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Abstract: Frequent acute exacerbations are the leading cause of high rates of hospitalization and
mortality in chronic obstructive pulmonary disease (COPD). Despite the enormous worldwide
medical burden, reliable molecular markers for effective early diagnosis and prognosis of acute
exacerbations are still lacking. Both the host genetics and airway microbiome are known to play
potential roles in the pathogenesis of frequent exacerbations. Here, we performed whole exome
sequencing (WES) and 16S rRNA gene sequencing to explore the interaction between these two factors
and their implications in the pathogenesis of frequent exacerbations. We collected peripheral blood
(n = 82), sputum samples (n = 59) and clinical data from 50 frequent-exacerbation phenotype (FE)
COPD patients and 32 infrequent-exacerbation phenotype (IE) as controls. Based on filtering the
deleterious sites, candidate mutated genes shared only in FE patients and did not occur in the IE
group were identified. Microbiota analysis revealed significant differences in bacterial diversity
and composition between FE and IE groups. We report the underlying pathogenic gene including,
AATF, HTT, CEP350, ADAMTS9, TLL2 genes, etc., and explore their possible genotypic-phenotypic
correlations with microbiota dysbiosis. Importantly, we observed that AATF gene mutations were
significantly negatively correlated with microbial richness and diversity. Our study indicated several
deleterious mutations in candidate genes that might be associated with microbial dysbiosis and
the increased risk of frequent acute exacerbations in COPD patients. These results provide novel
evidence that exomes and related microbiomes may potentially serve as biomarkers for predicting
frequent acute exacerbations in COPD patients.

Keywords: genomics; whole-exome sequencing; chronic obstructive pulmonary disease; frequent
exacerbations; 16S rRNA gene sequencing; sputum microbiome

1. Introduction

Chronic Obstructive Pulmonary Disease (COPD) ranks among the top three causes
of mortality throughout the world and contributes to increased health and economic
burdens [1,2]. Acute exacerbations of COPD (AECOPD), defined as an acute worsening of
respiratory symptoms that result in additional therapy, are a major cause of hospitalization
and death in COPD patients [3]. As an important outcome measure, the prevention of
acute exacerbations is a key target for intervention. However, there are currently no
available biomarkers. So far, the best predictor is based on the patient’s recall of previous
exacerbations history [4]. The frequency of exacerbations varies greatly between patients.
At present, AECOPD still depends on clinical diagnosis; therefore, there is a requirement
for improved diagnostic accuracy and efficiency. In particular, those COPD patients who
are subject to more frequent exacerbations (two or more exacerbations per year) defined
as a frequent-exacerbation phenotype, have a distinct susceptibility with worse quality of
life and survival [5]. The exact reason for increased susceptibility to exacerbations remains
unclear and needs to be further investigated.
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Studies have shown that both genetic and environmental factors are involved in COPD
pathogenesis [6,7]. In addition to alpha-1 antitrypsin deficiency (AATD), which is caused
by variants in SERPINA1 (serpin family A, member 1), there are several other genetic loci
related to lung function decline or COPD risk that have been reported [8]. From candidate
gene association studies to genome-wide association studies (GWASs), several genetic
variants were found to be associated with the risk of COPD exacerbations [9,10]. However,
research on susceptibility gene mutations for the frequent-exacerbation phenotype in COPD
is limited; hence, the underlying mechanisms remain uncertain. Whole-exome sequencing
(WES) was performed to identify both rare and common variants in the protein-coding
portion of the human genome (less than 1% of the total genome), which has diagnostic
superiority in complex polygenic disease compared with single-gene tests or whole-genome
sequencing [11]. Recently, several studies have been successful in identifying functional
variants for COPD risk using whole-exome sequencing [12,13]. To date, there is no relevant
research investigating the frequent exacerbations involved in COPD patients.

