Isolation, In Vitro and In Silico Anti-Alzheimer and Anti-Inflammatory Studies on Phytosteroids from Aerial Parts of Fragaria × ananassa Duch
Abstract
:1. Introduction
2. Results
2.1. Chemistry of Isolated Compounds
2.2. Anticholinesterase Results
2.3. Cyclooxygenase-1 and 2 (COX-1 and COX-2) Inhibitory Results
2.4. 5-Lipoxygenase (5-LOX) Inhibition Assay Results
2.5. Antioxidant Results
2.6. Molecular Docking Results
2.6.1. Docking on 1EVE_(AChE)
2.6.2. Docking on 4BDS_(BChE)
2.6.3. Docking on 1EQG (COX-1)
2.6.4. Docking on COX 2 Site
2.6.5. Docking on 6N2W_(5-LOX)
3. Discussion
4. Materials and Methods
4.1. Plant Samples and Extraction
4.2. Isolation of the Steroidal Compounds 1 and 2
4.3. NMR and GC-MS Analyses
4.4. Anticholinesterase Assays
4.5. Cyclooxygenases (COX 1 and 2) Assays
4.6. Lipoxygenase (5-LOX) Assay
4.7. DPPH Assay
4.8. ABTS Assay
4.9. Molecular Docking Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Sadiq, A.; Rashid, U.; Ahmad, S.; Zahoor, M.; AlAjmi, M.F.; Ullah, R.; Noman, O.M.; Ullah, F.; Ayaz, M.; Khan, I.; et al. Treating Hyperglycemia from Eryngium caeruleum M. Bieb: In-vitro α-Glucosidase, Antioxidant, in-vivo Antidiabetic and Molecular Docking-Based Approaches. Front. Chem. 2020, 8, 1064. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.M.; Sadiq, A.; Shah, S.M.; Ullah, F. Antioxidant, total phenolic contents and antinociceptive potential of Teucrium stocksianum methanolic extract in different animal models. BMC Complement. Altern. Med. 2014, 14, 181. [Google Scholar] [CrossRef] [Green Version]
- Mahnashi, M.H.; Alyami, B.A.; Alqahtani, Y.S.; Alqarni, A.O.; Jan, M.S.; Hussain, F.; Zafar, R.; Rashid, U.; Abbas, M.; Tariq, M.; et al. Antioxidant Molecules Isolated from Edible Prostrate Knotweed: Rational Derivatization to Produce More Potent Molecules. Oxidative Med. Cell. Longev. 2022, 2022, 3127480. [Google Scholar] [CrossRef] [PubMed]
- Barbosa-Filho, J.M.; Piuvezam, M.R.; Moura, M.D.; Silva, M.S.; Lima, K.V.B.; Da-Cunha, E.V.L.; Fechine, I.M.; Takemura, O.S. Anti-inflammatory activity of alkaloids: A twenty-century review. Rev. Bras. Farm. 2006, 16, 109–139. [Google Scholar] [CrossRef] [Green Version]
- Ayaz, M.; Junaid, M.; Ullah, F.; Subhan, F.; Sadiq, A.; Ali, G.; Ovais, M.; Shahid, M.; Ahmad, A.; Wadood, A.; et al. Anti-Alzheimer’s studies on β-sitosterol isolated from Polygonum hydropiper L. Front. Pharmacol. 2017, 8, 697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huneif, M.A.; Alqahtani, S.M.; Abdulwahab, A.; Almedhesh, S.A.; Mahnashi, M.H.; Riaz, M.; Ur-Rahman, N.; Jan, M.S.; Ullah, F.; Aasim, M.; et al. α-Glucosidase, α-Amylase and Antioxidant Evaluations of Isolated Bioactives from Wild Strawberry. Molecules 2022, 27, 3444. [Google Scholar] [CrossRef]
- Da Silva Pinto, M.; Lajolo, F.M.; Genovese, M.I. Bioactive compounds and quantification of total ellagic acid in strawberries (Fragaria ananassa Duch.). Food Chem. 2008, 107, 1629–1635. [Google Scholar] [CrossRef]
