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Abstract: Alzheimer’s disease (AD) is considered a modern epidemic because of its increasing
prevalence worldwide and serious medico-social consequences, including the economic burden of
treatment and patient care. The development of new effective therapeutic agents for AD is one of
the most urgent and challenging tasks. To address this need, we used an aminoalkylene linker to
combine the well-known anticholinesterase drug tacrine with antioxidant 2-tolylhydrazinylidene-1,3-
diketones to create 3 groups of hybrid compounds as new multifunctional agents with the potential
for AD treatment. Lead compounds of the new conjugates effectively inhibited acetylcholinesterase
(AChE, IC50 0.24–0.34 µM) and butyrylcholinesterase (BChE, IC50 0.036–0.0745 µM), with weak
inhibition of off-target carboxylesterase. Anti-AChE activity increased with elongation of the alkylene
spacer, in agreement with molecular docking, which showed compounds binding to both the catalytic
active site and peripheral anionic site (PAS) of AChE, consistent with mixed type reversible inhibition.
PAS binding along with effective propidium displacement suggest the potential of the hybrids
to block AChE-induced β-amyloid aggregation, a disease-modifying effect. All of the conjugates
demonstrated metal chelating ability for Cu2+, Fe2+, and Zn2+, as well as high antiradical activity in
the ABTS test. Non-fluorinated hybrid compounds 6 and 7 also showed Fe3+ reducing activity in the
FRAP test. Predicted ADMET and physicochemical properties of conjugates indicated good CNS
bioavailability and safety parameters acceptable for potential lead compounds at the early stages of
anti-AD drug development.

Keywords: Alzheimer’s disease; acetylcholinesterase; butyrylcholinesterase; inhibitors; 2-tolylhydr-
azinylidene-1,3-diketones; tacrine conjugates; propidium displacement; antioxidant activity; biometals;
ADMET prediction

1. Introduction

Alzheimer’s disease (AD) is the most common form of dementia in old age. It is
currently considered a modern epidemic because of its increasing prevalence worldwide
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and serious medico-social consequences, including the economic burden of treatment and
patient care. This situation is due to a multiplicity of interacting factors including the
steadily growing population, increase in life expectancy, duration of the course of the
disease, severe disability of patients requiring their hospitalization or expensive in-home
care, and the lack of effective therapy [1,2]. Therefore, the development of new effective
multifunctional agents that can act simultaneously on several targets thought to be involved
in AD pathogenesis is one of the most urgent and important tasks of medicinal chemistry
and pharmacology [3].

One of the main characteristics of AD is cholinergic deficiency. A loss of cholinergic
innervation in the cerebral cortex of patients with this disorder is an early pathogenic event
correlated with cognitive impairment. The severity of dementia has been found to have a
positive correlation with the extent of cholinergic loss. This evidence led to the formulation
of the “cholinergic hypothesis” and the development of cholinesterase inhibitor therapies
for symptomatic improvement in AD patients [4].

Initially, cholinergic therapy for AD was directed toward inhibition of acetylcholinesterase
(AChE, EC 3.1.1.7) as the main enzyme that hydrolyzes the neurotransmitter acetylcholine [5].
The therapeutic effect of AChE inhibitors arises from the increased concentrations and du-
ration of action of acetylcholine in cholinergic synapses [6,7]. Butyrylcholinesterase (BChE,
EC 3.1.1.8) is also involved in the hydrolysis of acetylcholine and can compensate for some
of the functions of AChE, thereby optimizing cholinergic neurotransmission [8–12]. As the
disease progresses, the activity of BChE gradually increases while the activity of AChE
decreases [12,13]. Consequently, BChE has gained importance as a therapeutic target for
reducing cholinergic deficiency [14–16].

Currently, there are no treatments that effectively mitigate the underlying pathogenic
mechanisms for AD. Modern therapeutic strategies for AD consist of three cholinesterase
inhibitors: donepezil, rivastigmine and galantamine, and the NMDA receptor antagonist
memantine. Unfortunately, the effects of these agents are merely palliative. They partially
compensate for declining cognitive function but they are not able to stop the development
of the neurodegenerative process [7]. Such a small choice of drugs for AD therapy is
due to the multifactorial nature of this disease, a realization that has fostered interest in
identifying contributing mechanisms and discovering agents capable of attenuating these
processes simultaneously [17–19].

One of the best-characterized pathogenic processes of AD is β-amyloid (Aβ) protein
aggregation and deposition in the brain [20,21]. In addition to the classical function of
acetylcholine hydrolysis, AChE has proaggregant properties toward Aβ via participation
of the peripheral anionic site (PAS), which interacts with soluble Aβ peptides promoting
their aggregation [22,23]. Thus, compounds interacting with the AChE PAS are potential
antiaggregating agents [24,25]. Moreover, BChE is also thought to be involved in the forma-
tion and/or maturation of Aβ plaques, thereby contributing to AD pathogenesis [26–31].
Therefore, inhibitors of BChE and inhibitors of both cholinesterases are of particular interest
from the standpoint of a dual strategy: increasing the concentration of acetylcholine and
ameliorating β-amyloid aggregation.

Another important mechanism in many neurodegenerative diseases is oxidative stress,
characterized by an imbalance between the formation of reactive oxygen or nitrogen species
and their inactivation by antioxidant systems [32–34]. The brain is the most sensitive organ
in the body to the damaging effects of free radicals, and this vulnerability increases with
age [32,35]. The association between AD and oxidative stress is widely investigated as a
potential therapeutic target [36–40], and the design of cholinesterase inhibitors with antiox-
idant properties is considered a promising direction in the development of multifunctional
drugs for AD treatment [41–45].

One of the plausible mechanisms contributing to AD pathogenesis is imbalance of
brain homeostasis of certain ions, e.g., Cu2+, Zn2+, and Fe2+. The content of these brain
biometals increases 3- to 7-fold during the progression of AD [46]. The accumulation
of metals contributes to their binding to Aβ, leading to its increased aggregation [47,48].
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Moreover, Cu2+ and Fe2+ support the production of reactive oxygen species and increase
of oxidative stress, thus promoting neurotoxicity [49,50]. Therefore, selectively reducing
brain concentrations of metals with chelating agents is one of the therapeutic approaches
proposed for the treatment of AD [51,52].

Considering the multifactorial nature of AD, a promising therapeutic approach is the
development of multitarget drugs having a complex effect on several biological targets
responsible for the pathogenesis of this disease [53–57]. One of the design strategies for
multitarget drugs is to use a molecular spacer to link together two pharmacophores that are
active against two or more different biological targets, and a well-known anticholinesterase
drug molecule is often used as one of the pharmacophores [58–62].

Among the anticholinesterases, tacrine was approved in 1993 as the first drug for the
treatment of AD [63,64]. However, its serious side effects, such as hepatotoxicity, led to its
withdrawal from the market. To improve its activity and reduce its toxicity, new derivatives
of tacrine have been designed and synthesized [65,66].

Many studies have been aimed at modifying tacrine by creating hybrid conjugate com-
pounds linked through a spacer with various pharmacophores that promote the interaction
of the conjugate inhibitor with both the catalytic active site (CAS) of AChE and its PAS,
thus blocking AChE-induced Aβ aggregation [41,67,68]. In addition, various heterocyclic
compounds, e.g., hydroxyquinolines [69] and coumarins [70,71], as well as open-chain frag-
ments such as amino acid derivatives [72,73] and curcumin [74] have been used as a second
pharmacophore. These tacrine conjugates combined AChE and BChE inhibition with extra
activities, e.g., inhibition of AChE-induced Aβ aggregation, antioxidant properties, and
metal-binding capacity [75–78].

Recently, we found that 2-tolylhydrazinylidene-1,3-diketones have a powerful antiox-
idant effect exceeding the activity of Trolox by 1.3–1.7 times [79]. Herein, we used these
compounds as an antioxidant pharmacophore to create new conjugates by binding them
to tacrine through an alkylene linker of various lengths. In the 2-tolylhydrazinylidene-
1,3-diketone components 1a–d, we varied the substituents at the 1,3-diketone fragment
including methyl, trifluoromethyl, and phenyl residues. We studied the esterase profile
of the synthesized conjugates, i.e., the inhibitory activity against AChE, BChE, and the
structurally related enzyme carboxylesterase (CES, EC 3.1.1.1), whose inhibition can re-
sult in undesirable drug-drug interactions. In addition, we used quantum mechanics
(QM)-assisted molecular docking to explain the observed structure-activity relationships.
Moreover, we assessed the efficiency of the new compounds to displace propidium from the
AChE PAS as an indicator of their potential ability to block AChE-induced Aβ aggregation.
Furthermore, we determined the antioxidant activity of the conjugates in the ABTS and
FRAP tests as well as their metal-chelating ability. Finally, we carried out computational
predictions of the ADMET and physicochemical properties of the new conjugates.

2. Materials and Methods
2.1. Chemistry

The solvents (methanol, ethanol, chloroform, methylene chloride, hexane, acetonitrile)
were obtained from AO VEKTON (St. Petersburg, Russia). Hexylamine was purchased
from Alfa Aesar via Thermo Fisher Scientific (Kandel, Germany). The deuterated solvent
CDCl3 was acquired from SOLVEX LLC (Skolkovo Innovation Center, Moscow, Russia).
All solvents, chemicals, and reagents were used without purification. Melting points were
determined in open capillaries on a Stuart SMP30 (Bibby Scientific Limited, Staffordshire,
UK) melting point apparatus and were uncorrected. The IR spectra were recorded on
a PerkinElmer Spectrum Two FT-IR spectrometer (Perkin-Elmer, Waltham, MA, USA)
using the frustrated total internal reflection accessory with a diamond crystal. The 1H
and 19F NMR spectra were registered on a Bruker DRX-400 spectrometer (400 or 376 MHz,
respectively) or a Bruker AvanceIII 500 spectrometer (500 or 470 MHz, respectively) (both
Bruker, Karlsruhe, Germany). The 13C NMR spectra were recorded on a Bruker AvanceIII

500 spectrometer (125 MHz). The internal standard was SiMe4 (for 1H and 13C NMR
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spectra) and C6F6 (for 19F NMR spectra, δ –162.9 ppm). The microanalyses (C, H, N) were
carried out on a PerkinElmer PE 2400 series II (PerkinElmer, Waltham, MA, USA) elemental
analyzer. The column chromatography was performed on Silica gel 60 (0.062–0.2 mm)
(Macherey-Nagel GmbH & Co KG, Duren, Germany).