Bacterial infections are recognized as the main triggering factor for acute COPD
exacerbations [14]. However, traditional culture techniques have significant limitations and
poor sensitivity [15]. With technical advances in bacterial identification, high-throughput
sequencing technology such as 16S ribosomal RNA (16S rRNA) has been widely used to
analyze the composition and diversity of bacterial communities in COPD [16]. A recent
study using 16S rRNA gene sequencing identified that a specific sputum microbiome
profile of AECOPD patients is associated with 1-year mortality and can be used to predict
prognosis [17]. Despite these findings, relevant research on the frequent exacerbation
phenotype and the genetics-microbiome association yet still lacking.

In this study, we selected the frequent-exacerbation phenotype in COPD as the study
population. We hypothesized that rare variants or microbial dysbiosis could make the
individual more susceptible to acute exacerbations. Identification of these biomarkers
could provide insight into early diagnosis. To further explore the pathogenesis of this
susceptibility, we performed whole-exome sequencing (WES) of the host genome and
16S rRNA gene sequencing of sputum samples to identify rare variants and microbiota
differences in frequent-exacerbation phenotype COPD patients. Our findings offered
an important reference for genetic basis and microbial mechanisms in COPD exacerbation
susceptibility. Moreover, these findings will provide a new perspective for future diagnosis
and treatment.

2. Materials and Methods
2.1. Study Design and Patient Recruitment

From September 2019 to March 2021, we recruited 82 biologically unrelated Chinese
COPD patients with similar ethnic backgrounds who were admitted to the Respiratory
Department of Peking Union Medical College Hospital and its affiliated hospitals. A flow
chart of the experimental design is shown in Figure 1. In this prospective, observational and
multicentric study, inclusion criteria were as follows: (1) diagnosed with COPD according
to the GOLD criteria [18]; (2) age ≥ 40 years; (3) without alpha-1 antitrypsin deficiency and
a history of any other respiratory illnesses. Based on this, all the patients were classified by
the frequency of exacerbations according to the past three years as frequent-exacerbation
phenotype (FE, ≥2 moderate or severe exacerbations or ≥1 hospitalization for COPD
exacerbation, n = 50) and infrequent-exacerbation phenotype (IE, <2 moderate exacerbations
and no severe exacerbations per year, n = 32). This study was approved by the ethics
committee of Peking Union Medical College Hospital (No. B306). All participants signed
an informed written consent agreement.

2.2. Sample Collection

Peripheral blood and fresh sputum samples were collected from FE patients when
admitted to the hospital for acute exacerbations and IE patients at routine outpatient
visits. At the time of enrollment, peripheral blood (2 mL venipuncture) was collected from
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all study participants in EDTA tubes. Either spontaneous (95%) or induced (5%) sputa
were collected from patients who had not received any antibiotics, oral corticosteroids, or
immunosuppressive drugs 3 months before the study. Before sampling, all participants
were asked to rinse their mouths with a 3% hypertonic saline solution. Induced sputum
samples were then collected via inhalation of hypertonic saline (3%) for 5 to 10 min and
expectoration of sputum into a sputum cup, as previously described [19]. A total of
82 peripheral blood specimens (FE, n = 50; IE, n = 32) and 59 sputum specimens (FE, n = 37;
IE, n = 22) were collected and then immediately stored at −80 ◦C until use. The collected
sputum specimens were included in the study only if they met the criteria of Gram staining
(more than 25 leukocytes and fewer than 10 squamous cells per low-power microscope
field). Then 0.5 mL aliquots were extracted from these valid sputum samples and stored at
−80 ◦C for subsequent DNA extraction while the remaining part was submitted for routine
bacterial culture.
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2.3. Whole-Exome Sequencing

Genomic DNA was extracted from peripheral blood for each participant and frag-
mented to an average size of 180~280bp, then subjected to DNA library creation by estab-
lished Illumina paired-end protocols. Agilent SureSelect Human All ExonV6 Kit (Agilent
Technologies, Santa Clara, CA, USA) was used for exome capture according to the man-
ufacturer’s instructions. To generate 150-bp paired-end reads with a minimum coverage
of 10× for ~99% of the genome (mean coverage of 100×), we used the Illumina No-
vaseq 6000 platform (Illumina Inc., San Diego, CA, USA) for genomic DNA sequencing in
Novogene Bioinformatics Technology Co., Ltd. (Beijing, China). Details are described in
Scheme S1.