- Halbwirth, H.; Puhl, I.; Haas, U.; Jezik, K.; Treutter, D.; Stich, K. Two-phase flavonoid formation in developing strawberry (Fragaria ananassa) fruit. J. Agric. Food Chem. 2006, 54, 1479–1485. [Google Scholar] [CrossRef]
- Aaby, K.; Skrede, G.; Wrolstad, R.E. Phenolic Composition and Antioxidant Activities in Flesh and Achenes of Strawberries (Fragaria ananassa). J. Agric. Food Chem. 2005, 53, 4032–4040. [Google Scholar] [CrossRef] [PubMed]
- Aaby, K.; Ekeberg, A.D.; Skrede, G. Characterization of Phenolic Compounds in Strawberry (Fragaria × ananassa) Fruits by Different HPLC Detectors and Contribution of Individual Compounds to Total Antioxidant Capacity. J. Agric. Food Chem. 2007, 55, 4395–4406. [Google Scholar] [CrossRef]
- Ripa, L.; Edman, K.; Dearman, M.; Edenro, G.; Hendrickx, R.; Ullah, V.; Chang, H.-F.; Lepistö, M.; Chapman, D.; Geschwindner, S.; et al. Discovery of a Novel Oral Glucocorticoid Receptor Modulator (AZD9567) with Improved Side Effect Profile. J. Med. Chem. 2018, 61, 1785–1799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Gioia, F.; Petropoulos, S.A. Phytoestrogens, phytosteroids and saponins in vegetables: Biosynthesis, functions, health effects and practical applications. In Advances in Food and Nutrition Research; Academic Press: Cambridge, MA, USA, 2019; Volume 90, pp. 351–421. [Google Scholar] [CrossRef]
- Ristimäki, A.; Narko, K.; Hla, T. Down-regulation of cytokine-induced cyclo-oxygenase-2 transcript isoforms by dexamethasone: Evidence for post-transcriptional regulation. Biochem. J. 1996, 318, 325–331. [Google Scholar] [CrossRef]
- Yuan, L.; Zhang, F.; Shen, M.; Jia, S.; Xie, J. Phytosterols Suppress Phagocytosis and Inhibit Inflammatory Mediators via ERK Pathway on LPS-Triggered Inflammatory Responses in RAW264.7 Macrophages and the Correlation with Their Structure. Foods 2019, 8, 582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.; Gao, X.; Du, B.; Zhao, F.; Feng, X.; Zhang, H.; Zhu, Z.; Xing, J.; Han, Z.; Tu, P.; et al. Ilex asprella aqueous extracts exert in vivo anti-inflammatory effects by regulating the NF-κB, JAK2/STAT3, and MAPK signaling pathways. J. Ethnopharmacol. 2018, 225, 234–243. [Google Scholar] [CrossRef]
- Wang, Y.; Xiang, L.; Yi, X.; He, X. Potential anti-inflammatory steroidal saponins from the berries of Solanum nigrum L. (European Black Nightshade). J. Agric. Food Chem. 2017, 65, 4262–4272. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.; Mukherjee, S.; Patnaik, R. Identification of withanolide-M and stigmasterol as potent neuroprotectant and dual inhibitor of inducible/neuronal nitric oxide synthase by structure-based virtual screening. J. Biol. Eng. Res. Rev. 2017, 4, 09–13. [Google Scholar]
- Rao, R.V.; Descamps, O.; John, V.; Bredesen, D. Ayurvedic medicinal plants for Alzheimer’s disease: A review. Alzheimer Res. Ther. 2012, 4, 22. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Tan, M.A.; An, S.S. Phytosterols: Potential metabolic modulators in neurodegenerative diseases. Int. J. Mol. Sci. 2021, 22, 12255. [Google Scholar] [CrossRef] [PubMed]
