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Abstract: Implementation of next-generation sequencing (NGS) for the genetic analysis of hereditary
diseases has resulted in a vast number of genetic variants identified daily, leading to inadequate
variant interpretation and, consequently, a lack of useful clinical information for treatment decisions.
Herein, we present MARGINAL 1.0.0, a machine learning (ML)-based software for the interpretation
of rare BRCA1 and BRCA2 germline variants. MARGINAL software classifies variants into three
categories, namely, (likely) pathogenic, of uncertain significance and (likely) benign, implementing the
criteria established by the American College of Medical Genetics and Genomics and the Association
for Molecular Pathology (ACMG-AMP). We first annotated BRCA1 and BRCA2 variants using various
sources. Then, we automatically implemented the ACMG-AMP criteria, and we finally constructed
the ML model for variant classification. To maximize accuracy, we compared the performance of eight
different ML algorithms in a classification scheme based on a serial combination of two classifiers.
The model showed high predictive abilities with maximum accuracy of 92% and 98%, recall of 92%
and 98% and specificity of 90% and 98% for the first and second classifiers, respectively. Our results
indicate that using a gene and disease-specific ML automated software for clinical variant evaluation
can minimize conflicting interpretations.

Keywords: genomics; BRCA1/2 genes; machine learning; rare variant interpretation; ACMG-AMP
guidelines; variant pathogenicity; germline; cancer

1. Introduction

With the advent of next-generation sequencing (NGS), new genes related to genetic
disorders have been identified, leading to an exponential increase of DNA sequence variants
being detected. Variant interpretation and classification is a complex process and is based
on data from various perspectives that can many times prove to be discordant with respect
to the classification of a particular variant. Thus, the American College of Medical Genetics
and Genomics and the American Molecular Pathology (ACMG-AMP) have proposed a set
of criteria to weight variant evidence, which in combination enable variants to be classified
into five classification tiers i.e., pathogenic (P), likely pathogenic (LP), variants of uncertain
significance (VUS), likely benign (LB) and benign (B) [1].

BRCA1 and BRCA2 play a central role in DNA repair through homologous recombi-
nation. RAD51 is a key component in the repair of double-strand breaks which binds to
both BRCA1 and BRCA2 for the recognition and repair of damage, respectively. Therefore,
BRCA1 and BRCA2 function in a critical pathway responsible for genome integrity [2]. In
the case of the presence of loss-of-function variants, BRCA1 or BRCA2 are inactivated, and
therefore, DNA repair through homologous recombination cannot be completed. This
results in the accumulation of genetic defects within the cells. Females that carry germline
BRCA1 or BRCA2 pathogenic variants are at high lifetime risk of breast and ovarian can-
cer diagnoses, which can be 70% and 44%, respectively [3]. BRCA1 and BRCA2 are the
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most well-studied and established genes in hereditary breast and ovarian cancer, while
pathogenic variants in these genes are inherited in an autosomal dominant manner [4].
DNA variants in BRCA1 and BRCA2 genes can be interpreted and classified applying the
ACMG-AMP criteria.

More specifically, BRCA1- and BRCA2-associated hereditary breast and ovarian cancer
(HBOC) is characterized by an increased risk for breast cancer and ovarian cancer (including
fallopian tube and primary peritoneal cancers) and, to a lesser extent, for other cancers
such as male breast, prostate and pancreatic cancer, seen mainly in individuals with a
BRCA2 pathogenic variant. Conferred cancer risks differ for pathogenic variants in BRCA1
or BRCA2 genes [5]. Having established that each gene is unique, the two best-studied
genes, i.e., BRCA1 and BRCA2, were selected for our study in order to increase the accuracy
of our results. Precise clinical interpretation of identified variants in these genes can play a
major role in providing the best therapeutic care to patients that are found to be carriers as
well as in the early detection of inherited types of cancers.

Although the main purpose of ACMG-AMP guidelines is to enable reliable interpreta-
tion and classification of variants, application of the ACMG-AMP criteria is still subject to
some discrepancies between individual interpreters. A possible reason for this is that the
ACMG-AMP guidelines are generally limited to evaluating each criterion individually, but
do not use specific algorithms for implementing these guidelines.

Furthermore, even though a variety of databases such as ClinVar and Exome Aggre-
gation Consortium (ExAC) and in silico tools such as SIFT and PolyPhen-2 are available
online, there is the need for an application that can combine all the data to provide one
specific outcome for the classification of genetic variants. Notably, many of these databases
often contain incorrectly classified variants or even contradictory records on the evaluation
of pathogenicity, while gene and disease may determine the applicability and weight as-
signed to certain criteria. Thus, researchers should consider this before classifying specific
gene variants and developing more focused guidance [1].