The initial 2-arylhydrazinylidene-1,3-diketones 1a,b [80], 1c,d [79] and aminomethylene-
tacrines 5a–c [81] were synthesized by referring to previously published methods.

2.1.1. Synthesis of Compounds 2a-c (General Procedure)

A mixture of the corresponding 2-arylhydrazinylidene-1,3-diketone 1a,b (2.3 mmol)
and hexylamine (2.3 mmol) was refluxed in dry methanol for 8 h. In the case of (3E)-1,1,1-
trifluoro-3-[2-(4-methylphenyl)hydrazinylidene]pentane-2,4-dione 1c, the reaction was
carried out in ethanol at room temperature. Then, the mixture was concentrated on a rotary
evaporator. The residue was purified by column chromatography with the appropriate
eluent, as specified below.

(3Z)-4-(Hexylamino)-3-[(E)-(4-methylphenyl)diazenyl]pent-3-en-2-one (2a). Yield 64%, or-
ange powder, mp 36–37 ◦C (eluent chloroform: ethanol = 5 : 1, then chloroform). IR: ν 2926
(NH), 1645 (C=O), 1590, 1487, 1436, 1354, 1328 (N–H, C=C, N=N), 1200–1159 (C–F) cm−1.
1H NMR (400 MHz, CDCl3): δ 0.90–0.93, 1.34–1.36, 1.46–1.48, 1.69–1.77 (11H, all m,
HNCH2(CH2)4CH3); 2.37, 2.54 (9H, all s, 3CH3); 3.45 (2H, unsolv. td, J 6.7, 4.1 Hz,
HNCH2(CH2)4CH3); 7.20, 7.43 (4H, both d, J 8.2 Hz); 15.07 (1H, s, NH). 13C NMR (126 MHz,
CDCl3): δ 13.99; 16.66; 21.10; 22.54; 26.83; 28.11; 29.29; 31.41; 44.37; 119.34; 129.18; 129.68;
136.29; 148.69; 160.98; 198.52. Anal. calcd. for C18H27N3O. C, 71.72; H, 9.03; N, 13.94.
Found: C, 69.96; H, 8.90; N, 13.68.

(3Z)-3-(Hexylamino)-2-[(4-methylphenyl)diazenyl]-1-phenylbut-2-en-1-one (2b). Mixture of
Z:E–isomers-87:13. Yield 69%, orange powder, mp 54–55 ◦C (eluent dichloromethane). IR: ν
2924 (NH), 1630 (C=O), 1574, 1514, 1457, 1372, 1335 (N–H, C=C, N=N), 1220–1143 (C–F) cm−1.
1H NMR (400 MHz, CDCl3): δ 0.86–0.87 (3H, m, HNCH2(CH2)4CH3 isomer E); 0.91–0.94
(3H, m, HNCH2(CH2)4CH3 isomer Z); 1.25–1.29, 1.37–1.38, 1.50–1.53, 1.77–1.80 (8H, all m,
HNCH2(CH2)4CH3, isomer Z,E); 2.31, 2.55 (6H, both s, 2CH3 isomer Z); 2.32, 2.63 (6H, both
s, 2CH3 isomer E); 7.08–7.10, 7.12–7.13, 7.17–7.18, 7.22–7.23, 7.37–7.47, 7.54–7.56, 7.77–7.79,
7.85–7.87 (9H, all m, Ph and C6H4 isomer Z,E); 14.76 (1H, s, NH isomer E); 15.15 (1H, s,
NH isomer Z). 13C NMR (125 MHz, CDCl3): δ 14.01; 16.64; 20.93; 21.03; 22.57; 26.91; 29.41;
30.49; 31.45; 45.09; 46.67; 114.18; 115.79; 116.17; 118.71; 119.24; 126.48; 127.19; 127.72; 128.37;
129.18; 129.61; 129.81; 129.95; 130.13; 130.21; 130.32; 131.80; 135.64; 135.96; 138.67; 139.29;
141.32; 148.14; 162.32; 192.21; 193.86. Anal. calcd. for C23H29N3O. C, 76.00; H, 8.04; N, 11.56.
Found: C, 76.05; H, 8.22; N, 11.40.

(3Z)-4-(Hexylamino)-3-[(E)-(4-methylphenyl)diazenyl]-1,1,1-trifluoropent-3-en-2-one (2c). Yield
40%, orange powder, mp 70–72 ◦C (eluent chloroform, then hexane:chloroform = 1:1). IR: ν
3258 (NH), 1670 (C=O), 1591, 1558, 1511, 1459, 1365 (N–H, C=C, N=N), 1185–1148 (C–F) cm−1.
1H NMR (500 MHz, CDCl3): δ 0.91–0.94, 1.34–1.38, 1.46–1.50, 1.73–1.78 (11H, all m,
HNCH2(CH2)4CH3); 2.38, 2.62 (6H, both s, 2CH3); 3.50 (2H, unsolv. td, J 6.8, 5.2 Hz,
HNCH2(CH2)4CH3); 7.22, 7.52 (4H, both d, J 8.3 Hz); 14.73 (1H, s, NH). 13C NMR (125 MHz,
CDCl3): δ 13.96; 16.32; 21.21; 22.50; 26.64; 28.81; 31.29; 41.88; 118.61 (q, J 292.2 Hz, CF3);
120.79; 123.23; 129.75; 138.19; 149.50; 164.11; 177.63 (q, J 30.4 Hz, C—CF3). 19F NMR
(470 MHz, CDCl3): δ 92.78 (s, CF3). Anal. calcd. for C18H24F3N3O. C, 60.83; H, 6.81; N,
10.82. Found: C, 60.66; H, 6.94; N, 11.96.

2.1.2. Synthesis of Compounds 6a-c, 7a-c, 8a-c (General Procedure)

A mixture of 1,1,1-trifluoro-3-[2-(4-methylphenyl)hydrazinylidene]pentane-2,4-dione 1c
(1 mmol) and the corresponding N-(1,2,3,4-tetrahydroacridin-9-yl)alkyldiamine 5a-c (1 mmol) in
30 mL of dry methylene chloride was stirred at room temperature for 30 min. Then 10 mL
of dry methanol was added and the mixture was refluxed for 5 h. In the case of 3-[2-(4-
methylphenyl)hydrazinylidene]pentane-2,4-dione 1a and 2-[2-(4-methylphenyl)hydrazinylidene]-
1-phenylbutane-1,3-dione 1b, the reaction was carried out by refluxing in dry methanol for
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8 h. Then the reaction mixture was cooled to room temperature, concentrated on a rotary
evaporator, and purified by column chromatography; eluent: dichloromethane:ethanol = 20:1.

(3Z)-3-[(E)-(4-Methylphenyl)diazenyl]-4-({2-[(1,2,3,4-tetrahydroacridin-9-yl)amino]butyl}}-
amino)pent-3-en-2-one (6a). Yield 65%, yellow oil. IR: ν 2928 (NH), 1642 (C=O), 1581, 1562,
1499, 1415, 1352 (N–H, C=C, N=N). 1H NMR (500 MHz, CDCl3): δ 1.85-1.88 (8H, m, C3H2,
C4H2 acridine and HNCH2(CH2)2CH2NH); 2.35, 2.48, 2.53 (3H, all s, 3CH3); 2.67, 3.06 (4H,
both t, J 5.8 Hz, C1H2, C2H2 acridine); 3.48-3.49, 3.56 (4H, both m, HNCH2(CH2)2CH2NH);
4.02 (1H, br. s, NH tacrine); 7.13, 7.35 (4H, both d, J 8.2 Hz, C6H4CH3); 7.32–7.34, 7.54–7.57,
7.92–7.95 (4H, all m, CHAr); 15.24 (1H, s, NH). 13C NMR (125 MHz, CDCl3): δ 16.90; 21.04;
22.60; 22.90; 24.79; 27.10; 27.84; 29.42; 33.72; 44.86; 48.87; 116.32; 118.60; 120.17; 122.51;
123.94; 128.51; 129.79; 130.01;130.17; 136.05; 147.02; 147.22; 150.49; 158.29; 161.93; 198.41.
Anal. calcd. for C29H35N5O. C, 74.17; H, 7.51; N, 14.91. Found: C, 74.27; H, 7.69; N, 14.73.

(3Z)-3-[(E)-(4-Methylphenyl)diazenyl]-4-({2-[(1,2,3,4-tetrahydroacridin-9-yl)amino]hexyl}}-
amino)pent-3-en-2-one (6b). Yield 55%, yellow oil. IR: ν 2933 (NH), 1647 (C=O), 1642 (C=O),
1574, 1499, 1419, 1353 (N–H, C=C, N=N). 1H NMR (500 MHz, CDCl3): δ 1.49–1.50, 1.69–1.74,
1.90–1.91 (12H, all m, C3H2, C4H2 acridine and HNCH2(CH2)4CH2NH); 2.35, 2.52, 2.53
(9H, all s, 3CH3); 2.69, 3.07 (4H, both t, J 5.5 Hz, C1H2, C2H2 acridine); 3.43 (2H, td, J 6.6,
4.0 Hz, HNCH2); 3.49 (2H, t, J 7.1 Hz, CH2NH tacrine); 3.97 (1H, br. s, NH tacrine); 7.16,
7.40 (4H, both d, J 8.1 Hz, C6H4CH3); 7.31–7.34, 7.53–7.57, 7.92–7.94 (4H, all m, CHAr); 15.12
(1H, s, NH). 13C NMR (125 MHz, CDCl3): δ 16.72; 21.05; 22.69; 22.99; 24.77; 26.63; 26.98;
29.32; 31.61; 33.84; 44.47; 49.26; 115.93; 119.03; 120.14; 122.66; 123.71; 128.39; 128.57; 129.51;
129.70; 136.21; 147.18; 148.16; 150.70; 158.26; 161.26; 198.43. Anal. calcd. for C31H39N5O. C,
74.81; H, 7.90; N, 14.07. Found: C, 74.38; H, 8.24; N, 13.88.

