axons is more likely in the acute phase of LHON.
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simulations: (a) Coronal view of the axon states at the end of simulations; (b) Coronal view octant
loss, expressed in dB; (c) Axonal diameter distributions, with stacked bars for each diameter. Green
bars represent Healthy axons, while blue bars represent Dead axons; (d) Axonal diameter distribution
for surviving axons only; (e) Coronal view of [H2O2] at the end of the simulations. Bar values are
in nM.

3.6. Glia-Produced Hydrogen Peroxide Produces Cascading Axonal Failure

Optic nerve glia are also possible sources of oxidative stress. Our previous study
focused only on axonal-generated ROS [37]. Given that axonal and glial mitochondria
are assumed to have Stress states, there are 4 possible combinations: axon and glial mi-
tochondria both use NFRP in the Stress state, both use PFRP, or they use opposite ROS
production strategies. When both axonal and glial mitochondria used the same Stress state
production model, the simulation results were qualitatively similar to the ones presented
in the previous sections (Figures 9–11). Such results are expected because adding glial
elements between axons is equivalent to adding axons with a virtual membrane fully per-
meable to H2O2. If axonal mitochondria used PFRP and glial mitochondria used NFRP, the
results were also qualitatively close to the previous PFRP studies (Figures 10 and 11). Glia-
produced H2O2 increases oxidative stress in all axons, exacerbating the loss experienced in
PFRP relative to the same simulations that do not consider glial elements.
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The combination where axonal mitochondria produced less ROS in the Stress state
(NFRP mode) and glial mitochondria produced more ROS (PFRP mode) was surprising
(Figures 12 and 13). Given that NFRP simulations with no glia resulted in a weak neigh-
borhood effect, we hypothesized that the addition of glia operating in PFRP mode to
unmyelinated axon models would increase the area of neighborhood loss, relative to the
case where only axonal mitochondria were present. Indeed, we found that neighborhood
effects extended over larger areas relative to the base case (i.e., NFRP simulations with-
out glia present), although the scale at which local loss occurs was significantly smaller
than in the PFRP cases (Figure 12a,b). If glial mitochondrial content was increased, the
neighborhood effect was stronger, with local injury extending to larger groups of adjacent
axons (Figure 12a). In all simulations where glial mitochondria were present, axonal loss
was more prevalent in the temporal side of the model (Figure 12), as was seen when glial
mitochondria were absent.

Higher glial mitochondria content will increase the overall model H2O2 concentrations.
The H2O2 concentrations maps (Figure 12e) show the increase created by the glia-generated
H2O2, generating a more uniform H2O2 concentration distribution across the model. Sur-
prisingly, even under such homogeneous H2O2 concentrations, the temporal side was still
more susceptible to oxidative damage, probably because of its higher density of small
diameter axons. Although glia’s contribution to [H2O2] creates a more homogeneous
oxidative environment, the per axon differences are still a factor (Figure 12e).

Membrane permeability had a limited effect on the effects of glial ROS production
models (Figure 13), similar to cases where glial mitochondria were absent. However, the
results with a 10% glia setting and lower axonal mito% proportions (4% and 5%) were
independent of the membrane permeability (Figure 13). When glia mito% were decreased,
significantly greater percentages of axons survived (Figure 12).

Because of membrane permeability in unmyelinated areas, H2O2 produced outside
the axon will influence the axons and vice versa. Glia are present in the myelinated
region but not in the areas next to the nodes [12]. Myelinated axons are impermeable to
H2O2 outside the node; therefore, ROS outside the axon would not penetrate the axon.
Higher H2O2 levels could affect myelination, although our models do not capture such
effects. Therefore, we only simulated unmyelinated optic nerve sections in the studies of
axonal-glial interactions.

Overall, H2O2 created by glia can affect axons in unmyelinated regions, but is not
necessary to explain the neighborhood loss patterns exhibited by LHON patients. Glia
may have a supporting role in axonal degeneration, but the main oxidative engine is likely
intra-axonal mitochondria.
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Figure 12. Injury extent and axonal loss distributions in glia-enabled simulations depend on the
axonal mitochondrial volume ratios (mito%) and glial mitochondrial volumes: (a) Coronal plane
view of axonal states at the end of the simulations; (b) Coronal plane octant loss, in dB; (c) Axonal
diameter distributions with details of their state, blue bars for Dead axons and green bars for Healthy
ones; (d) Histogram of surviving axons diameters; (e) Coronal view of the [H2O2] at the end of each
experiment. Heatmap bar values are in nM.
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Figure 13. Proportion of axonal survival when axons and glia interact via H2O2 increased as the
mito% increased. Axonal mitochondria operated in NFRP mode while glia mitochondria were in
PFRP mode. Two membrane permeability settings were used (Pm = 20 µm s−1 and Pm = 200 µm s−1),
as well as two settings for the glial mitochondrial content (5% and 10%) for a total of 4 data sets. For
each pair of settings Pm and Mitoglia, mito% was varied between 4 and 20%.