Many automatic tools that implement ACMG-AMP criteria and rules have been devel-
oped to address these challenges. For instance, InterVar is an automated tool that helps
human reviewers to interpret the clinical significance of variants in any Mendelian gene [6],
while Cancer SIGVAR contributes to the interpretation of hereditary cancer-associated
germline variants [7], PathoMAN allows the automation of germline variant curation in
clinical cancer genetics [8], CardioVAI enables variant interpretation in the diagnosis of
cardiovascular diseases [9] and the GenOtoScope tool automatically classifies variants
that may be associated to congenital hearing loss [10]. All these tools are based on the
implementation of ACMG-AMP criteria, while the final classification of the variants de-
pends on the number of verified criteria combined with the rules provided in the 2015
ACMG-AMP guidelines. In addition, there are other automated tools such as Xrare, which
is a machine learning approach for prioritizing variants associated with disease using a
set of phenotypic (based on phenotype-similarity measures) and genetic (based on ACMG
evidence, in silico computation scores and population-level scores) features [11]. Using a
gradient-boosting algorithm all these genotypic and phenotypic features are combined to
predict the pathogenicity of a variant. Another machine learning-based tool, RENOVO,
uses publicly available data to reclassify 67% (with an estimated precision of > 90% using a
random forest classifier) of germline variants of unknown significance as pathogenic or
benign and generates a pathogenicity likelihood score (PLS). It uses pre-processed features
obtained from ClinVar and Annovar to cover the highest number of the ACMG-AMP
guidelines (functional scores such as MutPred, Mutation Assessor, SIFT and conservation
scores such as GERP++_RS) [12]. On the other hand, LEAP is a machine-learning method
that focuses on classifying missense variants in genes related to hereditary cancer and
cardiovascular disease. The method uses features that are grouped in categories derived
from the ACMG-AMP guidelines for variant interpretation (such as functional prediction,
splice prediction, evolutionary conservation and health history). Based on these categories,
the contribution of evidence categories to model performance can be compared [13]. Fur-
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thermore, VarCall XT (a multifactorial extension of VarCall), is a Bayesian statistical model
to analyze the likelihood of pathogenicity for individual missense variants in BRCA1 and
BRCA2 in relation to HBOC, as well as to examine the predictive accuracy resulting from
adding in silico or family-based data to the functional data (the original function-based
VarCall model achieved 98% accuracy for classifying BRCA1 and BRCA2 VUS, which was
the top model based on overall accuracy for both genes) [14]. Finally, machine learning
models developed to interpret DNA variants in three MODY (maturity-onset diabetes of
the young) genes, i.e., HNF1A, HNF4A and GCK, using ACMG-AMP criteria revealed the
necessity of applying different weights according to the MODY genes to ensure accuracy in
functional classification (overall accuracy above 95% using logistic regression) [15]. Another
approach in the literature combines artificial intelligence and the use of structure features.
More specifically, an important component of this study was to establish a useful statisti-
cal deleteriousness prediction system for proteins or peptides based on a computational
method for predicting the activity of p53 variants using structure features [16].

Herein, we present MARGINAL (autoMatic clAssification of bRca Genes usIng ma-
chiNe leArning modeL), a software that includes a machine learning model to support
variant classification in BRCA1 and BRCA2 genes based on ACMG-AMP guidelines. To the
best of our knowledge, this is the first approach that combines the implementation of 17
ACMG-AMP criteria and a machine learning model that uses these criteria as features for
automated classification of germline rare variants in BRCA1 and BRCA2 as P/LP, VUS and
B/LB variants. All variant classification tools that include a machine learning model used to
date use different available scores directly as features, in accordance with the ACMG-AMP
guidelines and for different classification purposes.

2. Materials and Methods
2.1. Data Acquisition

DNA variants of BRCA1 and BRCA2 genes were acquired from CanVaS (a Cancer
Variation reSource) database. The data set comprises data from germline genetic testing
of cancer patients and integrates functionally annotated rare variants in established or
suspected cancer susceptibility genes [17]. The variants studied all derived from patient
cohorts, i.e., high-risk individuals and/or individuals diagnosed with female breast cancer,
male breast cancer, ovarian cancer and pancreatic cancer. The required input for the first
stage of MARGINAL software is a simple text file including a list of variants that will then
be annotated with a set of required information by the Ensembl Variant Effect Predictor
(VEP) [18], which is the main annotation tool; 497 unique rare variants of the original
total number of 504 variants were annotated via VEP (215 and 282 variants reported in
BRCA1 and BRCA2, respectively). Among these, missense variants accounted for 40%,
while frameshift, synonymous and stop-gain variants accounted for 26%, 17% and 14%,
respectively. A small proportion involved in-frame deletions/insertions and splice variants.
VEP compares input variants to known variants from the Ensembl variation database in
order to extract annotations (very large copy number variants—CNVs—are not available).
Therefore, for both genes, the resulting data set includes 173 P/LP variants, 194 B/LB
variants and 130 VUS (the data were previously classified as P, LP, VUS, LB or B using
CanVaS). These classifications were thus used in machine learning modeling to train and
test algorithms for the final variant classification (to generate model training labels, P and
LP variants were grouped and will be called “P/LP”, while B and LB variants were grouped
and will be called “B/LB”). Ultimately, this results in three classes—P/LP, VUS and B/LB
variants—for the final variant classification used in machine learning modeling. Therefore,
we reduced the classification complexity of the machine learning model from five to three
classes, thereby increasing the separation power and classification accuracy.

2.2. Methodological Scheme

MARGINAL software consists of three main steps: (1) Variant annotation using
several annotation tools (VEP, MMSplice and RepeatMasker) and databases (ClinVar and
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CanVaS) to obtain computational predictive data, population frequency data and genomic
annotation, (2) ACMG-AMP criteria implementation and their automated coding at values
0 or 1 and (3) Machine Learning modeling using the ACMG-AMP criteria as feature vectors
for the final classification of the variants (P/LP, VUS and B/LB). Algorithm implementation
and data analysis were performed with Python3 (packages/functions from Scikit-Learn
library v.1.0.2 [19] were used for machine learning modeling).