(3Z)-3-[(E)-(4-Methylphenyl)diazenyl]-4-({2-[(1,2,3,4-tetrahydroacridin-9-yl)amino]octyl}}-
amino)pent-3-en-2-one (6c). Yield 45%, yellow oil. IR: ν 2926 (NH), 1635 (C=O), 1583, 1516,
1456, 1415, 1353 (N–H, C=C, N=N). 1H NMR (500 MHz, CDCl3): δ 1.41–1.47, 1.74–1.80,
1.88–1.93, 1.91–1.92 (16H, all m, C3H2, C4H2 acridine and HNCH2(CH2)6CH2NH); 2.33,
2.53 (9H, both s, 3CH3); 2.59, 3.28 (4H, both t, J 5.3 Hz, C1H2, C2H2 acridine); 3.46, 3.80
(4H, both br.s, HNCH2(CH2)6CH2NH); 5.27 (1H, br. s, NH tacrine); 7.17, 7.41 (4H, both d,
J 8.0 Hz, C6H4CH3); 7.41–7.43, 7.66–7.69, 8.10–8.11, 8.43–8.44 (4H, all m, CHAr); 15.09 (1H,
s, NH).13C NMR (125 MHz, CDCl3): δ 16.70; 21.07; 21.22; 22.19; 23.92; 26.63; 26.96; 28.06;
29.01; 29.09; 29.25; 29.95; 31.26; 44.35; 48.77; 112.13; 116.21; 117.01; 119.19;. 123.25; 123.75;
124.64; 129.29; 129.65; 130.17; 131.10; 136.28; 148.45; 154.01; 161.11; 198.48. Anal. calcd. for
C33H43N5O. C, 75.39; H, 8.24; N, 13.32. Found: C, 75.43; H, 8.17; N, 13.69.

(2Z)-2-[(E)-(4-Methylphenyl)diazenyl]-1-phenyl-3-({2-[(1,2,3,4-tetrahydroacridin-9-yl)amino]-
butyl}amino)but-2-en-1-one (7a). Yield 68%, yellow oil. IR: ν 2930 (NH), 1626 (C=O), 1578,
1499, 1416, 1335 (N–H, C=C, N=N). 1H NMR (500 MHz, CDCl3): δ 1.88–1.91 (8H, m, C3H2,
C4H2 acridine and HNCH2(CH2)2CH2NH); 2.30, 2.48 (6H, both s, 2CH3); 2.70, 3.08 (4H,
both t, J 5.8 Hz, C1H2, C2H2 acridine); 3.57-3.61 (4H, m, HNCH2(CH2)2CH2NH); 3.99
(1H, br. s, NH tacrine); 7.03, 7.10 (4H, both d, J 8.1 Hz, C6H4CH3); 7.34–7.37, 7.39–7.42,
7.74–7.48 (5H, all m, C6H5); 7.56–7.59, 7.81–7.82, 7.94–7.96 (4H, all m, CHAr); 15.37 (1H,
s, NH).13C NMR (125 MHz, CDCl3): δ 16.91; 20.99; 22.68; 22.94; 24.83; 27.23; 29.52; 33.96;
45.69; 48.97; 116.51; 118.40; 120.33; 122.51; 123.87; 127.29; 128.36; 128.80; 129.72 (2C); 130.02;
130.26; 130.68; 135.65; 140.67; 146.56; 147.37; 150.33; 158.56; 163.26; 193.60. Anal. calcd. for
C34H37N5O. C, 76.80; H, 7.01; N, 13.17. Found: C, 76.65; H, 7.15; N, 13.29.

(2Z)-2-[(E)-(4-Methylphenyl)diazenyl]-1-phenyl-3-({2-[(1,2,3,4-tetrahydroacridin-9-yl)amino]-
hexyl}amino)but-2-en-1-one (7b). Yield 57%, yellow oil. IR: ν 2930, 2858 (NH), 1626 (C=O),
1578, 1499, 1366, 1335 (N–H, C=C, N=N). 1H NMR (500 MHz, CDCl3): δ 1.51–1.55, 1.69–1.75,
1.76–1.80, 1.90–1.91 (12H, all m, C3H2, C4H2 acridine and HNCH2(CH2)4CH2NH); 2.29,
2.51 (6H, both s, 2CH3); 2.69, 3.07 (4H, both t, J 5.7 Hz, C1H2, C2H2 acridine); 3.48-3.53 (4H,
m, HNCH2(CH2)4CH2NH); 4.02 (1H, br. s, NH tacrine); 7.05, 7.14 (4H, both d, J 8.1 Hz,
C6H4CH3); 7.32–7.35, 7.37–7.42; 7.54–7.57 (5H, all m, C6H5); 7.54–7.57, 7.78–7.79, 7.93–7.95
(4H, all m, CHAr); 15.21 (1H, s, NH).13C NMR (125 MHz, CDCl3): δ 16.72; 21.00; 22.64;
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22.95; 24.74; 26.66; 27.04; 29.42; 31.68; 33.74; 45.19; 49.27; 115.83; 118.91; 120.05; 122.71;
123.72; 127.23 (2C); 128.45; 129.46; 129.63; 129.84; 130.21; 130.48; 135.90; 141.04; 147.05;
147.59; 150.78; 158.17; 162.60; 193.76. Anal. calcd. for C36H41N5O. C, 77.25; H, 7.38; N, 12.51.
Found: C, 77.55; H, 7.68; N, 12.23.

(2Z)-2-[(E)-(4-Methylphenyl)diazenyl]-1-phenyl-3-({2-[(1,2,3,4-tetrahydroacridin-9-yl)amino]-
octyl}amino)but-2-en-1-one (7c). Yield 47%, yellow oil. IR: ν 2927, 2855 (NH), 1628 (C=O),
1576, 1514, 1501, 1366, 1335 (N–H, C=C, N=N). 1H NMR (500 MHz, CDCl3): δ 1.41–1.51,
1.68-1.72, 1.74-1.79, 1.90-1.91 (16H, all m, C3H2, C4H2 acridine and HNCH2(CH2)6CH2NH);
2.28, 2.53 (6H, both s, 2CH3); 2.65, 3.12 (4H, both t, J 5.3 Hz, C1H2, C2H2 acridine); 3.51
(2H, td, J 6.7, 4.1 Hz, HNCH2); 3.56 (2H, t, J 7.1 Hz, CH2NH tacrine); 3.97 (1H, br s, NH
tacrine); 4.27 (1H, br. s, NH tacrine); 7.07, 7.16 (4H, both d, J 8.1 Hz, C6H4CH3); 7.34–7.41,
7.44–7.46 (5H, all m, C6H5); 7.56–7.60, 7.77–7.79, 7.97–7.99 (4H, all m, CHAr); 15.17 (1H,
s, NH).13C NMR (125 MHz, CDCl3): δ 16.65; 20.99; 22.24; 22.73; 24.44; 26.76; 29.09; 29.19;
29.35; 31.56; 45.07; 49.21; 114.66; 119.10; 123.08; 123.88; 126.94; 127.20; 128.35; 129.14; 129.26;
129.58; 130.17; 130.28; 130.40; 135.95; 139.30; 141.15; 145.50; 147.92; 151.73; 156.82; 162.40;
193.80. Anal. calcd. for C38H45N5O. C, 77.65; H, 7.72; N, 11.91. Found: C, 77.45; H, 7.92;
N, 11.74.

(3Z)-3-[(E)-(4-Methylphenyl)diazenyl]-4-({2-[(1,2,3,4-tetrahydroacridin-9-yl)amino]butyl}-
amino-1,1,1-trifluoropent-3-en-2-one (8a). Yield 60%, crystalizing oil. IR: ν 2942, 2868 (NH),
1671 (C=O), 1585, 1562, 1496, 1368 (N–H, C=C, N=N), 1220-1143 (C–F) cm−1. 1H NMR
(500 MHz, CDCl3): δ 1.85-1.90 (8H, m, C3H2, C4H2 acridine and HNCH2(CH2)2CH2NH);
2.37, 2.59 (6H, both s, 2CH3); 2.69, 3.06 (4H, both t, J 6.0 Hz, C1H2, C2H2 acridine); 3.52–3.54
(4H, m, HNCH2(CH2)2CH2NH); 3.88 (1H, br. s, NH tacrine); 7.17, 7.47 (4H, both d, J 8.2 Hz,
C6H4CH3); 7.33–7.36, 7.46–7.48, 7.55–7.58; 7.89–7.93 (4H, all m, CHAr); 14.88 (1H, s, NH).
13C NMR (125 MHz, CDCl3): δ 16.32; 21.20; 22.69; 22.92; 24.86; 26.48; 29.15; 34.01; 43.62;
48.67; 116.87; 118.50 (q, J 292.1 Hz, CF3); 120.44; 120.61; 122.32; 123.41; 123.99; 128.38; 128.94;
129.82; 138.34; 147.43; 149.10; 150.06; 158.71; 164.15; 177.67 (q, J 30.4 Hz, C—CF3). 19F NMR
(470 MHz, CDCl3): δ 92.68 (s, CF3). Anal. calcd. for C29H32F3N5O. C, 66.52; H, 6.16; N,
13.38. Found: C, 66.30; H, 6.36; N, 13.02.

Crystallographic data for compound 8a. The X-ray studies were performed on an Xcalibur
3 CCD (Oxford Diffraction Ltd., Abingdon, UK) diffractometer with a graphite monochro-
mator, ω scanning with 1◦ step, λ(MoKα) 0.71073 Å radiation, T 295(2) K. An empiri-
cal absorption correction was applied. Using Olex2 [82], the structure was solved with
the ShelXT [83] structure solution program using Direct Methods and refined with the
ShelXL [84] refinement package using Least Squares minimization. All non-hydrogen
atoms were refined in the anisotropic approximation; H-atoms at the C-H bonds were
refined in the “rider” model with dependent displacement parameters. An empirical
absorption correction was carried out through spherical harmonics, implemented in the
SCALE3 ABSPACK scaling algorithm by a program “CrysAlisPro 1.171.41.123a” (Rigaku
Oxford Diffraction, 2022).