- Sadiq, A.; Mahmood, F.; Ullah, F.; Ayaz, M.; Ahmad, S.; Haq, F.U.; Khan, G.; Jan, M.S. Synthesis, anticholinesterase and antioxidant potentials of ketoesters derivatives of succinimides: A possible role in the management of Alzheimer’s. Chem. Cent. J. 2015, 9, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Javed, M.A.; Bibi, S.; Jan, M.S.; Ikram, M.; Zaidi, A.; Farooq, U.; Sadiq, A.; Rashid, U. Diclofenac derivatives as concomitant inhibitors of cholinesterase, monoamine oxidase, cyclooxygenase-2 and 5-lipoxygenase for the treatment of Alzheimer’s disease: Synthesis, pharmacology, toxicity and docking studies. RSC Adv. 2022, 12, 22503–22517. [Google Scholar] [CrossRef] [PubMed]
- Jan, M.; Shahid, M.; Ahmad, S.; Hussain, F.; Ahmad, A.; Mahmood, F.; Rashid, U.; Ullah, F.; Khan, N.; Aasim, M.; et al. Synthesis of pyrrolidine-2, 5-dione based anti-inflammatory drug: In vitro COX-2, 5-LOX inhibition and in vivo anti-inflammatory studies. Lat. Am. J. Pharm. 2019, 38, 2287–2294. [Google Scholar]
- Mandave, P.C.; Pawar, P.K.; Ranjekar, P.K.; Mantri, N.; Kuvalekar, A.A. Comprehensive evaluation of in vitro antioxidant activity, total phenols and chemical profiles of two commercially important strawberry varieties. Sci. Hortic. 2014, 172, 124–134. [Google Scholar] [CrossRef]
- Sun, J.; Chu, Y.-F.; Wu, X.; Liu, R.H. Antioxidant and Antiproliferative Activities of Common Fruits. J. Agric. Food Chem. 2002, 50, 7449–7454. [Google Scholar] [CrossRef] [PubMed]
- Golovinskaia, O.; Wang, C.K. Review of functional and pharmacological activities of berries. Molecules 2021, 26, 3904. [Google Scholar] [CrossRef]
- Bobinaitė, R.; Viškelis, P.; Venskutonis, P.R. Variation of total phenolics, anthocyanins, ellagic acid and radical scavenging capacity in various raspberry (Rubus spp.) cultivars. Food Chem. 2011, 132, 1495–1501. [Google Scholar] [CrossRef] [PubMed]
- Dreiseitel, A.; Schreier, P.; Oehme, A.; Locher, S.; Rogler, G.; Piberger, H.; Hajak, G.; Sand, P.G. Inhibition of proteasome activity by anthocyanins and anthocyanidins. Biochem. Biophys. Res. Commun. 2008, 372, 57–61. [Google Scholar] [CrossRef]
- Costa, S.L.; Silva, V.D.A.; Souza, C.; Santos, C.C.; Paris, I.; Muñoz, P.; Segura-Aguilar, J. Impact of Plant-Derived Flavonoids on Neurodegenerative Diseases. Neurotox. Res. 2016, 30, 41–52. [Google Scholar] [CrossRef]
- Devore, E.E.; Kang, J.H.; Breteler, M.M.; Grodstein, F. Dietary intakes of berries and flavonoids in relation to cognitive decline. Ann. Neurol. 2012, 72, 135–143. [Google Scholar] [CrossRef]
- Ogbe, R.J.; Ochalefu, D.O.; Mafulul, S.G.; Olaniru, O.B. A review on dietary phytosterols: Their occurrence, metabolism and health benefits. Asian J. Plant. Sci. Res. 2015, 5, 10–21. [Google Scholar]
- Bai, G.; Ma, C.-G.; Chen, X.-W. Phytosterols in edible oil: Distribution, analysis and variation during processing. Grain Oil Sci. Technol. 2021, 4, 33–44. [Google Scholar] [CrossRef]
