Ligand-Promoted Surface Solubilization of TiO2 Nanoparticles by the Enterobactin Siderophore in Biological Medium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Instruments
2.2. Protocols
3. Results
3.1. Complexation of Enterobactin with Ti(IV) Salts
3.2. Solubilization of TiO2-NPs by Enterobactin
3.3. Influence of Concentration and Incubation Time on the Solubilization of TiO2-NPs
3.4. Investigation of the Adsorption and Desorption Modes of Enterobactin on the TiO2-NP Surface by FTIR Spectroscopy
3.5. XPS Surface Analysis of the TiO2-NPs Interaction with Enterobactin
3.6. Application to E171 Food Additives
3.7. Evidence of a Ti–Enterobactin Complex Entrance in Bacteria
4. Discussion
4.1. Influence of the Crystallographic Form and Primary Size of TiO2-NPs on Their Dissolution Rate
4.2. Surface Solubilization Mechanism
4.3. Results Placed in the Context of TiO2 NP Ingestion and Iron Homeostasis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, X.; Mao, S.S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891–2959. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.M.; Tripathi, M. A review of TiO2 nanoparticles. Chin. Sience Bull. 2011, 56, 1639–1657. [Google Scholar] [CrossRef] [Green Version]
- Keller, A.A.; McFerran, S.; Lazareva, A.; Suh, S. Global life cycle releases of engineered nanomaterials. J. Nanopart. Res. 2013, 15, 1–17. [Google Scholar] [CrossRef]
- Project on Emerging Nanotechnologies. Consumer Products Inventory. 2010. Available online: http://www.nanotechproject.tech/cpi/ (accessed on 11 September 2022).
- Vance, M.E.; Kuiken, T.; Vejerano, E.P.; McGinnis, S.P.; Hochella, M.F., Jr.; Rejeski, D.; Hull, M.S. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J. Nanotechnol. 2015, 6, 1769–1780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catalano, R.; Masion, A.; Ziarelli, F.; Slomberg, D.; Laisney, J.; Unrine, J.M.; Campos, A.; Labille, J. Optimizing the dispersion of nanoparticulate TiO2-based UV filters in a non-polar medium used in sunscreen formulations–The roles of surfactants and particle coatings. Colloids Surf. A Physicochem. Eng. Asp. 2020, 599, 124792. [Google Scholar] [CrossRef]
- Piccinno, F.; Gottschalk, F.; Seeger, S.; Nowack, B. Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J. Nanopart. Res. 2012, 14, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Hendren, C.O.; Mesnard, X.; Droge, J.; Wiesner, M.R. Estimating production data for five engineered nanomaterials as a basis for exposure assessment. Environ. Sci. Technol. 2011, 45, 2562–2569. [Google Scholar] [CrossRef]
- Robichaud, C.O.; Uyar, A.E.; Darby, M.R.; Zucker, L.G.; Wiesner, M.R. Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment. Environ. Sci. Technol. 2009, 43, 4227–4233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weir, A.; Westerhoff, P.; Fabricius, L.; Hristovski, K.; von Goetz, N. Titanium dioxide nanoparticles in food and personal care products. Environ. Sci. Technol. 2012, 46, 2242–2250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lomer, M.C.; Thompson, R.P.; Powell, J.J. Fine and ultrafine particles of the diet: Influence on the mucosal immune response and association with Crohn’s disease. Proc. Nutr. Soc. 2002, 61, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Powell, J.J.; Faria, N.; Thomas-McKay, E.; Pele, L.C. Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. J. Autoimmun. 2010, 34, J226–J233. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.; Vogelsberger, W. Dissolution kinetics of titanium dioxide nanoparticles: The observation of an unusual kinetic size effect. J. Phys. Chem. B 2006, 110, 3955–3963. [Google Scholar] [CrossRef] [PubMed]