4. Discussion

The mechanism for propagation of axonal degeneration in LHON is unknown, as is the
location of the initial injury within the optic nerve. We previously described a 2-dimensional
coronal plane propagation algorithm that produced injury patterns which correlated with
clinically observed patterns of RGC loss [37]. In the current study we expanded that work
by adding 3-dimensional optic nerve section modelling, more realistic biophysical processes
and parameters, use of membrane permeability, modeling of unmyelinated and myelinated
axons, the addition of glia-produced ROS, and interpretation of biological vs. simulation
time with respect to biology. The current work also allows the study of ROS generation and
diffusion processes around the nodes of Ranvier, which are areas of more intense energy
demands within the myelinated regions of the optic nerve.

We showed that H2O2 is more likely than O−2 to be the primary ROS in propagating
LHON injuries, owing to its cellular membrane impermeability and its fast dismutation to
H2O2. This result has therapeutic implications. Increasing peroxidase activity in the optic
nerve extra-axonal space could presumably decrease the propagation of the axonal degen-
eration and may be more amenable to drug delivery than delivering a SOD mimetic [69,70],
which would have to enter the axon.

The study modeled and explored several hypotheses regarding the influence of H2O2
in LHON injury propagation dynamics. We found that when the axonal membrane is
permeable to H2O2 and oxidative stress induces larger production of H2O2, small injuries
extend to neighboring axons. Our work suggests that a limited systemic insult can affect
a region of the optic nerve in a process akin to a selective axotomy, triggering axonal
degeneration in the respective RGCs. When some axons die, a new equilibrium point is
found. This can explain why LHON rarely results in complete blindness, instead primarily
producing loss of central vision and clinical findings of small axon-diameter disease.
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By studying the propagation of H2O2 in models that contained unmyelinated and
myelinated regions, we showed that due to their relative distance, the two regions do
not influence each other oxidatively. Specifically, the origin and propagation of axonal
degeneration in this simulation model is biased toward greater loss in the unmyelinated
portion of the nerve rather than the myelinated nerve. In other words, it is possible that
there may be early oxidative injury to axons within the optic nerve head that is of a greater
degree than the retrobulbar nerve. Given that the optic nerve head is clinically visible, then
if swelling or other changes could be detected before visual loss occurs, there may be a
therapeutic window before the rest of the nerve is injured and axons are lost. Oxidative
axon injury restricted to the unmyelinated nerve but without propagation to the rest of
the nerve could cause localized loss of axonal conduction and visual loss. If conduction is
restored as a result of lower ROS levels, then this could represent a mechanism by which
LHON spontaneously improves in many patients.

It is known that positive feedback (i.e., the ability of an external signal to increase its
production) in different systems, e.g., ROS and calcium, can result in wavelike propaga-
tion [54,71]. However, all such wave-generating models have an external wave initiation
event. For example, our previous model [37] had to be triggered by an “injury stimulus.”.
In contrast, the current study describes self-triggered injuries that appear because of an
individual cell’s biochemistry in the context of its milieu. This may be relevant to patients
with LHON who begin having visual loss soon after heavy drinking, smoking, or other
stressors. LHON patients who chronically smoke are relatively protected and lose vision
more insidiously [14]. It is possible that ROS levels in smokers lead to early chronic loss
of small diameter axons, similar to the NFRP patterns of Figure 11a. This effect might
provide later protection by reducing the overall density of small axons in the optic nerve.
The model would also allow simulating the effects of myelin development, mediators of
systemic oxidative stress, and other parameters that could be assessed biophysically.