The suitable orange single crystals of compound 8a were obtained by slow crystallization
from acetonitrile. Main crystallographic data for 8a: C29H32F3N5O, M 523.59, space group
P21/n, monoclinic, a 9.6290(8), b 24.6933(16), c 11.4045(8) Å; β 103.973(7)◦; V 2631.4(3) Å3; Z 4;
Dcalc 1.322 g·cm−3; µ 0.097 mm−1; 370 refinement parameters; 22,006 reflections measured,
7024 [Rint = 0.0580, Rsigma = 0.0626] unique reflections which were used in all calculations.
The final R1 = 0.0843, wR2 = 0.2237 [I ≥ 2σ (I)], R1 = 0.1441, wR2 = 0.2836 [all data]. CCDC
2165596 contains the supplementary crystallographic data for this compound.

(3Z)-3-[(E)-(4-Methylphenyl)diazenyl]-4-({2-[(1,2,3,4-tetrahydroacridin-9-yl)amino]hexyl}-
amino-1,1,1-trifluoropent-3-en-2-one (8b). Yield 48%, yellow oil. IR: ν 2931 (NH), 1663 (C=O),
1591, 1562, 1497, 1421, 1382 (N–H, C=C, N=N), 1169-1143 (C–F) cm−1. 1H NMR (500 MHz,
CDCl3) δ 1.55–1.56, 1.78–1.88 (12H, all m, C3H2, C4H2 acridine and HNCH2(CH2)4CH2NH);
2.36, 2.60 (6H, both s, 2CH3); 2.62, 3.19 (4H, both t, J 5.6 Hz, C1H2, C2H2 acridine); 3.52 (2H,
td, J 6.6, 5.2 Hz, HNCH2); 3.75 (2H, t, J 6.9 Hz, CH2NH tacrine); 5.07 (1H, br. s, NH tacrine);
7.18, 7.48 (4H, both d, J 8.3 Hz, C6H4CH3); 7.35–7.38, 7.60–7.63, 8.04–8.05, 8.26–8.28 (4H,
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all m, CHAr); 14.75 (1H, s, NH).13C NMR (125 MHz, CDCl3) δ 16.36; 21.20; 21.45; 22.32;
24.23; 26.38; 26.67; 28.75; 29.67; 31.22; 43.70; 48.57; 112.98; 117.64; 118.53 (q, J 291.8 Hz, CF3);
120.68; 123.29; 123.52; 124.09; 124.51; 129.76; 130.56; 138.30; 142.48; 149.34; 153.36; 154.33;
164.16; 177.59 (q, J 30.4 Hz, C—CF3). 19F NMR (470 MHz, CDCl3): δ 92.73 (s, CF3). Anal.
calcd. for C31H36F3N5O. C, 67.49; H, 6.58; N, 12.70. Found: C, 67.39; H, 6.35; N, 12.42.

(3Z)-3-[(E)-(4-Methylphenyl)diazenyl]-4-({2-[(1,2,3,4-tetrahydroacridin-9-yl)amino]octyl}-
amino-1,1,1-trifluoropent-3-en-2-one (8c). Yield 42%, yellow oil. IR: ν 2927 (NH), 1663
(C=O), 1592, 1562, 1498, 1421, 1382 (N–H, C=C, N=N), 1169-1144 (C–F) cm−1. 1H NMR
(500 MHz, CDCl3) δ 1.38-1.48, 1.63–1.67, 1.72–1.75, 1.91–1.92 (16H, all m, C2H2, C3H2
acridine + HNCH2(CH2)6CH2NH); 2.36, 2.61 (6H, both s, 2CH3); 2.70, 3.06 (4H, both t,
J 5.3 Hz, C1H2, C4H2 acridine); 3.45-3.51 (4H, m, HNCH2(CH2)6CH2NH); 3.93 (1H, br. s,
NH tacrine); 7.20, 7.50 (4H, both d, J 8.2 Hz, C6H4CH3); 7.32–7.35, 7.53–7.56, 7.90–7.94 (4H,
all m, CHAr); 14.73 (1H, s, NNH).13C NMR (125 MHz, CDCl3): δ 16.34; 21.20; 22.73; 23.01;
24.75; 26.81; 26.86; 28.82; 29.04; 29.19; 31.70; 33.91; 43.81; 49.38; 115.83; 118.57 (q, J 292.1 Hz,
CF3); 120.15; 120.76; 122.77; 123.28; 123.61; 128.34; 128.61; 129.75; 138.24; 147.31; 149.46;
150.76; 158.34; 164.11; 177.66 (q, J 30.8 Hz, C—CF3). 19F NMR (470 MHz, CDCl3): δ 92.75 (s,
CF3). Anal. calcd. for C33H40F3N5O. C, 68.37; H, 6.96; N, 12.08. Found: C, 68.54; H, 7.05;
N, 12.13.

2.2. Biological Testing
2.2.1. Enzymatic Assays
AChE, BChE and CES Inhibition

Human erythrocyte AChE, equine serum BChE, porcine liver CES, acetylthiocholine io-
dide (ATCh), butyrylthiocholine iodide (BTCh), 5,5′-dithio-bis-(2-nitrobenzoic acid) (DTNB), 4-
nitrophenyl acetate (4-NPA), tacrine were purchased from Sigma-Aldrich (St. Louis, MO, USA).
AChE and BChE activities were measured by the colorimetric method of Ellman (λ 412 nm).
The assay solution consisted of 0.1 M K/Na phosphate buffer pH 7.5, 25 ◦C, 0.33 mM
DTNB, 0.02 unit/mL AChE or BChE, and 1 mM substrate (ATCh or BTCh, respectively).
Reagent blanks consisted of reaction mixtures without substrates.

The activity of CES was determined spectrophotometrically by the release of 4-
nitrophenol at 405 nm in 0.1 M K/Na phosphate buffer pH 8.0, 25 ◦C. Final enzyme
and substrate (4-nitrophenyl acetate) concentrations were 0.02 unit/mL and 1 mM, respec-
tively. Assays were carried out with a blank containing all constituents except porcine
CES to assess non-enzymatic hydrolysis. Measurements were performed with a FLU-
OStar Optima microplate reader (BMG Labtech, Ortenberg, Germany). Compounds were
dissolved in DMSO; the incubation mixture contained 2% (v/v) solvent. The primary
evaluation of the inhibitory activity of the compounds was performed by determining
the degree of the enzyme inhibition at a compound concentration of 20 µM. For this, a
sample of the corresponding enzyme was incubated with the test compound for 5 min;
then the enzyme residual activity was determined. Each experiment was performed in
triplicate. Compounds inhibiting the enzyme by more than 30% were then selected for
determination of IC50 values (the inhibitor concentration resulting in 50% inhibition of
control enzyme activity). Compounds (eight concentrations ranging between 1 × 10−11

and 1 × 10−4 M were used to achieve 20 to 80% inhibition) were incubated with each
enzyme for 5 min at 25 ◦C (for temperature equilibration). Substrate was then added
and residual enzyme activity relative to an inhibitor-free control was measured using a
FLUOStar Optima microplate reader.

Kinetic Study of AChE and BChE Inhibition. Determination of Inhibition Mechanism and
Steady-State Inhibition Constants

Mechanisms of human erythrocyte AChE and equine serum BChE inhibition were
assessed via a thorough analysis of enzyme kinetics. Residual activity was measured
following 5 min incubation at 25 ◦C with three increasing concentrations of inhibitor and
six decreasing substrate concentrations. Inhibition constants Ki (competitive component)
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and αKi (noncompetitive component) were determined by linear regression of 1/V versus
1/[S] double-reciprocal (Lineweaver–Burk) plots.

2.2.2. Propidium Displacement from EeAChE PAS

Propidium iodide, donepezil, and Tris were purchased from Sigma-Aldrich (St. Louis,
MO, USA). The ability of the test compounds to competitively displace propidium, a selec-
tive ligand of the PAS of AChE, was evaluated by a fluorescence method [85]. Electrophorus
electricus (EeAChE) (electric eel, type VI-S, lyophilized powder, Sigma-Aldrich, St. Louis,
MO, USA) was used owing to its high degree of purification, high activity, and lower
cost than human AChE (hAChE). The applicability of this enzyme has been substantiated
earlier [67]. The fluorescence intensity of propidium iodide bound with AChE increases
several times; decreasing fluorescence intensity of the bound propidium in the presence
of the test compounds shows their ability to bind to the PAS of AChE. To determine the
degree of displacement (% displacement) of propidium from the PAS of AChE, EeAChE
(final concentration, 7 µM) was incubated with the test compound at a concentration of
20 µM in 1 mM Tris-HCl buffer pH 8.0, 25 ◦C, for 15 min. Then, propidium iodide solution
(final concentration, 8 µM) was added, the samples were incubated for 15 min, and the
fluorescence spectrum (530 nm (excitation) and 600 nm (emission)) was taken. Donepezil
and tacrine were used as reference compounds. The blank contained propidium iodide of
the same concentration in 1 mM Tris-HCl buffer, pH 8.0 at 25 ◦C. The measurements were
carried out in triplicate on a FLUOStar Optima microplate reader (LabTech, Ortenberg,
Germany), and the results were calculated by the following formula:

% Displacement = 100 − (IFAChE + Propidium + inhibitor / IFAChE + Propidium) × 100 (1)

where IFAChE + Propidium is the fluorescence intensity of the propidium associated with
AChE in the absence of the test compound (taken as 100%), and IFAChE + Propidium + inhibitor
is the fluorescence intensity of the propidium associated with AChE in the presence of the
test compound.

2.2.3. ABTS Radical Cation Scavenging Activity Assay

Radical scavenging activity of the compounds was evaluated by the ABTS radical
cation (ABTS•+) scavenging assay showing the ability of the compounds to decolorize the
ABTS•+ solution [86] with some modifications [87]. Trolox was used as the antioxidant
standard; ascorbic acid was used as the comparison compound. All tested compounds and
standards were dissolved in DMSO.