- Phillips, K.M.; Ruggio, A.D.M.; Ashraf-Khorassani, M. Phytosterol Composition of Nuts and Seeds Commonly Consumed in the United States. J. Agric. Food Chem. 2005, 53, 9436–9445. [Google Scholar] [CrossRef]
- Rocco, A.; Fanali, S. Analysis of phytosterols in extra-virgin olive oil by nano-liquid chromatography. J. Chromatogr. A 2009, 1216, 7173–7178. [Google Scholar] [CrossRef]
- Almeida, C.A.; Baggio, S.R.; Mariutti, L.R.; Bragagnolo, N. One-step rapid extraction of phytosterols from vegetable oils. Food Res. Int. 2020, 130, 108891. [Google Scholar] [CrossRef] [PubMed]
- Huneif, M.A.; Alshehri, D.B.; Alshaibari, K.S.; Dammaj, M.Z.; Mahnashi, M.H.; Majid, S.U.; Javed, M.A.; Ahmad, S.; Rashid, U.; Sadiq, A. Design, synthesis and bioevaluation of new vanillin hybrid as multitarget inhibitor of α-glucosidase, α-amylase, PTP-1B and DPP4 for the treatment of type-II diabetes. Biomed. Pharmacother. 2022, 150, 113038. [Google Scholar] [CrossRef]
- Sadiq, A.; Mahnashi, M.H.; Rashid, U.; Jan, M.S.; Alshahrani, M.A.; Huneif, M.A. 3-(((1S,3S)-3-((R)-hydroxy(4-(trifluoromethyl)phenyl)methyl)-4-oxocyclohexyl)methyl)pentane-2,4-dione: Design and synthesis of new stereopure multi-target antidiabetic agent. Molecules 2022, 27, 3265. [Google Scholar] [CrossRef]
- Mahmood, F.; Khan, J.A.; Mahnashi, M.H.; Jan, M.S.; Javed, M.A.; Rashid, U.; Sadiq, A.; Hassan, S.S.; Bungau, S. Anti-Inflammatory, Analgesic and Antioxidant Potential of New (2 S, 3 S)-2-(4-isopropylbenzyl)-2-methyl-4-nitro-3-phenylbutanals and Their Corresponding Carboxylic Acids through In Vitro, In Silico and In Vivo Studies. Molecules 2022, 27, 4068. [Google Scholar] [CrossRef] [PubMed]
- Sadiq, A.; Nugent, T.C. Catalytic access to succinimide products containing stereogenic quaternary carbons. ChemistrySelect 2020, 5, 11934–11938. [Google Scholar] [CrossRef]
- Nugent, T.C.; Bibi, A.; Sadiq, A.; Shoaib, M.; Umar, M.N.; Tehrani, F.N. Chiral picolylamines for Michael and aldol reactions: Probing substrate boundaries. Org. Biomol. Chem. 2012, 10, 9287–9294. [Google Scholar] [CrossRef]
- Mahnashi, M.H.; Alyami, B.A.; Alqahtani, Y.S.; Jan, M.S.; Rashid, U.; Sadiq, A.; Alqarni, A.O. Phytochemical profiling of bioactive compounds, anti-inflammatory and analgesic potentials of Habenaria digitata Lindl.: Molecular docking based synergistic effect of the identified compounds. J. Ethnopharmacol. 2021, 273, 113976. [Google Scholar] [CrossRef] [PubMed]
- Sadiq, A.; Mahnashi, M.H.; Alyami, B.A.; Alqahtani, Y.S.; Alqarni, A.O.; Rashid, U. Tailoring the substitution pattern of Pyrrolidine-2,5-dione for discovery of new structural template for dual COX/LOX inhibition. Bioorg. Chem. 2021, 112, 104969. [Google Scholar] [CrossRef] [PubMed]
- Farooq, U.; Naz, S.; Shams, A.; Raza, Y.; Ahmed, A.; Rashid, U.; Sadiq, A. Isolation of dihydrobenzofuran derivatives from ethnomedicinal species Polygonum barbatum as anticancer compounds. Biol. Res. 2019, 52, 1–12. [Google Scholar] [CrossRef]