2.4. 16S rRNA Gene Sequencing

Total genome DNA from sputum samples was extracted using the CTAB method [20].
DNA concentration and purity were monitored on 1% agarose gel. DNA was diluted to
1 ng/µL using sterile water. 16S rRNA genes of distinct regions (16S V3–V4) were amplified
by a specific primer in the barcode. All PCR reactions were carried out with 15 µL of
the Phusion® High-Fidelity PCR Master Mix (New England Biolabs, Ipswich, MA, USA);
2 µM of forward and reverse primers, and about 10 ng template DNA. Thermal cycling
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(initial 1 min at 98 ◦C 10 s) at 98 ◦C for 30 cycles of denaturation, annealing 30 s at 50 ◦C,
and elongation 30 s at 72 ◦C; finally 72 ◦C for 5 min. Mix the same volume of 1× loading
buffer (contained SYB green) with PCR products and operate electrophoresis on 2% agarose
gel for detection. PCR products were mixed in EU density ratios. Then, the mixture of
PCR products was purified with Qiagen Gel Extraction Kit (Qiagen, Hilden, Germany).
Sequencing libraries were generated using TruSeq® DNA PCR-Free Sample Preparation
Kit (Illumina, San Diego, CA, USA) following the manufacturer’s recommendations and
index codes were added. The library quality was assessed on the Qubit@ 2.0 Fluorometer
(Thermo Scientific, Waltham, MA, USA) and Agilent Bioanalyzer 2100 system. At last, the
library was sequenced on an Illumina NovaSeq platform with 250 bp paired-end reads
generated. Details are described in Scheme S1.

2.5. Bioinformatics Analysis

For WES, rare variants filtering was performed as follows: (1) SNPs with a minor
allele frequency (MAF) less than 0.01 in 1000 genomic data (1000g_all), esp6500siv2_all
(http://evs.gs.washington.edu/EVS; accessed on 8 April 2021), gnomAD data (gnomAD_ALL/
gnomAD_EAS, https://doi.org/10.1101/030338; accessed on 8 April 2021) and Novo-
Zhonghua exome database (an in-house Chinese-population exome database); (2) Only
SNVs occurring in exons or splice sites (splicing junction 10 bp) were further analyzed;
(3) Both synonymous SNVs (not relevant to the amino acid alternation predicted by db-
scSNV) and small fragment non-frameshift (<10 bp) indel in the repeat region defined by
RepeatMasker were discarded. (4) Variations were screened according to prediction scores
of software including SIFT (v6.2.0), Poly Phen (v2.2.2), MutationTaster (v2013), and CADD
(v1.3). Potentially deleterious variations are reserved for at least half of these four software
supporting harmfulness of variations. For 16s rRNA gene sequencing, sequence analy-
sis was performed by Uparse software (Uparse v7.0.1001, http://drive5.com/uparse/;
accessed on 20 May 2021). Alpha diversity was applied in analyzing the complexity of
species diversity indices calculated with QIIME (Version 1.7.0) and displayed with R soft-
ware (Version 2.15.3). Principal Coordinate Analysis (PCoA) was displayed by the WGCNA
package, stat packages, and ggplot2 package in R software (Version 2.15.3). Microbial
functionality profiles were predicted using Phylogenetic Investigation of Communities by
Reconstruction of Unobserved States (PICRUSt) to generate the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways [21].