- Misra, S.K.; Dybowska, A.; Berhanu, D.; Luoma, S.N.; Valsami-Jones, E. The complexity of nanoparticle dissolution and its importance in nanotoxicological studies. Sci. Total Environ. 2012, 438, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Colvin, V.L. The potential environmental impact of engineered nanomaterials. Nat. Biotechnol. 2003, 21, 1166–1170. [Google Scholar] [CrossRef] [PubMed]
- Gulley-Stahl, H.; Hogan, P.A., 2nd; Schmidt, W.L.; Wall, S.J.; Buhrlage, A.; Bullen, H.A. Surface complexation of catechol to metal oxides: An ATR-FTIR, adsorption, and dissolution study. Environ. Sci. Technol. 2010, 44, 4116–4121. [Google Scholar] [CrossRef]
- Zhao, H.; Meng, H.; Zhang, Q.; Wu, Y.; Chen, H.; Jiang, X.; Zhang, C. Ligand biodegradation-induced surface reconstruction of magnetite nanoparticles: Potentially overlooked toxicity. Environ. Sci. Nano 2022, 9, 313–323. [Google Scholar] [CrossRef]
- Raymond, K.N.; Allred, B.E.; Sia, A.K. Coordination Chemistry of Microbial Iron Transport. Acc. Chem. Res. 2015, 48, 2496–2505. [Google Scholar] [CrossRef]
- Boukhalfa, H.; Crumbliss, A.L. Chemical aspects of siderophore mediated iron transport. Biometals Int. J. Role Met. Ions Biol. Biochem. Med. 2002, 15, 325–339. [Google Scholar] [CrossRef]
- Zheng, T.; Nolan, E.M. Siderophore-based detection of Fe(III) and microbial pathogens. Met. Integr. Biometal Sci. 2012, 4, 866–880. [Google Scholar] [CrossRef]
- Sandy, M.; Butler, A. Microbial iron acquisition: Marine and terrestrial siderophores. Chem. Rev. 2009, 109, 4580–4595. [Google Scholar] [CrossRef]
- Kraemer, S.M. Iron oxide dissolution and solubility in the presence of siderophores. Aquat. Sci. 2004, 66, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Stintzi, A.; Raymond, K.N. Siderophore Chemistry. In Molecular and Cellular Iron Transport; Templeton, D.M., Ed.; Marcel Dekker: New York, NY, USA, 2002. [Google Scholar]
- Page, W.J.; Huyer, M. Derepression of the Azotobacter vinelandii siderophore system, using iron-containing minerals to limit iron repletion. J. Bacteriol. 1984, 158, 496–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raymond, K.N.; Muller, G.; Matzanke, B.F. Complexation of Iron by Siderophores—A Review of Their Solution and Structural Chemistry and Biological Function. Top. Curr. Chem. 1984, 123, 49–102. [Google Scholar]
- Abergel, R.J.; Warner, J.A.; Shuh, D.K.; Raymond, K.N. Enterobactin protonation and iron release: Structural characterization of the salicylate coordination shift in ferric enterobactin. J. Am. Chem. Soc. 2006, 128, 8920–8931. [Google Scholar] [CrossRef] [Green Version]
- Buettner, K.M.; Valentine, A.M. Bioinorganic chemistry of titanium. Chem. Rev. 2012, 112, 1863–1881. [Google Scholar] [CrossRef]
- Ciavatta, L.; Ferri, D.; Riccio, G. On the hydrolysis of the titanium(IV) ion in chloride media. Polyhedron 1985, 4, 15–22. [Google Scholar] [CrossRef]
- Martell, A.E.; Smith, R.M. Critical Stability Constants; Plenum press: New York, NY, USA; London, UK, 1989. [Google Scholar]