2.2.1. Variant Annotation

The variant annotation is based on Genome Reference Consortium Human Genome
Build 37 (GRCh37). Various annotation resources were used for automated interpreta-
tion, including (1) populational data derived from the Exome Aggregation Consortium
(ExAC) and the Genome Aggregation Database (gnomAD), (2) predicted data from db-
NSFP (v4.2a) [20,21] and dbscSNV (1.1) [22] and (3) other available databases. In particular,
by utilizing the web interface provided by Ensemble Variant Effect Predictor (VEP) [18],
we were able to combine the annotation information that was manually extracted with
those of other annotation sources, MMSplice [23], RepeatMasker from the UCSC Genome
Browser [24,25], ClinVar [26] and CanVaS databases. All required information for BRCA1
and BRCA2 genes was extracted and processed from these sources and was subsequently
automatically integrated into a CSV file.

2.2.2. ACMG-AMP Criteria Implementation

MARGINAL software implements 17 out of 28 ACMG-AMP criteria automatically.
In particular, according to variant annotation, it can automatically generate predictions
on ten and seven criteria that conclude a pathogenic and a benign variant classification,
respectively (Table 1). If a criterion is positive, the algorithm will assign 1, otherwise, it
will assign 0. The rest of the ACMG-AMP criteria are based on categories that are specific
to each case (such as familial co-segregation data or de novo status and allelic data) and
require user input. Thus, these were not included in the proposed process.

PVS1 criterion suggests strong pathogenicity and is recommended for loss-of-function
(LOF) variants (represented as frameshift indel, stop-gain, stop-loss and splicing variants
in canonical transcripts). LOF is a known mechanism of disease in BRCA1 and BRCA2
genes. Considering that the vast majority of LOF variants in these genes are considered
pathogenic, with the exception of those located in the last amino acids of the last exon of
BRCA2, PVS1 is assigned as 1 for all these variants; for all other variants, PVS1 is assigned
a value equal to 0.

For the implementation of PS1, PM5, PP5, and BP6 criteria, as a reference to identify
pathogenic and benign variants, we interrogated ClinVar, excluding variants interpreted
from a single submitter and variants with conflicting interpretations (review status ≥ 2).
More specifically, when a missense variant is pathogenic, then if a different nucleotide
change resulting in the same amino acid change is known to be pathogenic, PS1 is assigned
a 1. In contrast, if a new missense amino acid change occurs at the same position as
another pathogenic missense change, then PM5 is assigned a 1. We used the annotation
information derived from VEP related to CDS_position (relative position of base pair in
coding sequence), protein_position (relative position of amino acid in protein), amino_acids
(amino acid change in case the variant affects the protein-coding sequence) and GIVEN_REF
(reference allele from input) fields [18]. To ensure that these changes do not impact splicing,
we inferred the “pathogenicity” score from MMSplice for missense variants (pathogenicity
score < 0.85). Concerning PP5 and BP6 criteria, if a variant has recently been identified as
pathogenic by a reputable source, but an independent evaluation cannot be performed,
then PP5 is applied. If a variant has recently been identified as benign by a reputable
source, but an independent evaluation is not possible, then BP6 is applied. As a result, if
a variant is identified as “pathogenic” or “likely pathogenic” by ClinVar, PP5 is assigned
as 1, otherwise, if a variant is identified as “benign” or “likely benign” by ClinVar, BP6 is
assigned as 1. As a result of the limitation mentioned above, i.e., review status ≥ 2, we can
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consider the PP5 and BP6 criteria to approach PS3 and BS3, respectively, which is to say
that they can be considered to be functional evidence [8].

Table 1. A total of 17 out of 28 American College of Medical Genetics and Genomics and the
Association for Molecular Pathology (ACMG-AMP) criteria were automatically implemented.

ACMG-AMP Criteria Category

PVS1 A null variant in a gene where loss-of-function is a known mechanism of disease
PS1 Same amino acid change but different pathogenic variant
PS4 Prevalence in affected individuals is significantly higher than controls
PM1 Located in functional domain/mutational hot spot without benign variants
PM2 Absent in all control subjects from population databases
PM4 In-frame insertion or deletion in non-repeat regions or stop-loss variants
PM5 New missense amino acid change occurs at the same position as another pathogenic missense
PP2 Missense variant in gene with a low rate of benign missense variants
PP3 Multiple computational studies point to a deleterious effect
PP5 A reputable source recently identifies a variant as pathogenic
BA1 Allele frequency >5%
BS1 Allele frequency in a control population is higher than expected for the disorder
BP1 Missense variant in a gene where truncating variants are the predominant cause of disease
BP3 In-frame indels in a repeat region
BP4 Multiple computational studies suggest no impact on gene or gene product
BP6 A reputable source recently identifies a variant as benign
BP7 A synonymous variant that does not alter splicing

BA1, BS1 and PM2 criteria that are related to population frequency were implemented
based on ExAC [27] and gnomAD databases [28] and more specifically the non-TCGA and
non-cancer data sets, respectively, considering all populations. If the variant has an allele
frequency > 5%, BA1 is assigned as 1. If the allele frequency in a control population is
higher than expected for the disorder (in our case, the threshold for rare variants is 1%),
BS1 is assigned as 1. For dominant inheritance, as in the case of BRCA1 and BRCA2, when
a variant is absent in all control subjects from the above databases, PM2 is assigned as 1, as
the rarity of the variant advocates for pathogenicity.