- Munir, A.; Khushal, A.; Saeed, K.; Sadiq, A.; Ullah, R.; Ali, G.; Ashraf, Z.; Mughal, E.U.; Jan, M.S.; Rashid, U.; et al. Synthesis, in-vitro, in-vivo anti-inflammatory activities and molecular docking studies of acyl and salicylic acid hydrazide derivatives. Bioorg. Chem. 2020, 104, 104168. [Google Scholar] [CrossRef]
- Jabeen, M.; Ahmad, S.; Shahid, K.; Sadiq, A.; Rashid, U. Ursolic acid hydrazide based organometallic complexes: Synthesis, characterization, antibacterial, antioxidant, and docking studies. Front. Chem. 2018, 6, 55. [Google Scholar] [CrossRef] [PubMed]
- Iftikhar, F.; Yaqoob, F.; Tabassum, N.; Jan, M.S.; Sadiq, A.; Tahir, S.; Batool, T.; Niaz, B.; Ansari, F.L.; Choudhary, M.I.; et al. Design, synthesis, in-vitro thymidine phosphorylase inhibition, in-vivo antiangiogenic and in-silico studies of C-6 substituted dihydropyrimidines. Bioorg. Chem. 2018, 80, 99–111. [Google Scholar] [CrossRef]
- Tufail, M.B.; Javed, M.A.; Ikram, M.; Mahnashi, M.H.; Alyami, B.A.; Alqahtani, Y.S.; Sadiq, A.; Rashid, U. Synthesis, pharmacological evaluation and Molecular modelling studies of pregnenolone derivatives as inhibitors of human dihydrofolate reductase. Steroids 2021, 168, 108801. [Google Scholar] [CrossRef]
- Barla, A.; Birman, H.; Kültür, Ş.; Öksüz, S. Secondary metabolites from Euphorbia helioscopia and their vasodepressor activity. Turk. J. Chem. 2006, 30, 325–332. [Google Scholar]
- Rosandy, A.R.; Kamal, N.M.; Talip, N.; Khalid, R.; Bakar, M.A. Isolation of four steroids from the leaves of fern Adiantum latifolium Lam. Malays. J. Anal. Sci. 2017, 21, 298–303. [Google Scholar] [CrossRef]
- Bernhoft, A. A brief review on bioactive compounds in plants. Bioact. Compd. Plants Benefits Risks Man Anim. 2010, 50, 11–17. [Google Scholar]
- Grodzicki, W.; Dziendzikowska, K. The Role of Selected Bioactive Compounds in the Prevention of Alzheimer’s Disease. Antioxidants 2020, 9, 229. [Google Scholar] [CrossRef] [Green Version]
- Jayarathne, S.; Koboziev, I.; Park, O.-H.; Oldewage-Theron, W.; Shen, C.-L.; Moustaid-Moussa, N. Anti-Inflammatory and Anti-Obesity Properties of Food Bioactive Components: Effects on Adipose Tissue. Prev. Nutr. Food Sci. 2017, 22, 251–262. [Google Scholar] [CrossRef] [Green Version]
- Ayaz, M.; Sadiq, A.; Wadood, A.; Junaid, M.; Ullah, F.; Khan, N.Z. Cytotoxicity and molecular docking studies on phytosterols isolated from Polygonum hydropiper L. Steroids 2018, 141, 30–35. [Google Scholar] [CrossRef]
- Zhaohui, H.; Kangping, X.; Yingjun, Z.; Gaoyun, H.; Guishan, T. Studies on chemical constituents of Polygala aureocauda. Nat. Prod. Res. Dev. 2005, 17, 298–300. [Google Scholar]
- Shen, Y.; Sun, Z.; Shi, P.; Wang, G.; Wu, Y.; Li, S.; Zheng, Y.; Huang, L.; Lin, L.; Lin, X.; et al. Anticancer effect of petroleum ether extract from Bidens pilosa L and its constituent’s analysis by GC-MS. J. Ethnopharmacol. 2018, 217, 126–133. [Google Scholar] [CrossRef]