ABTS (2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)) was purchased from
Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan). Potassium persulfate (dipotassium
peroxydisulfate), Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid), ascorbic
acid, DMSO and HPLC-grade ethanol were obtained from Sigma-Aldrich Chemical Co.
(St. Louis, MO, USA). Aqueous solutions were prepared using deionized water.

The solution of ABTS•+ was produced by mixing 7 mM ABTS aqueous solution with
2.45 mM potassium persulfate aqueous solution in equal quantities and allowing them
to react for 12–16 h at room temperature in the dark. Radical scavenging capacity of the
compounds was analyzed by mixing 10 µL of compound with 240 µL of ABTS•+ working
solution in ethanol (100 µM final concentration), and after 1 h of incubation at 30 ◦C
the decrease in absorbance was measured spectrophotometrically at 734 nm using a Bio-
Rad xMark microplate UV/VIS spectrophotometer (Bio-Rad, Hercules, CA, USA). The
compounds were tested in the concentration range 5 × 10−7–1 × 10−4 M. Ethanol blanks
were run in each assay. Values were obtained from five replicates of each sample and three
independent experiments.

Antioxidant activity was reported as Trolox equivalent antioxidant capacity (TEAC
values), consisting of the ratio between the slopes obtained from the linear correlation
for concentrations of the tested compounds and Trolox with absorbance of ABTS radi-
cal. For the compounds, we also determined IC50 values (compound concentration (µM)
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required for 50% reduction of the ABTS radical). The calculations were carried out us-
ing Origin 6.1 for Windows (OriginLab, Northampton, MA, USA). Results are presented
as mean ± SEM calculated using GraphPad Prism version 6.05 for Windows, GraphPad
Software (San Diego, CA, USA).

2.2.4. Ferric Reducing Antioxidant Power (FRAP) Assay

The FRAP (Ferric Reducing Antioxidant Power) assay measures the ability of an-
tioxidants to reduce the ferric 2,4,6-tripyridyl-s-triazine complex [Fe(TPTZ)2]3+ to the
intensely blue-colored ferrous complex [Fe(TPTZ)2]2+ with an absorption maximum at
λ = 593 nm [88,89]. The reducing ability of a compound is an indicator of its potential
antioxidant activity [90].

The ferric reducing ability of the compounds was determined by a previously de-
scribed method [89] as a microplate-adapted version described in [42]. 2,4,6-tris(pyridin-
2-yl)-1,3,5-triazine (TPTZ), FeCl3·6H2O, Trolox, ascorbic acid and DMSO were obtained
from Sigma-Aldrich Chemical Co (St. Louis, MO, USA). The FRAP reagent was prepared
by mixing acetate buffer (0.3 M, pH 3.6), TPTZ (10 mM in 40 mM HCl) and FeCl3·6H2O
(20 mM in distilled water) in a ratio of 10:1:1 immediately before use. Compounds were
dissolved in DMSO and tested in the concentration range of 1×10−6–1×10−4 M. The
solvent content in the reaction mixture was 4% (v/v). The test compounds (10 µL) were
added to the FRAP reagent solution (240 µL) and mixed thoroughly. The reaction was
carried out at 37 ◦C in the dark, the incubation time was 1 h. The absorbance at 600 nm
was monitored spectrophotometrically by a FLUOStar OPTIMA microplate reader (BMG
Labtech, Germany) at 37 ◦C. Trolox was used as a standard antioxidant, ascorbic acid as a
reference compound. Values were obtained from four replicates of each sample and three
independent experiments.

The ferric reducing ability of compounds was expressed as TE units (antioxidant
activity in Trolox equivalent) with the values calculated as the ratio of the concentrations of
Trolox and the test compound resulting in the same effect.

2.2.5. Metal-chelating Properties of Compounds 6a, 7a and 8a

The complexing studies were made in acetonitrile at 25 ◦C using a UV–vis spec-
trophotometer Shimadzu UV-2600 (Shimadzu Corporation, Kyoto, Japan) with wavelength
ranging from 190 to 600 nm. Solutions (200 µM in acetonitrile) of the following metals
compounds were prepared in volumetric flasks: FeCl2·4H2O (99%, Acros Organics by
Thermo Fisher Scientific (Kandel, Germany)), CuCl2 (98%, Alfa Aesar by Thermo Fisher
Scientific (Kandel, Germany)), or Zn(NO3)2·6H2O (98%, Alfa Aesar by Thermo Fisher
Scientific (Kandel, Germany). Solutions of the test compounds were also prepared in
acetonitrile at 400 µM concentrations. To a mixture of 0.5 mL test compound solution
(40 µM final concentration) and 3.5 mL acetonitrile, 1 mL of the metal solution (CuCl2,
FeCl2·4H2O, or Zn(NO3)2·6H2O; 40 µM final concentration) was added. The solution was
incubated at 25 ◦C for 30 min and then the absorption spectra were recorded at 25 ◦C in a
1 cm quartz cell. The control was prepared by mixing 0.5 mL tested compound solution
and 4.5 mL acetonitrile.

2.2.6. Molecular Modeling Studies
QM analysis of the Structures

Estimations of pKa values were performed with the Calculator Plugins of MarvinS-
ketch 21.14.0, ChemAxon (http://www.chemaxon.com, accessed on 19 September 2021).
Because the pKa values of the tacrine fragment for all considered compounds was estimated
as 8.89, all conjugates were used for all further calculations with a protonated endocyclic
nitrogen atom of the tacrine fragment.

For all considered compounds an array of possible tautomers was also generated with
the Calculator Plugins of MarvinSketch 21.14.0. A conformational search was performed
with TorsiFlex v. 2021.3 [91,92], for all torsions of the hydrazone-diketone fragment, with

http://www.chemaxon.com
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connectivity of the mobile hydrogen skipped. The following main parameters of TorsiFlex
were used: 10,000 of steps of a stochastic algorithm (increased to 20,000 and 50,000 when
an additional search was needed), HF/3-21G for low level and B3LYP/6-31G* for high
level calculations.

QM optimization of the generated structures, as well as proton transfer pathway cal-
culations (optimization, transition state (TS) search and intrinsic reaction path calculations
(IRC)) were performed with Gaussian 16 [93] using a DFT method (B3LYP/6-31G*).

Molecular Docking

The X-ray structure of human AChE co-crystallized with donepezil (PDB ID 4EY7 [94])
after removal of water molecules and other molecules, and an optimized X-ray structure
of human BChE (PDB ID 1P0I [95,96]) were used for molecular docking. Structures of the
ligands in the most stable configuration after QM optimization were used. Partial atomic
charges on ligand atoms were assigned from QM data according to the Löwdin scheme [97].

Molecular docking was performed with AutoDock 4.2.6 software [98]. The grid box
for docking included the entire active site gorge of AChE (22.5Å × 22.5Å × 22.5Å grid box
dimensions) and BChE (15Å × 20.25Å × 18Å grid box dimensions) with a grid spacing of
0.375 Å. The main Lamarckian Genetic Algorithm (LGA) [99] parameters were 256 runs,
25 × 106 evaluations, 27 × 104 generations, and a population size of 3000.

Figures were prepared with PyMol (www.pymol.org, accessed on 21 July 2016).

2.2.7. Prediction of ADMET and Physicochemical Profiles

Lipophilicity (LogPow) and aqueous solubility (pS) were estimated by the ALogPS
3.0 neural network model implemented in the OCHEM platform [100]. Human intestinal
absorption (HIA) [101], blood–brain barrier distribution/permeability (LogBB) [102,103],
and hERG-mediated cardiac toxicity risk (channel affinity pKi and inhibitory activity
pIC50) [104] were estimated using the integrated online service for the prediction of ADMET
properties [105]. This service implements predictive QSAR models based on accurate and
representative training sets, fragmental descriptors, and artificial neural networks. The
quantitative estimate of drug-likeness (QED) values [106] were calculated using RDKit
version 2021.09.2 software [107].

3. Results and Discussion
3.1. Chemistry

First, the interaction of 2-tolylhydrazinylidene-1,3-diketones 1a-d with hexylamine
was studied as a model reaction for the synthesis of conjugates with aminomethylene-
modified tacrine. It was found that 2-tolylhydrazinylidene-substituted acetyl- and ben-
zoylacetones 1a,b reacted with hexylamine at the acetyl moiety in refluxing methanol to
give products 2a,b in good yields (Scheme 1). Note that the reaction of the benzoylacetone
derivative 1b bearing non-equivalent carbonyl centers proceeded chemoselectively to pro-
duce the only product 2b. The regioisomeric structure of compound 2b was established
by 13C NMR spectroscopy. The signal of the carbonyl carbon atom in the 13C NMR spec-
trum was observed at δ 193 ppm, typical of the benzoyl fragment. The resonating signal
of the acetyl group carbon atom in product 2a was observed in the downfield region at
δ 198 ppm [108].

The reaction of 1,1,1-trifluoro-3-[2-(4-methylphenyl)hydrazinylidene]pentane-2,4-dione
1c and hexylamine occurred less selectively. This was confirmed by the formation of a mixture
of products from which 1,1,1-trifluoro-4-hexylimine-3-(2-[4-methylphenyl)hydrazinylidene]-
pentan-2-one 2c was isolated in moderate yield (Scheme 1). Its regioisomeric structure
was confirmed by 13C NMR spectroscopy. In the 13C NMR spectrum of 2c, the sig-
nal of the carbonyl atom at the CF3 group was observed as a quartet in the same re-
gion at δ ~ 177 ppm as for the initial diketone 1c [109]. We have shown earlier the
preference in the condensation of trifluoromethyl-containing 2-arylhydrazinylidene-1,3-
diketones at the carbonyl group of the non-fluorinated substituent for reactions with

www.pymol.org
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methylamine [110]. However, the mass spectrum of the reaction mixture had molecular
ion peaks of 2,2,2-trifluoro-N-hexylacetamide 3 (m/z [C8H14F3NO]+ = 198) and 1-[2-(4-
methylphenyl)hydrazinylidene]propan-2-one 4a (m/z [C10H12N2O]+ = 176), formed as a re-
sult of competitive condensation of hexylamine at the carbonyl group with CF3 substituent
and subsequent cleavage of intermediate A. This side reaction resulted in a moderate yield
of product 2c.
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Scheme 1. The reactions of 2-arylhydrazinylidene-1,3-diketones 1a-d with hexylamine.