When the prevalence of the variant in affected individuals is significantly higher than
in controls, then PS4 is applied. As a result of a case-control study (between the CanVaS
population of interest and gnomAD exome control database), all variants whose odds ratio
is higher than 2 and p-value is less than 0.05 for cancer risk are coded as 1 for PS4. We
inferred the odds ratio and p-value from Fisher’s exact test.

If a protein’s length changes due to in-frame insertions or deletions in a non-repeat
region or stop-loss variants, PM4 is applied. Our annotation for the repeat region was based
on the “rmsk” database from the UCSC Genome Browser (using the UCSC Table Browser
data retrieval tool) [24,25]. The database records the results of RepeatMasker, which were
generated by screening DNA sequences for repeats. If the variants are in-frame insertions
or deletions in the non-repeat region, or stop-loss variants, PM4 is assigned as 1. If the
variants are in-frame insertions or deletions in the repeat region, BP3 is assigned as 1.

PM1 criterion includes moderate evidence of pathogenicity if specific protein domains
are thought to be essential for protein function and/or mutational hot spots and all missense
variants in these domains are known to be pathogenic. In addition, benign variants are not
located in these domains. For BRCA1 and BRCA2, there are critical and well-established
functional domains, but not without benign variants. Therefore, PM1 is assigned as 0.

If a missense variant occurs in a gene in which missense variants often result in disease
and which tends to have fewer benign missense variants, PP2 is applied. However, for a
missense variant in a gene where truncating variants are the predominant cause of disease,
BP1 is applied. Since there are not insufficient data for BRCA1 and BRCA2 concerning these
criteria, PP2 and BP1 are assigned as 0.



Biomolecules 2022, 12, 1552 6 of 18

If multiple lines of computational evidence point to a deleterious effect of a variant
on the gene or gene product (conservation, evolutionary, splicing impact, etc.), then the
supporting pathogenic evidence of PP3 is assigned as 1. However, if multiple lines of
computational evidence suggest no impact on the gene or gene product, BP4 is assigned
as 1 for supporting benign evidence. Considering that all in silico programs agree on
the prediction, this evidence can be considered supporting, and PP3 or BP4 is applied.
The computational data can be obtained via VEP from the “dbNSFP” database, using
MetaSVM and Condel predictions [29] to predict deleteriousness and the GERP++ score
(GERP++_RS) to predict evolutionary conservation. The impact of splicing can be assessed
using VEP from the “dbscSNV” database, using adaptive boosting and random forest
scores (ada_score and rf_score, respectively). If at least one of the above in silico data exists
and MetaSVM and Condel predictions indicate a deleterious variant, GERP++_RS is higher
than 2, ada_score and rf_score are higher than 0.6 and PP3 is assigned as 1, otherwise, BP4
is assigned as 1.

In the case of a synonymous variant, known not to alter splicing and the nucleotide
position not being highly conserved, BP7 is applied. By using VEP, the effect on splicing
can be predicted from the “dbscSNV” database and the conservation information can be
inferred from the “dbNSFP” database as above. If ada_score and rf_score are less than 0.6
and GERP++_RS is less than 2, BP7 is assigned as 1.

2.2.3. Machine Learning Modeling

In this study, a machine learning model is proposed in order to discriminate between
P/LP, VUS and B/LB variants. After a detailed analysis, we concluded that the optimal
classification result is achieved via two two-tier serial classifiers. We compared the per-
formance of eight machine learning algorithms, namely, logistic regression (LR), linear
discriminant analysis (LDA), k-nearest neighbors classifier (KNN), decision tree classifier
(CART), naive Bayes (BernoulliNB), support vector machine (SVM), random forest (RF),
and multi-layer perceptron (MLP) classifier, in a classification scheme based on a serial
combination of two classifiers. In particular, instead of a typical three-tier classifier, we
propose two serial classifiers to reduce the three-tier to two-tier classification to simplify
the machine learning model and thus increase separation power. In this way, as illustrated
in Figure 1, the same feature vectors were used for both classifiers. The first classifier
was trained for separating VUS from all other variants (B/LB and P/LP, labeled as “other
variants”) and the second classifier was trained to discriminate between the remaining two
classes—B/LB and P/LP.

Machine learning algorithms were trained based on the scikit-learn library in Python
on version 1.0.2 [19]. The training set consisted of 80% of the total variants, while the test
set consisted of the remaining 20% (no other criteria were applied to select variants). The
different models were trained using three-fold cross-validation to evaluate and compare
their performances, and this procedure was repeated 20 times. To determine the best ap-
proach, we used accuracy, F1 measure, precision, recall and specificity. When implementing
algorithms, the default scikit-learn library parameters were used unless otherwise specified.

In addition, an optimization step was performed on the parameters of each algo-
rithm to improve their classification performance. The parameter selected for LR was
solver = ‘newton-cg’, for BernoulliNB was fit_prior = none, for SVM was kernel = ‘linear’;
the parameters for RF were n_estimators = 200, max_features = 11 and for MLP were
hidden_layer_sizes = 11, solver = ‘lbfgs’ and max_iter = 400.
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Figure 1. Schematic overview of the proposed method. The steps of the method are presented:
(1) variant annotation, (2) ACMG-AMP criteria implementation and (3) machine learning modeling
of two serial classifiers (the first classifier discriminates the variants of uncertain significance (VUS)
from the rest variants, denoted as “other variants”, and the second classifier discriminates the benign
or likely benign (B/LB) from the pathogenic or likely pathogenic (P/LP) variants).