2.6. Statistical Analysis

SPSS 21.0 software was used for basic statistical analysis of data, and GraphPad Prism9
(version 9.0.0) and R software (Version 2.15.3) were used for chart production (p < 0.05
was considered statistically significant). Normally distributed variables were presented as
mean ± standard deviation and compared through one-way analysis of variance (ANOVA)
followed by Tukey’s multiple comparison test. The nonparametric data were presented
as median (interquartile range) and were analyzed by Mann-Whitney tests. Categorical
variables were expressed as count and percentages (N, %) and compared using the χ2 test.
Spearman’s correlation was used to determine the relationship between the mutated genes
and the number of acute exacerbations per year.

3. Results
3.1. Clinical Characteristics

We recruited 82 patients, including 67 male and 15 female individuals. The average
age at onset and inclusion are 60.44 and 69.77 years, respectively. Furthermore, there were
50 and 32 cases of frequent exacerbator and infrequent exacerbator, with no statistically
significant difference in age, sex, BMI, smoking status, COPD duration, and GOLD classifi-
cation between the groups (Table 1). The results of sputum culture showed no statistical
difference may be due to the low positive rate. As expected, the frequent exacerbator group

http://evs.gs.washington.edu/EVS
https://doi.org/10.1101/030338
http://drive5.com/uparse/
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showed a significant difference in the exacerbations frequency (p < 0.001) and the resulting
impaired lung function (p = 0.009).

Table 1. Demographic characteristics of the COPD patients.

Variables All Infrequent Exacerbator Frequent Exacerbator p-Value

n 82 32 50

Age at inclusion (years) (mean ± SD) 69.77 ± 8.14 67.91 ± 7.97 70.96 ± 8.18 0.100

Age at onset of COPD (years) 60.44 ± 8.83 59.28 ± 6.31 61.18 ± 10.19 0.348

COPD duration, years (median, range) 10.00 (5.00–10.00) 7.50(3.50–10.00) 10.00 (5.00–11.25) 0.513

Sex, male, n (%) 67 (81.71) 28 (87.50) 39 (78.00) 0.278

BMI (kg/m2) (median, range) 23.29 (21.50–25.95) 24.49 (22.15–26.42) 22.88 (21.16–25.97) 0.116

Current smoker No. (%) 19 (23.17) 9 (28.13) 10 (20.00) 0.395

FEV1% pred 53.38 ± 20.54 60.74 ± 22.34 48.67 ± 18.23 0.009
FEV1/FVC 52.05 ± 12.42 51.10 ± 13.56 52.73 ± 11.81 0.577

Sputum culture positive, n (%) 6 (7.3) 1 (3.1) 5 (10.0) 0.244

Acute exacerbation (median, range) 1.00 (0.00–2.00) 0.00 (0.00–1.00) 2.00 (1.00–3.00) <0.001
GOLD Classification, n (%) 0.508

I 13 (15.9) 7 (21.9) 6 (12.0)

II 32 (39.0) 13 (40.6) 19 (38.0)

III 25 (30.5) 9 (28.1) 16 (32.0)

IV 12 (14.6) 3 (9.4) 9 (18.0)

COPD: chronic obstructive pulmonary disease; BMI: body mass index; FEV1: forced expiratory volume in 1 s;
FVC: forced vital capacity; GOLD: global initiative for obstructive lung disease; SD: standard deviation. Significant
differences are in bold.

3.2. Whole Exome Sequencing Analyses

We performed WES on 82 DNA samples using the Illumina platform. On average,
the sequencing quality values of Q30 (percentage of bases with Phred value > 30) and
Q20 were above 80 and 90%, respectively, with a sequencing error rate less than 0.1%,
indicating that the sequencing was reliable. A total of 22,308 loci for single nucleotide
variants (SNVs) and 677 loci for insertions and deletions (INDELs) were identified, in-
cluding 11,366 synonymous SNV, 10,316 missense mutations, 88 stopgain, 14 stoploss,
and 524 unknown; as well as, 90 frameshift deletions, 72 frameshift insertions, 208 non-
frameshift deletions, 200 nonframeshift insertions, 2 stoploss, 9 stopgain, and 96 unknown.