In contrast, the reaction of the 4,4,4-trifluoro-2-[2-(4-methylphenyl)hydrazinylidene]-
1-phenylbutane-1,3-dione 1d with hexylamine in refluxing methanol or at room temper-
ature led to a mixture of products. According to the GC/MS, there were predominant
peaks corresponding to molecular ions of 2,2,2-trifluoro-N-hexylacetamide 3 and 2-[2-(4-
methylphenyl)hydrazinylidene]-1-phenylethan-1-one 4b (m/z [C15H14N2O]+ = 239). In
this case, the addition of hexylamine at the trifluoroacyl group of 1,3-diketone 1d to form
intermediate A and its subsequent cleavage to amide 3 and ketone 4b were apparently to
become preferable (Scheme 1). It should be noted that at room temperature incomplete
conversion of the initial diketone 1d along with the formation of cleavage products 3 and
4b was observed, and at a temperature of 0–5 ◦C there were no noticeable changes in the
initial reagents.

Then, it was found that 4-tolylhydrazinylidene-1,3-diketones 1a-c react with aminomethy-
lene tacrine derivatives 5a-c (synthesized according to the methodology [81]) to give con-
jugates 6a-c, 7a-c, 8a-c with various substituents in the diketone moiety and the length of
the methylene linker (Scheme 2). The best yields of products 6a-c and 7a-c were achieved
in the reactions of non-fluorinated 1,3-diketones 1a and 1b in dry methanol under reflux
for 8 h. The reaction of the trifluoromethyl-containing analogue 1c was carried out in a
mixture of dry methylene chloride and dry methanol (3: 1) under reflux for 5 h. Note that
the reaction in dry methanol or ethanol even at room temperature led to acidic cleavage of
the starting 2-tolylhydrazinylidene-1,3-diketone 1c and significantly reduced the yields of
the target conjugates 8a-c.
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Scheme 2. Synthesis of conjugates 6, 7, 8.

The regioisomeric structure of compounds 6a-c, 7a-c, 8a-c was established by 13C
NMR spectroscopy. In the spectra of acetylacetone derivatives 6a-c, a characteristic signal
of the carbonyl carbon atom of the acetyl group was observed at δ 198 ppm. In the case
of benzoylacetone derivatives 7a-c, the carbonyl carbon atom of the benzoyl fragment
resonated at δ 193 ppm, while the spectra of trifluoroacetylacetone derivatives 8a-c were
characterized by a quartet signal of the trifluoroacetyl carbon atom at δ 177 ppm. It can be
concluded that all compounds 6a-c, 7a-c, 8a-c were formed by condensation of 1,3-diketones
1a-c with tacrines 5a-c at the acetyl fragment similarly to the reactions with hexylamine.

It should be noted that the reaction of diketone 1d with tacrines 5a-c was not effective
despite attempts to vary the conditions.

The synthesized compounds 2a-c, 6a-c, 7a-c, and 8a-c have a hydrazone-diketone
fragment with a mobile hydrogen atom. They can be characterized by prototropic imino-
amine, azo-hydrazone and keto-enol tautomerism with the existence of four tautomeric
forms AAK, HIK, AIE, and AIK, including Z,E-isomers for the first three forms (Scheme 3).
All tautomers except AIK are stabilized by an intramolecular H-bond.
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The 1H NMR spectra of compounds 2a-c, 6a-c, 7a-c, and 8a-c in CDCl3 did not contain
the CH proton signal of the AIK form. Instead, a low-field signal of the proton of the HN-
or HO-group was observed at δ 14.7–15.4 ppm and, as already mentioned, all 13C NMR
spectra contained low-field signals of carbonyl carbon atoms. These spectral data allowed
us to exclude the AIK and AIE tautomers from consideration.

The choice between tautomers AAK and HIK was made using 1H NMR spectral
data and our previous experience. We have earlier shown that 4-(N-methyl)amino-1,1,1-
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trifluoro-3-phenylazopent-3-en-2-one [110] exists in the solid state as an Z-azo-amino-
ketone tautomer (Z-AAK) according to X-ray diffraction data, and upon dissolution in
chloroform transforms into the Z-hydrazo-keto-imine tautomer (Z-HIK), given that in its
1H NMR spectrum the signal of the N-methyl group was observed as a singlet at δ 2.92 ppm.
In contrast, in the 1H NMR spectra of compounds 2a-c, 6a-c, 7a-c, and 8a-c, the signals of
the N-CH2 groups were observed as a triplet of doublets at δ 3.4–3.5 ppm due to interaction
with the neighboring NH proton.

The 1H and 13C NMR spectra of products 2a,c, 6a-c, 7a-c, 8a-c in CDCl3 contained
one set of signals. The spectra of compound 2b containing benzoyl and N-hexylamine
substituents were characterized by the presence of a second set of signals, and its 1H NMR
spectrum exhibited two triplets of doublets of a HN-CH2 group at δ 3.18 and 3.52 ppm,
apparently due to the existence of compounds 2b in the form of Z,E-isomers in a ratio
of 87:13.

Based on the analysis performed, we believe that in a CDCl3 solution, compounds 2a-c,
6a-c, 7a-c, and 8a-c predominantly exist in the Z-AAK form in contrast to the N-methyl
analog [110] (Scheme 3).

We obtained monocrystals for compound 8a by slow crystallization from acetonitrile.
The XRD analysis showed that conjugate 8a exists in the solid state also as Z-AAK (Figure 1)
with formation of the intramolecular hydrogen bond between hydrogen H3 of NH group
and nitrogen N2 of arylazo moiety (the distance H3···N2 is 1.650 Å) similarly to the
N-methyl analog [110]. The molecule of compound 8a has an almost flat structure because
4-amino-1,1,1-trifluoro-3-(tolyldiazenyl)pent-3-en-2-one moiety and tacrine core are located
in one plane. However, the butyl spacer C18C17C16C15 is characterized by distortions with
1.293 Å (for C18) and 1.131 Å (for C15) deviations from the common plane. The distance
between nitrogens N3···N4 connected with butyl linker is 5.304 Å.
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Figure 1. The ORTEP view of conjugate 8a.

To assess computationally the relative stability of tautomers and conformers of the
compounds 2a-c, 6a-c, 7a-c, and 8a-c, instead of manual generation of configurations
of interest, as we have formerly done [79,87,111], we resorted to formal generation of
tautomers with ChemAxon MarvinSketch. Next, geometries of all generated tautomers
(from 34 for compounds 2b and 2c to 86 for compounds 6a-c), were optimized quantum-
mechanically. The optimized structures of the tautomers were subjected to conformational
search with TorsiFlex. Because the conformational search led to a significant decrease of
energy of certain tautomers (>20 kcal/mol for example of compound 8a), it proved to be
necessary to include in the conformational search all of the generated tautomers, instead of
selecting some of them (e.g., top-10, or within 10 kcal/mol from the top tautomer).
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The most stable conformation for compound 8a found by TorsiFlex was of the E-
AAK isomer. Chemically, E/Z isomerization of the double bond transforms it into a
Z-AAK isomer. However, in terms of the conformational search, it is rotation around bond
C21-C22 (according to Figure 1 labeling), that transforms the E-AAK isomer into Z-AAK.
Multiple increases in the number of cycles of the conformational search led to the same
E-AAK leading conformation, while the Z-AAK conformation was not found among the
solutions. However, the presence in the results of other conformations requiring rotation
around this bond but much higher in energy, proves that this torsion was included in the
conformational search.

A manual flip around bond C21-C22 of the best conformational search solution trans-
forming E-AAK into Z-AAK, followed by QM energy minimization, led to a 2.12 kcal/mol
energy decrease, which is in agreement with the crystallographic results. Thus, formal
generation of all possible tautomers followed by a conformational search required consid-
erable computational resources but did not lead to the most stable configuration, while
manual generation of possible isomers, tautomers, and major conformers proved to be
more efficient.

The Z-AAK tautomer can be also transformed into Z-HIK via short-distance proton
transfer. The energy profile of this process in vacuo was calculated for compound 8a
(Figure 2), yielding a 4.5 kcal/mol energy barrier and a 1.05 kcal/mol energy loss. Thus,
the system predominantly exists in the Z-AAK form.
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3.2. Biological Studies
3.2.1. Esterase Profile Assessment

The method for evaluation of the esterase profile developed by our group includes
the determination of the inhibitory activity of the synthesized compounds against enzymes
of the cholinesterase family—AChE and BChE—as well as a structurally close enzyme-
carboxylesterase (CES). Inhibition of AChE and BChE in the brain increases acetylcholine
levels and improves cognitive functions in AD. CES is responsible for hydrolysis of numerous
therapeutically important ester-containing drugs, and therefore inhibition of CES by anti-
cholinesterase compounds used in AD therapy could lead to adverse drug-drug interactions.

Human erythrocyte AChE, equine serum BChE, and porcine liver CES were used to
assess the esterase profile. The applicability of this set of enzymes for this purpose has
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been shown earlier [112–115]. The results on the esterase profile of model compounds 2
and conjugates 6–8 are displayed in Table 1.

Table 1. Esterase profile of compounds 2, 6, 7, 8 and their ability to displace propidium iodide from
the peripheral anionic site of Electrophorus electricus AChE (EeAChE).