To evaluate the significance of the features used to train the model, we applied feature
importance analysis with SHAP (Shapley additive explanations) values [30] on the training
set, using the SHAP Python library. This method allows us to determine precisely how
the features contribute to the model output. Furthermore, we computed Spearman’s
correlation [31] among features to examine feature collinearity. As a result of our analysis
based on the CanVaS database, we found that RF (nonlinear machine learning classification
algorithm) or MLP (fully connected class of feedforward artificial neural network) are the
best options for classifier 1, and LR (linear) or BernoulliNB (a variant of naive Bayes, a
classification algorithm of machine learning based on Bayes theorem) for classifier 2. The
flow diagram of the whole process is presented in Figure 1.

3. Results
3.1. Machine Learning Model Comparison

We initially implemented the machine learning (ML) algorithms using the full set of
17 features (Table 1) for training and test sets and trained them to distinguish P/LP, VUS
and B/LB variants. Variants from the CanVaS database are used as reference. CanVaS is a
national database that records rare germline genetic variation of Greek cancer patients. This
information is accompanied by relevant phenotypic and segregation data, enabling accurate
variant classification. Each unique variant in CanVaS has been individually assessed
and classified accordingly by our group, following the ACMG guidelines, rendering this
data set a valuable source for the development of in silico tools in need of accurately
labeled data. To detect the collinearity among feature vectors, we computed Spearman’s
correlation for the ACMG-AMP criteria (Figure 2). According to the results of the study, no
correlation coefficient greater than or equal to 0.85 was detected. Consequently, none of
the ACMG-AMP criteria needed to be excluded. Based on the machine learning modeling,
we compared the performance of eight ML algorithms in a serial combination scheme
of two classifiers, as mentioned above, after three-fold cross-validation on the training
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set. General features of the original data set that was used for training and testing the
two classifiers are shown in Table 2.
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Figure 2. Spearman correlation among feature vectors. Darker shades identify higher correlation in
terms of absolute values.

Table 2. General features of the original data set that was used for training and testing the classifiers.

Classifier Classes Total Variants

1
Other variants 367

VUS 130

2
B/LB 194
P/LP 173

Following the analysis of the test set, classification results of the algorithms are pro-
vided in Table 3. In Figure 3, the three ML algorithms with the best accuracy are presented
(RF, MLP and BernoulliNB for classifier 1 and LR and BernoulliNB for classifier 2). The
best overall accuracy achieved for the first classifier was 92% (true negatives = 64, false
positives = 8, true positives = 28 and false negatives = 0 for the RF and MLP classifier and
true negatives = 67, false positives = 5, true positives = 25 and false negatives = 3 for the
BernoulliNB), while for the second it was 99% (true negatives = 36, false positives = 0,
true positives = 37 and false negatives = 1 for LR and BernoulliNB classifier) for BRCA1
and BRCA2 variants. In Table 3, additional performance metrics demonstrate the machine
learning model’s performance (for classifier 1 recall = 0.92, specificity = 0.96 and F1 score = 0.92
and for classifier 2 recall = 0.99, specificity = 0.99 and F1 score = 0.99). Based on receiver
operating characteristic (ROC) analysis (Figure 3d,e), there was a slight difference between
the ROC curves and a fairly high area under the ROC curve (AUROC) of 0.92 for the RF
and MLP and 0.96 for the BernoulliNB as the first classifier, while it was over 0.99 for the
LR and BernoulliNB as the second classifier, indicating that most variants would have been
correctly classified using MARGINAL software. The misclassified variants, i.e., the variants
whose class prediction is different from the actual class (label), predicted using eight ML
algorithms for classifiers 1 and 2 based on the test set provided by the CanVaS database are
presented in Table S1 and Table S2. The total number of final labels predicted via the best
ML algorithms for each class based on the CanVaS database and the total number of labels
provided by the ClinVar database are shown in Table S3.
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Figure 3. Classification results of the three best machine learning (ML) algorithms for classifier 1
and the two best ML algorithms for classifier 2 on the test set: (a) confusion matrix generated by
implementing random forest (RF) or multi-layer perceptron (MLP) for classifier 1; (b) confusion
matrix generated by implementing naive Bayes (BernoulliNB) for classifier 1; (c) confusion matrix
generated by implementing logistic regression (LR) or BernoulliNB for classifier 2; (d) receiver
operating characteristic (ROC) analysis—ROC curves and the values of the area under the ROC
(AUROCs) to evaluate the performances for classifier 1; (e) ROC analysis—ROC curves and the
values of the AUROCs to evaluate the performances for classifier 2.
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Table 3. Analysis of classification results of eight ML algorithms for classifier 1 and classifier 2—LR,
linear discriminant analysis (LDA), k-nearest neighbors classifier (KNN), decision tree classifier
(CART), BernoulliNB, support vector machine (SVM), RF and MLP classifier. The precision, recall
score and f1-score are for the average of the classes (other variants—VUS and B/LB–P/LP) on the
test set. The best ML algorithms are marked in bold.