- Patil, K.; Singh, D.M. GC-MS Analysis of fresh water Cylindrospermum sp. PCC518, Cylindrospermum sp. PCC 567 ethanol and hexane extracts. Int. J. Herb. Med. 2022, 10, 15–25. [Google Scholar]
- Dutta, M.; Tareq, A.M.; Rakib, A.; Mahmud, S.; Sami, S.A.; Mallick, J.; Islam, M.N.; Majumder, M.; Uddin, M.Z.; Alsubaie, A.; et al. Phytochemicals from leucas zeylanica targeting main protease of SARS-CoV-2: Chemical profiles, molecular docking, and molecular dynamics simulations. Biology 2021, 10, 789. [Google Scholar] [CrossRef]
- Marker, R.E.; Wittle, E.L. Sterols. XXIV. Sitostenone and Stigmastenone. J. Am. Chem. Soc. 1937, 59, 2704–2708. [Google Scholar] [CrossRef]
- Kumar, K.S.; Lin, C.; Tseng, Y.-H.; Wang, S.-Y. Fruits of Rosa laevigata and its bio-active principal sitostenone facilitate glucose uptake and insulin sensitivity in hepatic cells via AMPK/PPAR-γ activation. Phytomed. Plus 2021, 1, 100109. [Google Scholar] [CrossRef]
- Nair, J.; Aremu, A.; Van Staden, J. Anti-inflammatory effects of Leucosidea sericea (Rosaceae) and identification of the active constituents. S. Afr. J. Bot. 2012, 80, 75–76. [Google Scholar] [CrossRef] [Green Version]
- Lavie, D.; Kaye, I.A. Isolation of beta-sitostenone from Quassia amara. J. Chem. Soc. 1963, 5001. [Google Scholar]
- Shah, S.M.M.; Sadiq, A.; Khan, S. Extraction of saponins and toxicological profile of Teucrium stocksianum boiss extracts collected from District Swat, Pakistan. Biol. Res. 2014, 47, 65. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.; Iftikhar, F.; Ullah, F.; Sadiq, A.; Rashid, U. Rational design and synthesis of dihydropyrimidine based dual binding site acetylcholinesterase inhibitors. Bioorg. Chem. 2016, 69, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Sarfraz, M.; Sultana, N.; Rashid, U.; Akram, M.S.; Sadiq, A.; Tariq, M.I. Synthesis, biological evaluation and docking studies of 2, 3-dihydroquinazolin-4 (1H)-one derivatives as inhibitors of cholinesterases. Bioorg. Chem. 2017, 70, 237–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Javed, M.A.; Ashraf, N.; Saeed Jan, M.; Mahnashi, M.H.; Alqahtani, Y.S.; Alyami, B.A.; Alqarni, A.O.; Asiri, Y.I.; Ikram, M.; Sadiq, A.; et al. Structural Modification, In Vitro, In Vivo, Ex Vivo, and In Silico Exploration of Pyrimidine and Pyrrolidine Cores for Targeting Enzymes Associated with Neuroinflammation and Cholinergic Deficit in Alzheimer’s Disease. ACS Chem. Neurosci. 2021, 12, 4123–4143. [Google Scholar] [CrossRef] [PubMed]
- Alam, F.; Din, K.M.; Rasheed, R.; Sadiq, A.; Jan, M.S.; Minhas, A.M.; Khan, A. Phytochemical investigation, anti-inflammatory, antipyretic and antinociceptive activities of Zanthoxylum armatum DC extracts-in vivo and in vitro experiments. Heliyon 2020, 6, e05571. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.M.M.; Ahmad, Z.; Yaseen, M.; Shah, R.; Khan, S.; Khan, B. Phytochemicals, in vitro antioxidant, total phenolic contents and phytotoxic activity of Cornus macrophylla Wall bark collected from the North-West of Pakistan. Pak. J. Pharm. Sci. 2015, 28, 23–28. [Google Scholar]