To identify potentially pathogenic variants, we screened variations according to scores
of algorithms including SIFT (v6.2.0), Polyphen (v2.2.2), Mutation Taster (v2013), and
CADD (v1.3) software. Potentially deleterious variations were reserved if more than
half of these software scores supported the harmfulness of variations. With 376 candidate
genes identified, the top 20 mutated genes were provided as Supplementary Materials in
Figure S1. Based on filtering the deleterious sites, we screened the control group (IE) for
allelic mutations and determined several genes were only expressed in FE patients (Table 2)
and the AATF gene had the highest rank. The following top five most frequent genes only
mutated in the FE group: AATF (18%), HTT (16%), CEP350 (14%), ADAMTS9 (14%), and
TLL2 (14%). Strong correlations were found in the number of acute exacerbations per year
(|r| > 0.3, p < 0.05) instead of FEV1% pred (|r| < 0.3, p = 0.803) between AATF gene.

3.3. Sputum Microbiota Profiling

We investigated sputum microbiota on 59 sputum specimens (FE, n = 37; IE, n = 22)
using 16S rRNA V3–V4 amplicon sequencing. Bacterial diversity and compositions in dif-
ferent COPD phenotypic subgroups were first compared. Microbial diversity, according to
the Shannon index and Simpson index, was lower in the FE group (p < 0.01), indicating that
the sputum microbiota in these patients was characterized by a lower diversity than those
in the IE patients. A principal coordinates analysis (PCoA) showed significant differences in
sputum microbiota between the FE and IE groups (Supplementary Materials in Figure S2).
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Table 2. The top 10 mutated genes were only detected in the FE group.

CHR Gene Name Description Exon Variant Types Frequency
in FE

Frequency
in IE Expression Summary r p-Value

17 AATF Apoptosis-antagonizing
transcription factor Missense 9/50 0/32 Ubiquitous granular

cytoplasmic expression 0.463 <0.001

4 HTT Huntingtin
Missense,

Nonframeshift
insertion

8/50 0/32 Cytoplasmic expression in
most tissues 0.246 0.026

1 CEP350 Centrosomal protein 350
Missense,

Nonframeshift
deletion

7/50 0/32 Ubiquitous cytoplasmic
expression 0.051 0.648

3 ADAMTS9 ADAM metallopeptidase with
thrombospondin type 1 motif 9 Missense 7/50 0/32

Cytoplasmic expression in
most tissues at variable

levels
0.193 0.082

10 TLL2 Tolloid-like 2 Nonframeshift
insertion 7/50 0/32 NA 0.221 0.046

1 USP24 Ubiquitin-specific protease 24 Stopgain 6/50 0/32 Cytoplasmic expression in
most cell types 0.192 0.084

2 ANKZF1 Ankyrin repeat- and zinc
finger domain-containing 1 Frameshift deletion 6/50 0/32 Cytoplasmic expression in

all tissues 0.213 0.055

3 USF3 Upstream transcription factor
family, member 3 Missense 6/50 0/32 NA 0.102 0.363

5 FNIP1 Folliculin-interacting protein 1 Missense 6/50 0/32
Mainly cytoplasmic

expression at variable
levels in all cell types

0.162 0.147

7 KMT2C Lysine (K)-specific
methyltransferase 2C Missense 6/50 0/32 NA 0.205 0.065

CHR: Chromosome, Exon variant types variant type of exon region: Frequency in FE/IE: The number of mutation
sites shared by frequent-exacerbation or infrequent-exacerbation groups, Expression summary: the expression and
distribution of genes in different tissues and at the subcellular level, NA: not applicable. Significant differences
are in bold.