Classifier ML
Algorithms Precision Recall Specificity F1-Score Support Accuracy

LR 0.93 0.91 0.96 0.91 100 0.91
LDA 0.93 0.91 0.96 0.91 100 0.91
KNN 0.91 0.89 0.91 0.89 100 0.89

1 CART 0.92 0.91 0.94 0.91 100 0.91
BernoulliNB 0.92 0.92 0.90 0.92 100 0.92

SVM 0.91 0.90 0.90 0.90 100 0.90
RF 0.94 0.92 0.96 0.92 100 0.92

MLP 0.94 0.92 0.96 0.92 100 0.92

LR 0.99 0.99 0.99 0.99 74 0.99
LDA 0.98 0.98 0.98 0.98 74 0.98
KNN 0.97 0.97 0.97 0.97 74 0.97

2 CART 0.97 0.97 0.97 0.97 74 0.97
BernoulliNB 0.99 0.99 0.99 0.99 74 0.99

SVM 0.97 0.97 0.97 0.97 74 0.97
RF 0.97 0.97 0.97 0.97 74 0.97

MLP 0.97 0.97 0.97 0.97 74 0.97

By choosing RF or MLP for classifier 1 and LR or BernoulliNB for classifier 2, perfor-
mance metrics for each class are shown in Table 4. These results indicate that our ML model
has excellent performance characteristics and shows the ability to discriminate between
the two classes for each of the two high-scoring classifiers (while RENOVO achieved a
training set accuracy of 99% on established pathogenic/benign variants in ClinVar and
a test set accuracy of 95% on variants whose interpretation has changed over time, in
addition to showing an estimated precision greater than 90% in comparison to ClinVar
VUS as pathogenic or benign [12]). It is important to note that this comparison is only for
general reference and is not intended to be a direct comparison of performance, since the
two tools differ in terms of objectives and design.

Table 4. Analysis of classification results of RF or MLP for classifier 1 and LR or BernoulliNB for
classifier 2. The precision, recall score and f1-score are for each class (other variants, VUS, B/LB,
P/LP) on the test set. The “Support” column indicates the total number of variants for each class
based on the test set.

Classifier Classes Precision Recall Specificity F1-Score Support

1
Other

variants 1.00 0.89 1.00 0.94 72

VUS 0.78 1.00 0.89 0.88 28

2
B/LB 0.97 1.00 0.97 0.99 36
P/LP 1.00 0.97 1.00 0.99 38

In addition to the final model of the two serial classifiers, we first independently
studied each of the eight ML algorithms described above as a typical three-tier machine
learning model to discriminate between P/LP, VUS and B/LB variants, using the same
features. The whole machine learning procedure was the same as the one followed above.
Regarding the test set, the classification results of the algorithms, after the testing of each
of them independently, are provided in Table 5. According to our research, we found that
independently tested algorithms are highly accurate in predicting hundreds of variants in
BRCA1 and BRCA2 genes. Therefore, as we can see, there is only a slight difference between
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the algorithms’ scores, and the best accuracy score was 92% on the test set. The additional
performance metrics in Table 5 also highlight the good quality of the algorithms’ predictions
(recall = 0.93, specificity = 0.96 and F1 score = 0.92 for the CART, RF and MLP classifier).

Table 5. Analysis of classification results of eight ML algorithms under consideration. The precision,
recall score and f1-score are for the average of the three classes (P/LP, VUS, B/LB) on the test set.

ML Algo-
rithms Precision Recall Specificity F1-Score Support Accuracy

LR 0.92 0.92 0.96 0.91 100 0.91
LDA 0.92 0.92 0.96 0.91 100 0.91
KNN 0.90 0.89 0.95 0.89 100 0.89
CART 0.93 0.93 0.96 0.92 100 0.92

BernoulliNB 0.90 0.90 0.95 0.89 100 0.89
SVM 0.90 0.91 0.95 0.90 100 0.90
RF 0.93 0.93 0.96 0.92 100 0.92

MLP 0.93 0.93 0.96 0.92 100 0.92

3.2. Feature Selection

As described above, in order to compute feature importance in the machine learning
model and study a possible reduction of initial features, we randomly selected RF for the
first classifier and performed feature importance analysis with SHAP values on the training
set. The values for the most important features are shown in Figure 4. Accordingly, the
17 ACMG-AMP criteria are ranked hierarchically as follows: BP6, PVS1, PP5, PM2, PP3,
BP4, PS4, PM4, PS1, PM5, BS1 and BP7. The last five features are constant and equal to
zero, so their values are not shown in the figure. The results of our study revealed that
these five features, i.e., PP2, PM1, BP3, BA1 and BP1, with average SHAP values ≤ 0.01,
could be excluded but without performance improvement. Therefore, we kept the initial
total of 17 features.
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3.3. Performance Evaluation on ClinVar Data Set