- Tinoco, A.D.; Valentine, A.M. Ti(IV) binds to human serum transferrin more tightly than does Fe(III). J. Am. Chem. Soc. 2005, 127, 11218–11219. [Google Scholar] [CrossRef]
- Li, J.; Sadler, P.J.; Sun, H. Rationalization of the strength of metal binding to human serum transferrin. Eur. J. Biochem. 1996, 242, 387–393. [Google Scholar] [CrossRef]
- Tinoco, A.D.; Eames, E.V.; Valentine, A.M. Reconsideration of serum Ti(IV) transport: Albumin and transferrin trafficking of Ti(IV) and its complexes. J. Am. Chem. Soc. 2008, 130, 2262–2270. [Google Scholar] [CrossRef]
- Laisney, J.; Rosset, A.; Bartolomei, V.; Predoi, D.; Truffier-Boutry, D.; Artous, S.; Bergé, V.; Brochard, G.; Michaud-Soret, I. TiO2 nanoparticles coated with bio-inspired ligands for the safer-by-design development of photocatalytic paints. Environ. Sci. Nano 2021, 8, 297–310. [Google Scholar] [CrossRef]
- Upritchard, H.G.; Yang, J.; Bremer, P.J.; Lamont, I.L.; McQuillan, A.J. Adsorption to metal oxides of the Pseudomonas aeruginosa siderophore pyoverdine and implications for bacterial biofilm formation on metals. Langmuir ACS J. Surf. Colloids 2007, 23, 7189–7195. [Google Scholar] [CrossRef]
- Upritchard, H.G.; Yang, J.; Bremer, P.J.; Lamont, I.L.; McQuillan, A.J. Adsorption of enterobactin to metal oxides and the role of siderophores in bacterial adhesion to metals. Langmuir ACS J. Surf. Colloids 2011, 27, 10587–10596. [Google Scholar] [CrossRef]
- Sommer, L. Titanium(Iv) Complexes with Ligands Having Oxygen Donor Atoms in Aqueous Solutions. Z Anorg. Allg. Chem. 1963, 321, 191–197. [Google Scholar] [CrossRef]
- Baramov, T.; Keijzer, K.; Irran, E.; Mosker, E.; Baik, M.H.; Sussmuth, R. Synthesis and structural characterization of hexacoordinate silicon, germanium, and titanium complexes of the E. coli siderophore enterobactin. Chemistry 2013, 19, 10536–10542. [Google Scholar] [CrossRef] [PubMed]
- Jugan, M.L.; Barillet, S.; Simon-Deckers, A.; Herlin-Boime, N.; Sauvaigo, S.; Douki, T.; Carriere, M. Titanium dioxide nanoparticles exhibit genotoxicity and impair DNA repair activity in A549 cells. Nanotoxicology 2012, 6, 501–513. [Google Scholar] [CrossRef]
- Pignon, B.; Maskrot, H.; Leconte, Y.; Coste, S.; Reynaud, C.; Herlin-Boime, N.; Gervais, M.; Va, G.F.; Pouget, T.; Tranchant, J.F. Versatility of laser pyrolysis applied to synthesis of TiO2 nanoparticles, application to UV attenuation. Eur. J. Inorgan. Chem. 2008, 208, 883–889. [Google Scholar] [CrossRef]
- Simon-Deckers, A.; Gouget, B.; Mayne-L’hermite, M.; Herlin-Boime, N.; Reynaud, C.; Carriere, M. In vitro investigation of oxide nanoparticle and carbon nanotube toxicity and intracellular accumulation in A549 human pneumocytes. Toxicology 2008, 253, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Arnow, L.E. Colorimetric determination of the components of 3,4-dihydroxyphenylalanine-tyrosine mixtures. J. Biol. Chem. 1937, 118, 531. [Google Scholar] [CrossRef]
- Payne, S.M. Detection, isolation, and characterization of siderophores. Methods Enzymol. 1994, 235, 329–344. [Google Scholar] [CrossRef] [PubMed]
- Teulon, J.M.; Godon, C.; Chantalat, L.; Moriscot, C.; Cambedouzou, J.; Odorico, M.; Ravaux, J.; Podor, R.; Gerdil, A.; Habert, A.; et al. On the Operational Aspects of Measuring Nanoparticle Sizes. Nanomaterials 2018, 9, 18. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.X.; Rajh, T.; Wang, Z.Y.; Thurnauer, M.C. XAFS studies of surface structures of TiO2 nanoparticles and photocatalytic reduction of metal ions. J. Phys. Chem. B 1997, 101, 10688–10697. [Google Scholar] [CrossRef]