At the phylum level, the numbers of phyla detected in the FE and IE groups were 35,
and 22, respectively (Figure 2c). The dominant bacterial phylum in the FE group was Firmi-
cutes (30.20%), followed by Proteobacteria (29.49%), and Bacteroidetes (13.69%). In the IE
group, the major phylum was Firmicutes (31.61%), followed by Bacteroidetes (28.85%), and
Proteobacteria (19.64%). The similarity percentage (SIMPER) analysis indicated that Acti-
nobacteria, Proteobacteria, and Firmicutes explained most of the differences in community
structure among FE and IE groups (Figure 2d).

At the genus level, we detected 566 and 363 genera in the FE and IE groups, respec-
tively (Figure 2). The dominant genera in the FE group were Streptococcus (15.63%), Neisseria
(12.02%), and unidentified_Prevotellaceae (8.48%). In the IE group, the dominant genera were
unidentified_Prevotellaceae (15.62%), Streptococcus (13.30%), and Neisseria (11.65%). SIM-
PER analysis indicated that the major dissimilarity contributors were Corynebacteriaceae,
Haemophilus, and Pseudomonas (Figure 2).
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Figure 2. Bacterial community structure in FE (n = 37) and IE (n = 22) group. Relative abundance and
Simper analysis of the most prevalent bacteria and at the phylum (a,b) and genus levels (c,d) in FE
and IE group. The bubble size represents the relative abundance of the species, and the contribution
represents the contribution of the species in the two groups of differences. FE frequent exacerbator,
IE infrequent exacerbator.

3.4. Microbiome Network

To explore the potential bacterial co-existence relationships in the FE Mut group, we
performed an interaction network analysis. We selected the most abundant phyla and the
specific network was built and estimated based on the relative abundances using Spearman
correlation analysis (Figure 3). In the FE group, Ralstonia was included in a closed positively
correlated network containing Veillonella, Prevotellaceae, Porphyromonas, and Fusobacterium.
In addition, Haemophilus showed a positive correlation with Gemella.
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connecting line between nodes is positively correlated with the absolute value of the correlation
coefficient of species interaction. Regarding the color of the line, red represents a positive correlation.
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3.5. Correlation between Candidate Genes and the Microbiome

Spearman’s correlation analysis was used to evaluate the correlation between alpha
diversity and major mutated genes only detected in the FE group. As shown in Figure 4a,
we found a significant association (|r| > 0.3, p < 0.01) between AATF gene mutation and
decreased microbial richness (Chao1 index) and microbial diversity (Simpson index).
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Figure 4. (a) Heatmap of Spearman correlation analysis between the relative abundances of sputum
microbiome and alpha diversity indices. Significant association (|r| > 0.3, p < 0.01) were shown
between Chao1 index and Simpson index in AATF gene. (b) Comparison of alpha diversity indices
(Shannon index, Simpson’s index) of AATF Mut (n = 9), WT FE (n = 28), and WT IE (n = 22) by
Wilcoxon rank-sum test. (c) PCoA is based on Bray-Curtis’s dissimilarity. ADONIS analysis showed
that the separation of bacterial communities was significant (AATF Mut vs WT IE, p = 0.001; AATF
Mut vs WT FE, p = 0.001; WT FE vs WT IE, p = 0.001;). * p < 0.05, ** p < 0.01. Mut, mutation;
WT, wild-type.

We further sub-grouped subjects into FE patients with AATF Mutations (AATF Mut),
AATF wild-type in FE patients (WT FE), and AATF wild-type in IE patients (WT IE).
AATF Mut group had the lowest alpha-diversity indices compared to the other groups and
beta-diversity by PCoA analysis showed that groups had significantly different overall
taxonomic compositions (Figure 4b,c).