We found that H2O2 concentrations correlated with axonal degeneration patterns seen
in LHON histological sections [37]. Higher oxidative levels were present in the temporal
side of the nerve before the onset of axonal loss, which was also on the temporal side. These
findings correlate well with clinical observations [2]. After axons have been affected, a new
equilibrium is found where less H2O2 is produced. The degeneration of some axons and
the subsequent cessation of ROS production can have a protective effect on the remaining
axons. Clinical observations on children under 12 show that despite structural evidence
of axonal loss, there is less functional loss and no loss later in life [72]. The proportion
of axonal volume occupied by (mitochondria volume ratio; mito%) heavily influenced
the extent of degeneration, in line with clinical observations [12]. Given that ROS have
roles as signaling agents in the control of mitochondrial biogenesis [73], the increased
mito% in LHON carriers and cases [12] could be explained by oxidative stress inducing
larger mitochondrial volume ratios in the axon. It is possible that in carriers (i.e., before
axonal degeneration occurs), the higher ROS levels signal locally or to the soma that more
axonal mitochondria should be produced. Given that LHON mutations lead to higher
ROS production [23,24], an intrinsic mitochondrial production signaling mechanism could
explain the increased mito% observed in LHON cases and carriers relative to controls [12].

This study has several limitations. First, although it is well known that cellular
membranes are relatively permeable to H2O2 and relatively impermeability to O−2 , and the
basis for the simulations that were used, the degree of permeability to H2O2 also affects the
results. However, it is not known what the RGC axonal permeability to H2O2 is in either the
unmyelinated or myelinated regions, and assumptions from non-axonal cell membranes
may not be incorrect. Second, although the range of concentrations at which H2O2 causes
oxidative stress are known [47], there is a lack of experimental data regarding the long-term
effects of these concentrations on RGC axons or somas, or the time frame at which they
would cause axonal degeneration. The biochemical linkage between oxidatively damaging
H2O2 concentrations and mechanisms of axonal degeneration are also unknown.
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Third, in silico studies are hampered by the balance between computational resources
needed, simulation time, and simulation resolution. Our study is no exception. Model sizes
and the model resolution were limited by the available GPU with its on-board memory and
the need for simulation throughput. The methods presented in this paper can be extended
to larger tissue samples. For example, extending the current work to a complete optic
nerve and ultimately to an optic nerve-retina system would be worthwhile. Nevertheless,
although the model can be extended spatially using more greater computational resources,
there are limits to the simulation time that can be afforded. When a second in the biological
life of the sample can only be processed in many seconds of computer simulation, longer-
term evolving diseases such as LHON cannot be simulated at the time scales of the illness.
On the other hand, we do not know how long the pathophysiological process takes, and
are limited by patient symptoms, measurements of visual loss, clinical observation of disc
edema and other retinal findings, and detection of axon and ganglion cell/inner plexiform
layer loss in the retina.

Fourth, the timelines of the simulated processes are more rapid than the timeline of
visual loss in LHON. Given that the simulation results are based on realistic biological
parameters, the difference in timing suggests a possible intermediate mechanism triggered
by ROS, which subsequently results in axonal dysfunction and degeneration, and eventually
results in somal apoptosis. Such a mechanism could be a delay until the axon becomes
dysfunctional, based on a biochemical, inflammatory, or other mechanisms.

Finsterer et al. [74] reviewed journal-based reports of diseases seen in LHON patients
which affect other organs. These data could support the extension of our hypothesis of ROS-
induced damage in LHON patients to other organs, providing a comprehensive explanation
of the observed organ problems. For example, a study by Orssaud [75] reports abnormal
cardiac function in LHON patients and recommends cardiac evaluation for such sufferers.
The linkage of ROS to the most common cardiac problems, such as arrhythmia [76], sudden
cardiac death [77], and the homoplastic nature of the LHON genetic defects, provides
support for oxidative stress as a possible explanation for the misfunction of various organs
in LHON patients.

No similar data regarding carriers were found in the literature. An interesting data
point would be to see if non-visual diseases occur more or less frequently in carriers vs.
controls or vs. LHON cases.

In summary, a more comprehensive model of ROS in LHON and the effects on the
propagation of axonal degeneration has been developed. The model is more realistic
anatomically, biophysically, and biochemically, and has implications for the pathophysiol-
ogy of the disease and the development of therapeutic approaches. Future studies could
address biochemical feedback loops between RGC and glia, the role of other ROS, the
specific anatomy of the optic nerve head, and use these refinements to further advance the
detection and treatment of LHON in those at risk.
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