- Sadiq, A.; Zeb, A.; Ullah, F.; Ahmad, S.; Ayaz, M.; Rashid, U.; Muhammad, N. Chemical Characterization, Analgesic, Antioxidant, and Anticholinesterase Potentials of Essential Oils from Isodon rugosus Wall. ex. Benth. Front. Pharmacol. 2018, 9, 623. [Google Scholar] [CrossRef]
- Sultana, N.; Sarfraz, M.; Tanoli, S.T.; Akram, M.S.; Sadiq, A.; Rashid, U.; Tariq, M.I. Synthesis, crystal structure determination, biological screening and docking studies of N1-substituted derivatives of 2, 3-dihydroquinazolin-4 (1H)-one as inhibitors of cholinesterases. Bioorg. Chem. 2017, 72, 256–267. [Google Scholar] [CrossRef] [Green Version]
- Amin, M.J.; Miana, G.A.; Rashid, U.; Rahman, K.M.; Khan, H.-U.; Sadiq, A. SAR based in-vitro anticholinesterase and molecular docking studies of nitrogenous progesterone derivatives. Steroids 2020, 158, 108599. [Google Scholar] [CrossRef] [PubMed]
- Ejaz, I.; Javed, M.A.; Jan, M.S.; Ikram, M.; Sadiq, A.; Ahmad, S.; Rashid, U. Rational design, synthesis, antiproliferative activity against MCF-7, MDA-MB-231 cells, estrogen receptors binding affinity, and computational study of indenopyrimidine-2, 5-dione analogs for the treatment of breast cancer. Bioorg. Med. Chem. Lett. 2022, 64, 128668. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, G.; Rasool, N.; Rizwan, K.; Imran, I.; Zahoor, A.F.; Zubair, M.; Sadiq, A.; Rashid, U. Synthesis, in-vitro cholinesterase inhibition, in-vivo anticonvulsant activity and in-silico exploration of N-(4-methylpyridin-2-yl) thiophene-2-carboxamide analogs. Bioorg. Chem. 2019, 92, 103216. [Google Scholar] [CrossRef]
Samples | Concentration | Percent AChE (mean ± SEM) | AChE IC50 (μg/mL) | Percent BChE (mean ± SEM) | BChE IC50 (μg/mL) |
---|---|---|---|---|---|
Compound 1 | 1000 | 85.72 ± 0.79 ns | 20.29 | 84.83 ± 0.62 *** | 27.35 |
500 | 77.68 ± 0.63 *** | 80.76 ± 0.63 *** | |||
250 | 71.46 ± 0.53 *** | 75.70 ± 0.62 *** | |||
125 | 64.78 ± 0.60 *** | 66.65 ± 0.78 *** | |||
62.5 | 55.56 ± 0.52 *** | 59.81 ± 0.65 *** | |||
Compound 2 | 1000 | 80.85 ± 0.18 *** | 14.51 | 83.53 ± 0.20 *** | 10.65 |
500 | 75.59 ± 0.30 *** | 78.62 ± 0.17 *** | |||
250 | 68.75 ± 0.14 *** | 73.42 ± 0.11 *** | |||
125 | 63.47 ± 0.49 *** | 66.20 ± 0.15 *** | |||
62.5 | 58.12 ± 0.34 *** | 61.35 ± 0.18 *** | |||
Galantamine | 1000 | 87.81 ± 0.60 | 7.52 | 89.37 ± 0.64 | 5.53 |
500 | 82.74 ± 0.61 | 83.45 ± 0.65 | |||
250 | 77.68 ± 0.60 | 78.37 ± 0.54 | |||
125 | 72.63 ± 0.76 | 74.30 ± 0.61 | |||
62.5 | 65.79 ± 0.63 | 67.42 ± 0.55 |
S. No | Conc. (μg/mL) | % COX-2 Inhibition | IC50 μg/mL | % COX-1 Inhibition | IC50 μg/mL | % 5-LOX Inhibition | IC50 μg/mL |
---|---|---|---|---|---|---|---|
Compound 1 | 1000 | 83.13 ± 0.80 *** | 10.70 | 66.29 ± 0.43 *** | 80.10 | 87.63 ± 0.64 ** | 7.40 |
500 | 78.83 ± 0.73 *** | 59.56±0.45 *** | 82.45 ± 0.55 *** | ||||
250 | 72.70 ± 0.51 *** | 43.54 ± 0.46 *** | 76.53 ± 0.41 *** | ||||