3.6. Bacterial Taxonomic Differences

To further identify bacterial biomarkers between groups, we performed a LEfSe
analysis at the genera level (Figure 5a,b). The discriminative bacteria identified in the AATF
Mut group were Haemophilus and Staphylococcus; whereas, the microbiome in the WT FE
and WT IE group was dominated by the genus Neisseria, Streptococcus and Porphyromonas,
Prevotella, Veillonella, etc. (p < 0.05).
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Figure 5. Linear discriminant analysis effect size (LEfSe) analysis revealed the discriminative mi-
crobes. LEfSe cladogram (a) and histogram of linear discriminant analysis (LDA) score (b) show
the biomarkers with significant differences groups, with LDA score > 4.0. The circle radiating from
inside to outside represents the classification from the phylum to the genus. Each circle’s diameter
represents the relative abundance and different species biomarker follows the group for coloring.

3.7. Functional Analysis of the Microbiome in FE-Associated Genes by PICRUSt Analysis

Additionally, we conducted a Phylogenetic Investigation of Communities by Recon-
struction of Unobserved States (PICRUSt) analysis based on the Kyoto Encyclopedia of
Genes and Genomes (KEGG) database to predict the microbiota’s metabolic functions
across groups in our study cohort. Specifically, we found that the levels of genetic informa-
tion processing and translation, such as replication and repair, membrane transport, and
ABC transporters, were more enriched in the AATF Mut group than in the AATF WT group.
In contrast, metabolism related to biosynthesis and degradation including glycan, amino
acid, and xenobiotics, were decreased in the AATF Mut group (p < 0.05; Figure 6a,b).
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4. Discussion

COPD is a complex, heterogeneous polygenic disease that is influenced by both
heredity and the environment. Frequent-exacerbation COPD, one of the most important
phenotypes, has been reported with genetic susceptibility and lung microbial character-
istics; however, the underlying mechanisms were yet to be investigated. In the present
study, we hypothesized that these frequent-exacerbation phenotypes may carry acute ex-
acerbations susceptibility gene mutations and microbial dysbiosis comparable to stable
COPD phenotype. Using whole-exome sequencing and 16S rRNA gene sequencing, we
first identified the most frequently mutated genes and specific microbial communities that
were highly likely to increase exacerbation risk. We also explored the potential association
between mutated genes and microbial differences by functional analysis. Together, the cur-
rent study sheds some new light on the potential of certain exosomes and sputum microbes
as diagnostic biomarkers or therapeutic targets for frequent exacerbators in COPD patients.

Our results demonstrated reduced microbial diversity in the FE group, compared
with the IE group. Similar trends were also observed in COPD exacerbations compared
to stable states, which is consistent with our findings [22]. Reduced sputum bacterial
diversity has been reported to be associated with more severe airflow obstruction and asso-
ciated with an outgrowth of potentially pathogenic bacteria [23,24]. During exacerbations,
pathogenic bacteria may hold dominant positions relative to other species and acceler-
ate declines in microbial diversity. Previous studies have shown that reduced bacterial
diversity evaluated with 16S rRNA gene sequencing is associated with disease severity
and 1-year mortality [17,25]. So far, despite no specific cut-off values, sputum bacterial
diversity could be used for evaluating disease progression and prognosis, reflecting the
dynamic changes during exacerbations in COPD patients. We also observed significant
differences in the microflora structure between FE and IE patients. At the phylum level, the
most dominant phyla in sputum samples of both IE and FE groups was Firmicutes. The
main difference is that Actinobacteria and Proteobacteria accounted for more presentations
in the FE group than in the IE group. Firmicutes and Actinobacteria were commonly found
in the sputum of COPD patients [26]. Proteobacteria has been confirmed to be associated
with exacerbation events [27]. At the genus level, Streptococcus was the most predominant
genera at FE, whereas Prevotellaceae was dominant at IE. Corynebacteriaceae and Haemophilus
contribute the most to variance in the FE group. LEfSe analysis discriminative bacteria in
the FE group was Haemophilus, whereas the microbiome in the IE COPD group was domi-
nated by the genus Porphyromonas, Prevotella, and Veillonella. Previous studies have shown
that Haemophilus influenzae and Streptococcus pneumoniae are the most common pathogenic
bacterium involved in acute exacerbations of COPD [28]. Although they can be identified
in stable states, their relative loads were considerably higher during exacerbations [29]. The
bacterial co-existence interaction network maps showed that relatively stable lung bacterial
flora is considered part of the “core pulmonary microbiome” [30]. When the balance of
pulmonary microbial flora is broken, the biological barrier is disrupted and exacerbations
occur. In general, our study further suggests changes in bacterial diversity and abundance
may lead to acute exacerbations and can be used as future biomarkers.