No Compound
Structure

Inhibitory Activity against AChE, BChE and CES
IC50, µM or % Inhibition at 20 µM

% Displacement of
Propidium from the

EeAChE PAS at 20 µMAChE BChE CES
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R = Ph

7a n = 4 0.889 ± 0.007 0.0359 ± 0.0020 31.2 ± 2.9% 11.9 ± 0.8
7b n = 6 0.380 ± 0.003 0.0470 ± 0.0038 33.2 ± 1.7% 15.5 ± 1.3
7c n = 8 0.249 ± 0.020 0.0745 ± 0.0060 23.4 ± 2.2% 14.1 ± 1.1

R = CF3

8a n = 4 1.69 ± 0.05 0.246 ± 0.016 28.6 ± 4.0% 13.7 ± 1.2
8b n = 6 0.276 ± 0.020 0.125 ± 0.006 19.9 ± 2.9% 14.4 ± 1.3
8c n = 8 0.241 ± 0.014 0.0985 ± 0.0013 12.2 ± 1.7% 16.2 ± 1.4

Tacrine 0.601 ± 0.047 0.0295 ± 0.0002 n.a. 4.4 ± 0.6
Donepezil 0.0400 ± 0.0037 19.2 ± 2.0 n.a. 11.9 ± 0.9

BNPP n.a. n.a. 1.8 ± 0.1 n.d.

Data are presented as mean ± SEM, n = 3; n.a.—not active; n.d.—not determined.

The results presented in Table 1 indicate that compounds 2a-c—N-hexylamine derivatives
of 2-tolylhydrazinylidene-1,3-diketones 1a-c inhibit cholinesterases very weakly and do not in-
hibit CES. At the same time, all 3 groups of conjugates of 2-tolylhydrazinylidene-1,3-diketones
1a-c with tacrine 6, 7, and 8 exhibit high inhibitory activity against cholinesterases—at the
level and above the parent pharmacophore tacrine with predominant inhibition of BChE
and weak inhibition of CES.

Prior to the research, we feared that the synthesized conjugates 6, 7, and 8 might
exhibit anti-CES activity undesirable for AD therapy agents, because we have previously
found that one of the starting compounds, 2-tolylhydrazinylidene-1,3-diketone 1c, exhibits
moderate inhibitory activity against this enzyme [79]. However, it turned out that the
isomerization of the hydrazone tautomer to the azo form upon replacement of one of the
carbonyl groups by the alkylamine functional group led to a significant decrease in the
anti-CES activity.
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AChE inhibition. The structure of the R substituent at the carbonyl carbon atom (Me,
Ph, or CF3) had practically no effect on the anti-AChE activity of conjugates. At the same
time, for all series of conjugates 6, 7, and 8, an increase in inhibitory activity against AChE
was observed with an increase in the spacer length (from 4 to 8 CH2 groups). The anti-
AChE activity of conjugates 6b,c, 7b,c, and 8b,c was higher than the activity of the parent
pharmacophore tacrine. Compounds 6c, 7c, 8b, and 8c exhibited the highest anti-AChE
activity (IC50 = 0.27, 0.25, 0.28 and 0.24 µM, respectively).

BChE inhibition. All conjugates were active against BChE. There was no pronounced
effect of the spacer length on the inhibitory activity. However, anti-BChE activity depended
on the structure of the R substituent at the carbonyl carbon atom: conjugates 7 with R = Ph
were most active and reached the level of tacrine. The most effective BChE inhibitors were
compounds 6c, 7a, 7b, 7c (IC50 = 0.054, 0.036, 0.047, and 0.0745 µM, respectively).

The selectivity toward BChE compared to AChE is maximum for compounds with a
short spacer (CH2)4; it is especially pronounced for 7a (R = Ph).

3.2.2. Kinetic Studies of AChE and BChE Inhibition

The mechanism of inhibitory action of the conjugates toward AChE and BChE was
studied using compound 6b as a sample. The graphical analysis of the kinetic data on
AChE (Figure 3A) and BChE (Figure 3B) inhibition by 6b in the Lineweaver–Burk double-
reciprocal plot demonstrates the changes in both Km and Vmax that attest to a mixed type
of inhibition. The inhibition constants are as follows: Ki = 0.254 ± 0.018 µM (competi-
tive component) and αKi = 0.473 ± 0.041 µM (noncompetitive component) for AChE and
Ki = 0.095 ± 0.008 µM (competitive component) and αKi = 0.224 ± 0.022 µM (noncompeti-
tive component) for BChE.
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Figure 3. Steady state inhibition of (A) AChE and (B) BChE by compound 6b. Lineweaver–Burk
double-reciprocal plots of initial velocity and substrate concentrations in the presence of inhibitor
(three concentrations) and without inhibitor are presented. The changes in both Km and Vmax attest
to a mixed type of inhibition.

3.2.3. Molecular Modeling Studies

The most stable Z-AAK conformer of the considered compounds was taken for molec-
ular docking studies. It was found that all compounds bind to the hAChE in a uniform way,
occupying both the CAS and PAS. In the CAS, the protonated tacrine fragment binds form-
ing π-π stacking interactions with the Trp86 side chain and a hydrogen bond with its main
chain hydrogen oxygen (Figure 4A–C), as was observed previously for tacrine-containing
conjugates [116,117]. Compounds 6a–c also form a few hydrogen bonds between Tyr124
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phenolic hydroxyl group and the linker nitrogen atoms or carbonyl atom of the acetyl
group (Figure 4A). With increasing linker length, the tolyl substituent occupies more of
the PAS, forming π-π or T-stacking interactions with Trp286. For compounds 7a–c these
interactions are with the phenyl group, which is advancing into the PAS and interacting
with Trp286, instead of with the tolyl substituent, while the latter protrudes out of the gorge
entrance. Additionally, the carbonyl oxygen atom of the keto-group forms hydrogen bonds
with the Phe295 and Arg296 main chain nitrogen atoms (Figure 4B).
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Regarding compounds 8a-c with a trifluoromethylketone (TFK) group, specific interac-
tions change with elongation of the linker. For compound 8a, one of the fluorine atoms was
found in the oxyanion hole. For compound 8b, it forms hydrogen bonds with the Phe295
and Arg296 main chain nitrogen atoms. For compound 8c, it interacts with Trp286 side
chain, forming an F-π contact [118] (Figure 4C). Such modes of interactions were previously
observed for a TFK compound, sliding down the gorge [119]. However, in the present case,
no position with the carbonyl oxygen atom in the oxyanion site was found, which excludes
the possibility of a subsequent covalent reaction between the enzyme and inhibitor.

For all the groups of inhibitors, increasing occupancy of the PAS with elongation of
the linker can be associated with an increase in the propidium displacement ability.

In the case of BChE, binding is much more uniform with the carbonyl oxygen atom of
the keto group in the oxyanion hole (Figure 5A–C). While ligands with increasing linker
length occupy similar positions in the BChE active site, the tacrine fragment could form
π-cation and π-π stacking interactions with Tyr332 or Trp82, supported by ionic interactions
and hydrogen bonds with the Asp70 or His438 main chain oxygen atom, respectively.
In the case of compounds 7a-c, there are additional π-π or T-stacking interactions of the
tolyl substituent with the Trp231 side chain (Figure 5B). In the case of compounds 8a-c, the
trifluoromethyl group forms F-π interactions with the Trp231 side chain (Figure 5C). Overall,
the position of the TFK group of compounds 8a-c in the catalytic site of BChE suggests
the subsequent formation of a labile covalent bond and an adduct, called a tetrahedral
intermediate analog [119].
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3.2.4. Displacement of Propidium from the EeAChE PAS

The study of compounds as potential inhibitors of the proaggregant activity of AChE
was carried out by assessment of the degree of displacement of the selective PAS ligand
propidium iodide from the EeAChE PAS. As mentioned above, AChE PAS interacts with
soluble Aβ peptides, promoting their aggregation. In this regard, compounds blocking the
AChE PAS are potential antiaggregant agents.

As seen from Table 1, conjugates of tacrine with 2-tolylhydrazinylidene-1,3-diketones
at a concentration of 20 µM reduce the fluorescence intensity of the propidium iodide
bound to EeAChE and displace propidium at or above the level of the control compound
donepezil (11–19%). These data indicate the potential ability of conjugates to block AChE-
induced aggregation of β-amyloid, which agrees with the mixed type inhibition of AChE
by the conjugates (Figure 3A) and the results of molecular docking (Figure 4A–C). On the
whole, the ability to displace propidium in all groups of conjugates 6, 7, and 8 increases
with spacer elongation in agreement with the molecular docking results. The conjugates
6a-c (R = Me) exhibit the highest activity, displacing propidium from EeAChE PAS in the
range of 15.6–19%, while the optimal spacer length is n = 6.

3.2.5. Antioxidant Activity

We have earlier shown [79] that 2-arylhydrazylidene-1,3-diketones 1c,d exhibit high
radical-scavenging activity in the ABTS assay. Herein, we studied the primary antioxidant
activity of a series of model compounds-aminoenketones 2a-c, and conjugates 6a-c, 7a-c,
8a-c, obtained from diketone 1c and its non-fluorinated analogs 1a,b.

The antioxidant activity of the compounds 2a-c, 6a-c, 7a-c, 8a-c was assessed by
spectrophotometric ABTS and FRAP tests. The ABTS assay evaluates the binding of a
model ABTS radical cation (ABTS•+), which is realized by the mechanism of single electron
transfer (SET) and/or hydrogen atom transfer (HAT). The FRAP assay (Ferric Reducing
Antioxidant Power) measures the ability of compounds to reduce the ferric 2,4,6-tripyridyl-
s-triazine complex [Fe(TPTZ)2]3+ to [Fe(TPTZ)2]2+, which occurs exclusively by the SET
mechanism. The results are presented in Table 2.

It was found that model compounds aminoenketones 2a-c, which are the reaction
products of the interaction of 2-arylhydrazinylidene-1,3-diketones 1a–c (Scheme 1) with
hexylamine, exhibit high radical-scavenging activity in the ABTS assay at the level of the
standard antioxidant Trolox. The activity of the compounds did not depend on the sub-
stituent R at the carbonyl carbon atom (CH3, Ph or CF3). Conjugates 6a-c, 7a-c, 8a-c, which
are a combination of 2-arylhydrazinylidene-1,3-diketones 1a-c and the anticholinesterase
pharmacophore tacrine retained high ABTS•+-scavenging activity of diketones at the Trolox
level. The variation of the substituent R at the carbonyl carbon atom, as well as the spacer
length, practically did not affect the radical-scavenging activity of the conjugates.