125 | 66.43 ± 0.70 *** | 40.57 ± 0.84 *** | 71.42 ± 0.46 *** | ||||
62.50 | 61.06 ± 0.70 *** | 22.36 ± 0.49 *** | 65.68 ± 0.64 *** | ||||
Compound 2 | 1000 | 83.17 ± 0.72 *** | 8.45 | 57.57 ±1.18 *** | 109.40 | 85.00 ± 0.30 ** | 8.71 |
500 | 78.30 ± 0.64 *** | 51.67 ± 0.11 *** | 78.76 ± 0.58 *** | ||||
250 | 73.34 ± 0.63 *** | 44.86 ± 0.02 *** | 73.67 ± 0.61 *** | ||||
125 | 68.30 ± 0.64 *** | 37.72 ± 0.45 *** | 67.74 ± 0.61 *** | ||||
62.50 | 61.93 ± 1.13 *** | 32.45 ± 0.65 *** | 63.47 ± 0.56 *** | ||||
Celecoxib | 1000 | 95.20 ± 0.15 | 3.22 | - | - | - | - |
500 | 91.17 ± 0.53 | ||||||
250 | 86.98 ± 0.85 | ||||||
125 | 81.20 ± 0.65 | ||||||
62.50 | 77.80 ± 0.37 | ||||||
Montelukast | 1000 | - | - | - | - | 93.55 ± 0.40 | 4.50 |
500 | 89.37 ± 1.65 | ||||||
250 | 85.50 ± 0.40 | ||||||
125 | 79.60 ± 0.90 | ||||||
62.50 | 74.17 ± 0.72 | ||||||
Aspirin | 1000 | - | - | 75.89 ± 0.20 | 47.08 | - | - |
500 | 71.88 ± 0.20 | ||||||
250 | 66.43 ± 0.29 | ||||||
125 | 59.84 ± 0.32 | ||||||
62.50 | 51.68 ± 0.22 |
Samples | Conc (μg/mL) | Percent ABTS Activity (mean ± SEM) | IC50 (μg/mL) | Percent DPPH Activity (mean ± SEM) | IC50 (μg/mL) |
---|---|---|---|---|---|
Compound 1 | 1000 | 62.61 ± 0.77 *** | 369.86 | 64.79 ± 0.62 *** | 314.78 |
500 | 54.60 ± 0.80 *** | 56.45 ± 0.49 *** | |||
250 | 43.83 ± 0.56 *** | 45.75 ± 0.58 *** | |||
125 | 35.69 ± 0.77 *** | 37.51 ± 0.77 *** | |||
62.5 | 29.67 ± 0.61 *** | 31.53 ± 0.71 *** | |||
Compound 2 | 1000 | 65.17 ± 0.72 *** | 185.83 | 71.33 ± 0.49 *** | 218.83 |
500 | 57.85 ± 0.97 *** | 63.03 ± 0.23 *** | |||
250 | 51.37 ± 1.65 *** | 49.00 ± 0.58 *** | |||
125 | 46.73 ± 0.78 *** | 42.67 ± 0.89 *** | |||
62.5 | 41.34 ± 1.01 *** | 33.00 ± 1.15 *** | |||
AA | 1000 | 79.00 ± 0.16 | 21.72 | 84.39 ± 0.60 | 11.47 |
500 | 74.66 ± 1.20 | 78.58 ± 0.56 | |||
250 | 66.33 ± 0.33 | 72.29 ± 0.43 | |||
125 | 62.50 ± 0.44 | 66.37 ± 0.58 | |||
62.5 | 53.00 ± 0.57 | 61.30 ± 0.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahnashi, M.H.; Alshehri, O.M. Isolation, In Vitro and In Silico Anti-Alzheimer and Anti-Inflammatory Studies on Phytosteroids from Aerial Parts of Fragaria × ananassa Duch. Biomolecules 2022, 12, 1430. https://doi.org/10.3390/biom12101430
Mahnashi MH, Alshehri OM. Isolation, In Vitro and In Silico Anti-Alzheimer and Anti-Inflammatory Studies on Phytosteroids from Aerial Parts of Fragaria × ananassa Duch. Biomolecules. 2022; 12(10):1430. https://doi.org/10.3390/biom12101430
Chicago/Turabian StyleMahnashi, Mater H., and Osama M. Alshehri. 2022. "Isolation, In Vitro and In Silico Anti-Alzheimer and Anti-Inflammatory Studies on Phytosteroids from Aerial Parts of Fragaria × ananassa Duch" Biomolecules 12, no. 10: 1430. https://doi.org/10.3390/biom12101430
APA StyleMahnashi, M. H., & Alshehri, O. M. (2022). Isolation, In Vitro and In Silico Anti-Alzheimer and Anti-Inflammatory Studies on Phytosteroids from Aerial Parts of Fragaria × ananassa Duch. Biomolecules, 12(10), 1430. https://doi.org/10.3390/biom12101430