- Jankovic, I.A.; Saponjic, Z.V.; Dzunuzovic, E.S.; Nedeljkovic, J.M. New Hybrid Properties of TiO2 Nanoparticles Surface Modified With Catecholate Type Ligands. Nanoscale Res. Lett. 2010, 5, 81–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.X.; Cheng, B.; Yang, Y.X.; Cao, A.; Liu, J.H.; Du, L.J.; Liu, Y.; Zhao, Y.; Wang, H. Characterization and preliminary toxicity assay of nano-titanium dioxide additive in sugar-coated chewing gum. Small 2013, 9, 1765–1774. [Google Scholar] [CrossRef] [PubMed]
- Raymond, K.N.; Dertz, E.A.; Kim, S.S. Enterobactin: An archetype for microbial iron transport. Proc. Natl. Acad. Sci. USA 2003, 100, 3584–3588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, C.; Tang, Y.; Yang, F.G.; Li, X.L.; Xu, S.; Fan, X.Y.; Huang, Y.Y.; Yang, Y.J. Cellular Toxicity of TiO2 Nanoparticles in Anatase and Rutile Crystal Phase. Biol. Trace Elem. Res. 2011, 141, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Burdett, J.K.; Hughbanks, T.; Miller, G.J.; Richardson, J.W.; Smith, J.V. Structural Electronic Relationships in Inorganic Solids-Powder Neutron-Diffraction Studies of the Rutile and Anatase Polymorphs of Titanium-Dioxide at 15 and 295-K. J. Am. Chem. Soc. 1987, 109, 3639–3646. [Google Scholar] [CrossRef]
- Lazzeri, M.; Vittadini, A.; Selloni, A. Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys. Rev. B 2001, 63, 155409. [Google Scholar] [CrossRef]
- Ranade, M.R.; Navrotsky, A.; Zhang, H.Z.; Banfield, J.F.; Elder, S.H.; Zaban, A.; Borse, P.H.; Kulkarni, S.K.; Doran, G.S.; Whitfield, H.J. Energetics of nanocrystalline TiO(2). Proc. Natl. Acad. Sci. USA 2002, 99, 6476–6481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vittadini, A.; Casarin, M.; Selloni, A. Chemistry of and on TiO2-anatase surfaces by DFT calculations: A partial review. Chem. Acc. 2007, 117, 663–671. [Google Scholar] [CrossRef]
- Lamiel-Garcia, O.; Ko, K.C.; Lee, J.Y.; Bromley, S.T.; Illas, F. When Anatase Nanoparticles Become Bulklike: Properties of Realistic TiO2 Nanoparticles in the 1–6 nm Size Range from All Electron Relativistic Density Functional Theory Based Calculations. J. Chem. Theory Comput. 2017, 13, 1785–1793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazzeri, M.; Selloni, A. Stress-Driven Reconstruction of an Oxide Surface: The Anatase TiO2(001)-(1x4) Surface. Phys. Rev. Lett. 2001, 87, 266105. [Google Scholar] [CrossRef]
- Wehrli, B.; Wieland, E.; Furrer, G. Chemical Mechanisms in the Dissolution Kinetics of Minerals-the Aspect of Active-Sites. Aquat. Sci 1990, 52, 3–31. [Google Scholar] [CrossRef]
- Kammler, H.K.; Pratsinis, S.E. Carbon-coated titania nanostructured particles: Continuous, one-step flame-synthesis. J. Mater. Res. 2003, 18, 2670–2676. [Google Scholar] [CrossRef] [Green Version]
- Maskrot, H.; Herlin-Boime, N.; Leconte, Y.; Jursikova, K.; Reynaud, C.; Vicens, J. Blue TiO2-x/SiO2 nanoparticles by laser pyrolysis. J. Nanopart. Res. 2006, 8, 351–360. [Google Scholar] [CrossRef]
- Finkelstein-Shapiro, D.; Davidowski, S.; Lee, P.B.; Guo, C.; Holland, G.P.; Rajh, T.; Gray, K.A.; Yarger, J.L.; Calatayud, M. Direct Evidence of Chelated Geometry of Catechol on TiO2 by a Combined Solid-State NMR and DFT Study. J. Phys. Chem. C 2016, 120, 23625–23630. [Google Scholar] [CrossRef]