Next, we evaluated the performance of our method by choosing the three ML algo-
rithms with the best accuracy (RF, MLP and BernoulliNB for classifier 1 and LR, BernoulliNB
and LDA for classifier 2) for variants that do not exist in the initial data set (CanVaS), using
the ClinVar data set. Overall, there are 11932 unique variants reported in BRCA1 and
BRCA2 (excluding variants that already exist in CanVaS, are interpreted from a single
submitter, have conflicting interpretations, or variants for which interpretations are not
provided), which comprised the test set. The interpretations from ClinVar were used in
machine learning modeling to test algorithms for the final classification of variants after
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having been trained on the CanVaS data set according to the procedure described above.
Furthermore, we excluded PP5 and BP6 criteria concerning ClinVar interpretation in order
to avoid a potential bias in the classifier training. As a result of the analysis of the test
set, the best overall accuracy achieved for the first classifier was 91% (for the BernoulliNB
classifier), while for the second it was 98% (for the LDA classifier). Figure 5 and Table 6
show additional performance metrics, and the results of ROC analysis are shown in Figure 5e,f.
Performance metrics for each class are shown in Table 7. Based on the results of the anal-
ysis with the ClinVar data set, MARGINAL software enables the prediction of clinical
significance of BRCA1 and BRCA2 variants, a particularly useful feature that can find wide
application in clinical practice. In the case of the CanVaS database, this combination of
classifiers also has excellent performance characteristics (maximum accuracy of 92% and
98%, recall of 92% and 98% and specificity of 90% and 98% for the first and second classi-
fiers, respectively), which slightly differ from those of the initial optimal combination—RF
or MLP for classifier 1 and LR or BernoulliNB for classifier 2. Consequently, for our final
machine learning model, we chose the last combination—BernoulliNB for classifier 1 and
LDA for classifier 2—as it outperformed the other algorithms in the analysis based on the
ClinVar database.

Table 6. Analysis of classification results of RF, MLP and BernoulliNB for classifier 1 and LR,
BernoulliNB and LDA for classifier 2. The precision, recall score and f1-score are for the average of
the classes (other variants—VUS and B/LB–P/LP) on the test set, based on the ClinVar data set.

Classifier ML
Algorithms Precision Recall Specificity F1-Score Support Accuracy

1
RF 0.64 0.60 0.60 0.61 11932 0.60

MLP 0.64 0.60 0.60 0.61 11932 0.60
BernoulliNB 0.91 0.91 0.90 0.91 11932 0.91

2
LR 0.75 0.66 0.66 0.55 8324 0.66

BernoulliNB 0.74 0.66 0.66 0.55 8324 0.66
LDA 0.98 0.98 0.98 0.98 8324 0.98

Table 7. Analysis of classification results of BernoulliNB for classifier 1 and LDA for classifier 2. The
precision, recall score and f1-score are for each class (other variants, VUS, B/LB, P/LP) on the test set,
based on the ClinVar data set. The “Support” column indicates the total number of variants for each
class based on the test set.

Classifier Classes Precision Recall Specificity F1-Score Support

1
Other

variants 0.91 0.96 0.78 0.94 8324

VUS 0.91 0.78 0.96 0.84 3608

2
B/LB 0.95 1.00 0.97 0.97 3138
P/LP 1.00 0.97 1.00 0.98 5186
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evaluate the performances of LR, BernoulliNB and LDA for classifier 2. 
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Figure 5. Classification results of RF, MLP and BernoulliNB for classifier 1 and LR, BernoulliNB and
LDA for classifier 2 on the test set, based on the ClinVar data set: (a) confusion matrix generated by
implementing RF for classifier 1; (b) confusion matrix generated by implementing MLP for classifier
1; (c) confusion matrix generated by implementing BernoulliNB for classifier 1; (d) confusion matrix
generated by implementing LR for classifier 2; (e) confusion matrix generated by implementing
BernoulliNB for classifier 2; (f) confusion matrix generated by implementing LDA for classifier 2;
(g) ROC analysis—ROC curves and the values of the AUROCs to evaluate the performances of RF,
MLP and BernoulliNB for classifier 1; (h) ROC analysis—ROC curves and the values of the AUROCs
to evaluate the performances of LR, BernoulliNB and LDA for classifier 2.

4. Discussion

As a result of advances in next-generation sequencing (NGS) technology, clinical
laboratories perform a greater number of genetic tests investigating a number of genes,
for the elucidation of genetic predisposition. New challenges in sequence interpretation
have therefore emerged, and numerous new guidelines have been introduced regarding
the clinical interpretation and reporting of sequence variants. Supporting evidence for
variant classification can be obtained using a variety of computational tools based on differ-
ent algorithms and databases, including SIFT [32], MutationTaster [33] and GERP++ [34],
among others. Nevertheless, all of these computational tools evaluate genes using the
same rules, whereas the accuracy of interpretation may vary considerably depending
on the gene, protein sequence and functional domain. Moreover, a variety of software
programs should be used for sequence variant interpretation since different algorithms
provide different advantages and disadvantages. In this study, in light of the need to
assess variant pathogenicity in each gene individually, we present MARGINAL, a software
that combines the implementation of 17 ACMG-AMP criteria with a machine learning
model to improve rare variant interpretation in BRCA1 and BRCA2, while minimizing
conflicting interpretations. MARGINAL software consists of three main steps: (1) variant
annotation by combining various annotation tools, (2) ACMG-AMP criteria implementa-
tion and (3) machine learning modeling for the final variant classification (pathogenic or
likely pathogenic (P/LP), variants of uncertain significance (VUS) and benign or likely
benign (B/LB)).