Among the candidate genes in the present study, the apoptosis-antagonizing tran-
scription factor (AATF) gene was identified as the most susceptibility gene associated
with a predisposition to frequent exacerbation risk. Acting as a key molecule to sustain
proliferative tissues and tumor progression in parts, AATF was reported as a transcriptional
regulator in inhibiting p53-driven apoptosis in vivo [31]. AATF has also been reported
overexpressed in various cancerous tissues, including lung and colorectal cancer, as well
as lymphomas [32]. A recent study revealed AATF as one of the candidate genes asso-
ciated with acute lung injury [33]. It has been reported that AATF expression increases
during disease progression and is involved in a pathway related to airway inflammation in
COPD [34,35]. However, the mechanism behind this remains unknown.

Recent research has confirmed that several gene mutations affect the regulation of the
gut microbiota and may participate in the pathogenesis of digestive tract diseases [36]. To
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the best of our knowledge, there are currently no other studies involving host genetic varia-
tion and sputum microbiome in COPD patients. In this study, we explored for the first time
the sputum microbiome characteristic of COPD patients with FE-related gene mutations.
Correlation analysis suggested that AATF mutation status was significantly negatively
correlated with microbial diversity and richness. Compared to patients with wild-type
AATF, alpha diversity was significantly decreased in the AATF mutant group. Reduced
bacterial diversity was associated with an outgrowth of potentially pathogenic bacteria
as mentioned before, which indicated that the AATF mutant group was more susceptible
to bacterial infections. Further, functional prediction showed that bacterial genetic signal
transduction was enriched while biosynthesis and degradation metabolism decreased in
the AATF mutant group. Signal transduction pathways that regulate the host-pathogen
interactions play important roles in the pathogenesis of bacterial infection [37]. Decreased
metabolic pathways related to lipid metabolism, glycan biosynthesis, and metabolism and
amino acid metabolism have been previously reported to be associated with microbiome
shift and energy consumption [38]. All of the above results suggested a more active bacte-
rial infection. It can be speculated that AATF mutant in frequent exacerbators may be more
genetically susceptible to airway inflammation, and harbor more active bacterial infection
that may contribute to deterioration. Further transcriptome and proteome analyses of the
microbiome are needed to clarify the underlying mechanisms.

One of the major limitations of the present study is the relatively small sample size;
therefore, a larger follow-up study is needed subsequently to validate our findings. Another
shortcoming is that our analyses were limited to individuals of Chinese ancestry and may
therefore limit the generalizability. Additionally, the WES-based method cannot detect
genomic variants in non-protein-coding regions or structural variants that may affect
AECOPD risk. Another potential limitation is that we could not obtain sputum samples
from all patients because some participants failed to produce sputum samples or the sputum
samples didnot meet the standards. We believe in our subsequent studies, these limitations
will be overcome. Nevertheless, our study also has several strengths, such as the use of
human peripheral blood samples, multi-omics, prospective case-control study design, and
significantly higher frequencies of the AATF gene found in the frequent exacerbator group.

5. Conclusions

In conclusion, variants and microbial signatures identified in this study have important
implications for the prevention and management of COPD exacerbations in frequent-
exacerbation phenotype. However, these findings should be generalized with caution
until validated in larger cohorts. The underlying molecular and biochemical mechanisms
of genes susceptibility and microbial dysbiosis to acute exacerbation in COPD patients
deserve further investigations to clarify in the future.
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COPD: chronic obstructive pulmonary disease; AECOPD: Acute exacerbations of chronic ob-
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