- Li, S.C.; Wang, J.G.; Jacobson, P.; Gong, X.Q.; Selloni, A.; Diebold, U. Correlation between Bonding Geometry and Band Gap States at Organic-Inorganic Interfaces: Catechol on Rutile TiO2(110). J. Am. Chem. Soc. 2009, 131, 980–984. [Google Scholar] [CrossRef] [PubMed]
- Terranova, U.; Bowler, D.R. Adsorption of Catechol on TiO2 Rutile (100): A Density Functional Theory Investigation. J. Phys. Chem. C 2010, 114, 6491–6495. [Google Scholar] [CrossRef]
- Gong, X.-Q.; Selloni, A.; Vittadini, A. Density Functional Theory Study of Formic Acid Adsorption on Anatase TiO2(001): Geometries, Energetics, and Effects of Coverage, Hydration, and Reconstruction. J. Phys. Chem. B 2006, 110, 2804–2811. [Google Scholar] [CrossRef] [PubMed]
- Redfern, P.C.; Zapol, P.; Curtiss, L.A.; Rajh, T.; Thurnauer, M.C. Computational studies of catechol and water interactions with titanium oxide nanoparticles. J. Phys. Chem. B 2003, 107, 11419–11427. [Google Scholar] [CrossRef]
- Biber, M.V.; Afonso, M.D.; Stumm, W. The Coordination Chemistry of Weathering. 4. Inhibition of the Dissolution of Oxide Minerals. Geochim. Cosmochim. Acta 1994, 58, 1999–2010. [Google Scholar] [CrossRef]
- Furrer, G.; Stumm, W. The Coordination Chemistry of Weathering. 1. Dissolution Kinetics of Delta-Al2o3 and Beo. Geochim. Cosmochim. Acta 1986, 50, 1847–1860. [Google Scholar] [CrossRef]
- Ludwig, C.; Casey, W.H.; Rock, P.A. Prediction of Ligand-Promoted Dissolution Rates from the Reactivities of Aqueous Complexes. Nature 1995, 375, 44–47. [Google Scholar] [CrossRef]
- Wieland, E.; Wehrli, B.; Stumm, W. The Coordination Chemistry of Weathering. 3. A Generalization on the Dissolution Rates of Minerals. Geochim. Cosmochim. Acta 1988, 52, 1969–1981. [Google Scholar] [CrossRef]
- Zinder, B.; Furrer, G.; Stumm, W. The Coordination Chemistry of Weathering. 2. Dissolution of Fe(Iii) Oxides. Geochim. Cosmochim. Acta 1986, 50, 1861–1869. [Google Scholar] [CrossRef]
- Reichard, P.U.; Kretzschmar, R.; Kraemer, S.M. Dissolution mechanisms of goethite in the presence of siderophores and organic acids. Geochim. Cosmochim. Acta 2007, 71, 5635–5650. [Google Scholar] [CrossRef]
- Jones, K.E.; Batchler, K.L.; Zalouk, C.; Valentine, A.M. Ti(IV) and the Siderophore Desferrioxamine B: A Tight Complex Has Biological and Environmental Implications. Inorg. Chem. 2017, 56, 1264–1272. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, R.; Wang, B.; Cai, C.; Zheng, L.; Wang, H.; Wang, M.; Ouyang, H.; Zhou, X.; Chai, Z.; et al. The effects of orally administered Ag, TiO2 and SiO2 nanoparticles on gut microbiota composition and colitis induction in mice. NanoImpact 2017, 8, 80–88. [Google Scholar] [CrossRef]
- Jandhyala, S.M.; Talukdar, R.; Subramanyam, C.; Vuyyuru, H.; Sasikala, M.; Reddy, D.N. Role of the normal gut microbiota. World J. Gastroenterol. WJG 2015, 21, 8787–8803. [Google Scholar] [CrossRef]