It should be noted that according to the ACMG-AMP guidelines, 28 criteria were
equally weighted using the proposed rules of variant classification. There is, however,
a possibility that different types of criteria may contribute differently to determining
pathogenicity. Thus, in our study, we used a machine learning approach in place of these
classification rules to more accurately predict and quantify gene variant pathogenicity.
There are several automated tools that use machine learning models to classify variants,
however, each of them implements different features. In particular, most tools are limited to
using the required predicted scores directly, strictly following the ACMG-AMP guidelines
(without implementing the relevant ACMG-AMP criteria), or using different categories
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of evidence such as data deriving from functional assays combined with in silico protein
predictors and segregation data [12–14]. To the best of our knowledge, the only study
using ACMG-AMP criteria as features focused on the necessity of applying different
weights for the ACMG-AMP criteria in relation to different MODY genes, as a means to
accurately interpret genetic variants causing maturity-onset diabetes in the young. All
known tools are also suggested for the classification of different variants (found in other
genes) and for different clinical purposes. In fact, few of them focus on variants of specific
genes or diseases. On the contrary, MARGINAL is the first software, to our knowledge,
that implements the ACMG-AMP criteria and uses them as features for the targeted
classification of rare variants in BRCA1 and BRCA2. Ultimately, all of the existing tools
address different aspects of the variant classification process, but they are not identical to
MARGINAL software and therefore cannot directly be compared. An important aspect that
should be noted is that models published in the literature are often trained using public
databases of variants whose clinical interpretation may change over time (e.g., ClinVar
database), thus leading to inaccurate predictions. Consequently, the lack of standardization
and consistency in classifications renders pathogenicity predictors ineffective. On the
contrary, the classification of variants in BRCA1 and BRCA2 resulting from MARGINAL
software is based on the CanVaS database, which is a population-specific database. The
clinical interpretation of variants listed in the CanVaS database has been carried out over
time, incorporating segregation and functional data, while including many recurrent or
founder variants, resulting in more reliable and accurate classifications.

Another issue we wish to emphasize is that the variant data set that has been used
(CanVaS) refers to GRCh37 (hg19) assembly and includes transcripts of NCBI’s reference
sequence (RefSeq) database. Consequently, our study evaluates the impact of the variants in
BRCA1 and BRCA2 genes on transcripts NM_007294 and NM_000059, respectively, which
are predominantly used worldwide by experts. Therefore, corresponding options must be
made for the extraction of the annotation information provided by VEP.

Considering variant classification, we concluded with two serial classifiers, as de-
scribed above. Numerous studies have shown that this proposed approach to a serial
combination of classifiers aims to improve the performance of unstable or weak classi-
fiers [35]. Consequently, although we started with a typical three-tier machine learning
model, we proceeded to the alternative model of two serial classifiers in order to improve
the classification performance. Our results certainly show an increased enhancement in the
accuracy as well as in additional performance metrics (92% accuracy, 92% recall (sensitivity)
and 90% specificity for the naive Bayes as the first classifier for separating VUS from all
other variants and 98% accuracy, 98% recall and 98% specificity for the linear discriminant
analysis as the second classifier for separating B/LB from P/LP variants). It is important to
note that before we came to this specific combination of classifiers, we evaluated the other
two combinations of class separation: a) other variants—B/LB and P/LP–VUS and b) other
variants—P/LP and B/LB–VUS. Comparing the accuracy scores, we concluded that the
optimal combination was the one we chose.

A limitation of this study involves the selection of variants, which is based on a
national database, i.e., CanVaS, which includes genomic data from Greek individuals only.
As previously reported, the Greek population is influenced by strong founder effects, and
therefore, many of the variants tested can be population-specific [36–39]. Although the
variant classification per se described herein might not be applicable to genetic data deriving
from multi-ethnic cohorts, the approach to automatically classify variants with unknown
significance can find broad application. It should be noted, though, that many of the
ACMG-AMP criteria (e.g., the criteria based on computational, predictive and functional
data, among others) are “population-agnostic”, meaning that they are not influenced by
the presence of the variant in a population.

Some future extensions could be considered for MARGINAL software to improve the
efficiency and accuracy of variant classification. Gaining access to additional co-segregation
and functional data for BRCA1 and BRCA2 will enable the application of further ACMG-



Biomolecules 2022, 12, 1552 16 of 18

AMP criteria, an important step for more accurate classification. Moreover, MARGINAL
software could be modified with the appropriate adjustments for a future study combining
the use of structure features to see how this approach would influence the classification
results. Finally, the technique implemented herein could be extended to other genes by
providing a general framework for interpreting variants throughout the genome and thus
increasing overall statistical power. Despite its complexity and evolution, variant classifica-
tion remains an important field that requires continuous improvement and development
of multiple computational tools. In clinical practice, MARGINAL software is expected to
enhance the accuracy of gene variant interpretations and contribute to more personalized
patient care.

5. Conclusions

Despite the substantial progress towards achieving accurate clinical diagnostics in
recent years, there are still numerous obstacles we need to overcome in order to provide
the best patient care. MARGINAL uses a machine learning model that was trained on well-
annotated clinical data (CanVaS database), making it a powerful tool for the interpretation
of disease-associated genetic variation. Considering its high performance and accuracy
in the classification of variants in BRCA1 and BRCA2, we believe that it could provide
sufficient evidence for the localization of pathogenicity in these specific genes and thus
contribute to the prognosis and/or diagnosis of breast or ovarian cancer. As a result, by
enhancing prediction rates and ensuring precise genetic consultations, patient survival can
be significantly improved.
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algorithms (e.g., RF for classifier 1 and LR for classifier 2) for each class based on CanVaS database
and the total number of labels provided by ClinVar database. The data for the discovery cohort and
validation cohort are also provided.
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