In the FRAP assay, the model compounds 2a,b and conjugates 6a-c, 7a-c, also demon-
strated fairly good activity. However, their activity in the FRAP test was twice lower than
in the ABTS test.

The most notable finding was that there was no influence of the structure of the R
group in the carbonyl fragment on the activity in the ABTS test: both aminoenketone 2
and conjugates of 1,3-diketones with tacrine 6–8 were highly active. At the same time, in
the FRAP test, compound 2c with R=CF3 was not active and a weak ferric reducing ability
was observed for conjugates 8a–c with the CF3 substituent in the carbonyl moiety. Taking
into account that the FRAP assay measures the Fe3+ reducing ability occurring exclusively
by the SET mechanism, whereas the binding of the ABTS radical cation can be realized
by SET and/or HAT mechanisms, the observed different structure-activity relationships
(in particular, no decrease in activity in the ABTS test for compounds 8a-c with a CF3
substituent) may indicate different mechanisms of the antioxidant action of the studied
compounds in the ABTS and FRAP tests. That is, the SET mechanism may be involved
in the ferric reducing test and the HAT may be operating in the scavenging of the ABTS
radical cation.
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Table 2. Antioxidant activity of compounds 2a–c, 6a–c, 7a–c, 8a–c.

No Compound
Structure

Antioxidant Activity (mean ± SEM)

ABTS•+- Scavenging Activity
(n=3, 1 h, t =30 ◦C)

FRAP
(Fe3+-Reducing Activity)

(n=3, 1 h, t = 37 ◦C)

TEAC * IC50 **, µM TE *
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(for the calculation method, see Experimental). ** compound concentration required for 50% reduction in the
concentration of ABTS radical cation.

3.2.6. Metal-chelating Properties

It is known that decreasing excess concentrations of metals in the brain by chelating
agents is one of the approaches to AD treatment [51,52]. The complexation abilities of
compounds 6a, 7a, 8a for biometals such as Cu2+, Fe2+ and Zn2+ in acetonitrile were
studied by UV–Vis spectrometry [81] and the results for conjugates 6a, 7a, 8a are shown in
Figure 6A–C. In the UV-Vis spectra of 6a, 7a, 8a, very broad bands from 340 to 470 nm and
from 280 to 340 nm are ascribed to π-π* transitions, and the peak around 240 nm is due to
intramolecular charge transfer.

The spectra of the individual ions and compounds were subtracted from the spectra of
the mixtures of each compound with each ion. A red shift of absorbance calculated in this
way indicates the formation of a ligand-ion complex in the mixture. For example (Figure 7),
it can be seen that there are two red shifts of absorbance from 240 to 253 nm and from 328
to 339 nm for the interaction of conjugate 8a with Zn2+. For additional graphics, please see
Supplementary, Figures S1–S8. The results obtained demonstrate metal-chelating ability
for conjugates 6a, 7a, and 8a to all three biometal ions (Cu2+, Fe2+ and Zn2+).



Biomolecules 2022, 12, 1551 21 of 28
Biomolecules 2022, 12, x FOR PEER REVIEW 22 of 30 
 

(A) (B) 

 
(C) 

Figure 6. Absorption spectra of compounds 6a (A), 7a (B) and 8a (C) in a concentration of 40 µM 
and their mixture with Cu2+, Zn2+, Fe2+ ions solution (40 µM) in acetonitrile solution at 25 °C.  

 

Figure 6. Absorption spectra of compounds 6a (A), 7a (B) and 8a (C) in a concentration of 40 µM and
their mixture with Cu2+, Zn2+, Fe2+ ions solution (40 µM) in acetonitrile solution at 25 ◦C.

Biomolecules 2022, 12, x FOR PEER REVIEW 22 of 30 
 

(A) (B) 

 
(C) 

Figure 6. Absorption spectra of compounds 6a (A), 7a (B) and 8a (C) in a concentration of 40 µM 
and their mixture with Cu2+, Zn2+, Fe2+ ions solution (40 µM) in acetonitrile solution at 25 °C.  

 
Figure 7. Absorption spectra of compound 8a (40µM), Zn2+ ion solution (40µM), a sum of 8a and
Zn2+, their mixture, and the shift of the spectra caused by the formation of a complex.

3.2.7. Prediction of ADMET and Physicochemical Profiles

The results of our computational estimates of selected ADMET and physicochemical
properties for compounds 2, 6–8 are shown in Table 3. All of the compounds had high
predicted values for intestinal absorption, enabling their oral administration. Moreover,
we could expect reasonable CNS activity in view of rather high predicted blood–brain
barrier permeability (brain concentration exceeds the plasma concentration), although some
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optimization of this parameter might be desirable. The cardiac toxicity risk parameters
(hERG pKi and pIC50) fell within 4.2–7.6 log units for all the analyzed compounds, which
was within the lower or medium part of their possible range (3–9 log units). According to
the commonly accepted drug-likeness guidelines, the predicted lipophilicities and aqueous
solubilities, as well as the molecular weights of the compounds, were within or close to the
desirable range for potential drug compounds, although the LogP values in some cases
violated the original Rule-of-5 limits (however, given that some of the compounds were
outside of the model applicability domain, the predicted values were not fully reliable).
The integral quantitative estimates of drug-likeness (QED) were in the 0.1–0.4 range.

Table 3. Predicted ADMET and physicochemical profiles of compounds 2, 6–8.

Compound MW LogPow pSaq LogBB HIA, % hERG pKi hERG pIC50 QED

2a 301.43 4.77 5.41 0.50 100 4.22 5.38 0.39
2b 363.51 5.96 6.83 0.65 98 4.72 6.07 0.23
2c 355.41 5.31 6.44 0.63 88 4.22 5.56 0.36
6a 469.63 5.97 7.03 0.23 100 4.56 6.11 0.19
6b 497.69 6.47 7.60 0.22 100 4.39 6.43 0.15
6c 525.74 6.89 7.46 0.59 100 4.72 6.88 0.13
7a 531.70 6.53 7.45 0.38 100 5.06 6.78 0.09
7b 559.76 6.93 7.69 0.38 100 4.88 7.12 0.07
7c 587.81 7.26 7.76 0.74 100 5.22 7.60 0.06
8a 523.60 6.28 7.40 0.36 93 4.56 6.27 0.17
8b 551.66 6.73 7.81 0.35 93 4.39 6.58 0.14
8c 579.71 7.11 7.90 0.72 93 4.72 7.01 0.11

Tacrine 198.27 2.95 1.52 −0.00 93 4.98 4.98 0.71

MW—molecular weight, LogPow—octanol-water partition coefficient, pSaq—aqueous solubility [−log(M)],
LogBB—blood–brain barrier distribution, HIA—human intestinal absorption [%], hERG pKi—hERG potas-
sium channel affinity [−log(M)], hERG pIC50—hERG potassium channel inhibitory activity [−log(M)],
QED—quantitative estimate of drug-likeness.

Consequently, the predicted ADMET and physicochemical properties of the com-
pounds were acceptable for potential lead compounds in the discovery phase. Nevertheless,
additional studies and structure optimization would be desirable to help maximize safety
and improve the pharmacokinetic profile.

4. Conclusions

In summary, we synthesized the new conjugates of tacrine modified with 2-tolylazo-
1,3-aminoenketone moieties with various acyl substituents through alkylene spacers of
different lengths. According to NMR spectroscopy, the compounds were characterized by a
predominant existence in solutions as a (Z)-2-azo-1,3-aminoenketone tautomer. According
to XRD, compound 8a in crystals also exists in (Z)-2-azo-1,3-aminoenketone form that
agrees with QM calculations.

In general, conjugates 6a-c, 7a-c, 8a-c demonstrated high inhibitory activity against
both cholinesterases AChE and BChE, with selectivity for BChE, being mixed type inhibitors
of both cholinesterases, and with weak inhibition of CES.

The structure of the R substituent at the carbonyl carbon atom (Me, Ph, or CF3) had
practically no effect on the anti-AChE activity of the conjugates. However, an increase
in inhibitory activity was observed for all conjugates upon elongation of the alkylene
spacer, in agreement with the results of molecular docking. Thus, a considerable group
of compounds 6b,c, 7b,c, 8b,c showed high anti-AChE activity exceeding the activity of
tacrine: IC50 = 0.24-0.34 µM.

The synthesized conjugates demonstrated high inhibitory activity against BChE. Their
binding in the BChE active site was more uniform than seen with AChE, with the carbonyl
oxygen atom of the keto group in the oxyanion hole. The most active inhibitors of BChE
were compounds 6c and 7a-c (IC50 = 0.036–0.0745 µM), which reached the activity of tacrine.

All conjugates 6–8 showed a good ability to displace propidium from EeAChE PAS that
along with the mixed type of inhibition revealed by the kinetics study and the molecular
docking results indicates their potential ability to block AChE-induced aggregation of Aβ.
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The synthesized conjugates have good antioxidant potency. All compounds 6-8 demon-
strated the ability to effectively scavenge ABTS radical cation at the Trolox level; compounds
6, 7 also showed rather high Fe3+ reducing activity in the FRAP test. Moreover, metal-
chelating ability for biometals such as Cu2+, Fe2+ and Zn2+ was demonstrated for conjugates
6a, 7a, and 8a.

Finally, computational predictions of physico-chemical and ADMET properties of the
compounds were consistent with drug-like characteristics and low toxicity.

The obtained results allowed us to consider the synthesized conjugates as new mul-
tifunctional agents for the potential treatment of AD. In particular, the non-fluorinated
conjugates 6b,c, 7b,c with (CH2)6 and (CH2)8 linkers exhibited the most promising set of
properties and are recommended for further in-depth studies, e.g., lipid peroxidation in
brain homogenates, neuroprotective activity in cell cultures, cognition enhancing efficacy
in animal models, and safety and bioavailability assessments.
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NMR spectrum of compound 8b; Figure S45. 13C NMR spectrum of compound 8b; Figure S46. 19F
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