- Gulley-Stahl, H.J.; Bledsoe, S.B.; Evan, A.P.; Sommer, A.J. The advantages of an attenuated total internal reflection infrared microspectroscopic imaging approach for kidney biopsy analysis. Appl. Spectrosc. 2010, 64, 15–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kortman, G.A.M.; Raffatellu, M.; Swinkels, D.W.; Tjalsma, H. Nutritional iron turned inside out: Intestinal stress from a gut microbial perspective. FEMS Microbiol. Rev. 2014, 38, 1202–1234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, V.; Yeoh, B.S.; Chassaing, B.; Zhang, B.; Saha, P.; Xiao, X.; Awasthi, D.; Shashidharamurthy, R.; Dikshit, M.; Gewirtz, A.; et al. Microbiota-Inducible Innate Immune Siderophore Binding Protein Lipocalin 2 Is Critical for Intestinal Homeostasis. Cell. Mol. Gastroenterol. Hepatol. 2016, 2, 482–498. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Goetz, D.; Li, J.-Y.; Wang, W.; Mori, K.; Setlik, D.; Du, T.; Erdjument-Bromage, H.; Tempst, P.; Strong, R.; et al. An Iron Delivery Pathway Mediated by a Lipocalin. Mol. Cell 2002, 10, 1045–1056. [Google Scholar] [CrossRef]
- Amos, F.F.; Cole, K.E.; Meserole, R.L.; Gaffney, J.P.; Valentine, A.M. Titanium mineralization in ferritin: A room temperature nonphotochemical preparation and biophysical characterization. JBIC J. Biol. Inorg. Chem. 2013, 18, 145–152. [Google Scholar] [CrossRef] [PubMed]
TiO2 NP | CAPC500 (3) | 101 JRC | TiO2-A12(4) | P25 (4) | Sigma | TiO2-R12 (4) | 104 JRC | 103 JRC | E171 Batch 1 | E171 Batch 2 |
---|---|---|---|---|---|---|---|---|---|---|
Shape | Sphere | Sphere | Sphere | Sphere | Sphere | Sphere | Sphere | Sphere | - | - |
Primary size | 3 nm | 6 nm | 12 nm | 24 nm | <25 nm | 12 nm | 20 nm | 20 nm | - | - |
Mean size diameter after sonication (nm) | 518 | Aggregates | 150 | 205 | 502 | 192 | 177 | 38 | peak1: 50 (75% *) peak 2: 311 (25% *) | peak1: 38 (92% *) peak2: 255 (8% *) |
% polydispersity | 24 | - | 17 | 13 | 39 | 22 | 30 | 9 | peak1: 9 peak2: 22 | peak1: 11 peak2: 21 |
Crystalline composition | 100% anatase | 100% anatase | 95% anatase | 86% anatase 14% rutile | 100% anatase | 85% rutile 15% anatase | 100% rutile hydrophilic | 100% rutile hydrophobic | Mainly anatase | Mainly anatase |
[Ti]0 (µM) (1) | 1.3 ± 0.1 | b.d. | 4.5 ± 0.2 | b.d. | 0.8 ± 0.2 | 0.4 ± 0.1 | 4.5 ± 0.5 | 3.4 ± 0.2 | 11.1 ± 0.6 | 10.1 ± 0.6 |
[Ti]ent (µM) (2) | 5.8 ± 0.6 | 4.5 ± 0.3 | 33.0 ± 1.6 | 3.9 ± 0.2 | 4.1 ± 0.3 | 4.5 ± 0.1 | 4.9 ± 0.4 | 3.5 ± 0.1 | 14.6 ± 0.4 | 14.0 ± 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laisney, J.; Chevallet, M.; Fauquant, C.; Sageot, C.; Moreau, Y.; Predoi, D.; Herlin-Boime, N.; Lebrun, C.; Michaud-Soret, I. Ligand-Promoted Surface Solubilization of TiO2 Nanoparticles by the Enterobactin Siderophore in Biological Medium. Biomolecules 2022, 12, 1516. https://doi.org/10.3390/biom12101516
Laisney J, Chevallet M, Fauquant C, Sageot C, Moreau Y, Predoi D, Herlin-Boime N, Lebrun C, Michaud-Soret I. Ligand-Promoted Surface Solubilization of TiO2 Nanoparticles by the Enterobactin Siderophore in Biological Medium. Biomolecules. 2022; 12(10):1516. https://doi.org/10.3390/biom12101516
Chicago/Turabian StyleLaisney, Jérôme, Mireille Chevallet, Caroline Fauquant, Camille Sageot, Yohann Moreau, Daniela Predoi, Nathalie Herlin-Boime, Colette Lebrun, and Isabelle Michaud-Soret. 2022. "Ligand-Promoted Surface Solubilization of TiO2 Nanoparticles by the Enterobactin Siderophore in Biological Medium" Biomolecules 12, no. 10: 1516. https://doi.org/10.3390/biom12101516
APA StyleLaisney, J., Chevallet, M., Fauquant, C., Sageot, C., Moreau, Y., Predoi, D., Herlin-Boime, N., Lebrun, C., & Michaud-Soret, I. (2022). Ligand-Promoted Surface Solubilization of TiO2 Nanoparticles by the Enterobactin Siderophore in Biological Medium. Biomolecules, 12(10), 1516. https://doi.org/10.3390/biom12101516