
Citation: Kim, J.; Bekiranov, S.

Generalization Performance of

Quantum Metric Learning Classifiers.

Biomolecules 2022, 12, 1576. https://

doi.org/10.3390/biom12111576

Academic Editors: Cameron Mura

and Lei Xie

Received: 3 October 2022

Accepted: 23 October 2022

Published: 27 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomolecules

Article

Generalization Performance of Quantum Metric
Learning Classifiers
Jonathan Kim 1 and Stefan Bekiranov 2,*

1 GSK R&D Stevenage, GlaxoSmithKline, Stevenage SG1 2NY, UK
2 Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
* Correspondence: sb3de@virginia.edu

Abstract: Quantum computing holds great promise for a number of fields including biology and
medicine. A major application in which quantum computers could yield advantage is machine
learning, especially kernel-based approaches. A recent method termed quantum metric learning, in
which a quantum embedding which maximally separates data into classes is learned, was able to
perfectly separate ant and bee image training data. The separation is achieved with an intrinsically
quantum objective function and the overall approach was shown to work naturally as a hybrid
classical-quantum computation enabling embedding of high dimensional feature data into a small
number of qubits. However, the ability of the trained classifier to predict test sample data was
never assessed. We assessed the performance of quantum metric learning on test ants and bees
image data as well as breast cancer clinical data. We applied the original approach as well as
variants in which we performed principal component analysis (PCA) on the feature data to reduce its
dimensionality for quantum embedding, thereby limiting the number of model parameters. If the
degree of dimensionality reduction was limited and the number of model parameters was constrained
to be far less than the number of training samples, we found that quantum metric learning was able
to accurately classify test data.

Keywords: quantum machine learning; quantum metric learning; kernel method; kernel classifiers

1. Introduction

Significant progress has recently been made toward the development of fault tolerant
quantum computers (FTQCs) [1]. Their development would result in the speedup of many
algorithms that are approaching severe limits on classical computers. The range of applica-
tions include quantum chemistry [2], search [3], cryptography [4] and machine learning [5].
These applications are relevant to many domains of study including biology and medicine.
In the field of machine learning, exponential speedups on a quantum compared to classical
computer have been proven [5] for implementing quantum support vector machines [6],
quantum Boltzmann machines [7,8], least squares fitting [9], and quantum principal compo-
nent analysis [10]. Quadratic speedups have been demonstrated [5] for classical Boltzmann
machines [11], quantum reinforcement learning [12], online perceptron [13], and Bayesian
inference [14,15]. However, these speedups assume a FTQC with high connectivity and
hundreds to thousands, even millions for some applications, of qubits. In addition, some
of these quantum algorithms require quantum RAM (qRAM) which executes a quantum
coherent mapping of a classical vector into a quantum state [16,17], for their quantum
advantage over classical computers. However, qRAM hardware has not been developed.
Currently, quantum computing is in its noisy intermediate-scale quantum (NISQ) era [18].

A major application in which even NISQ-era quantum computers could yield advan-
tage is kernel-based machine learning [19–22]. Broadly, two sets of approaches have recently
been explored [20,21]: (1) map a large feature space into a quantum state and calculate a
kernel function on a quantum computer and make use of this kernel in a classical classifier

Biomolecules 2022, 12, 1576. https://doi.org/10.3390/biom12111576 https://www.mdpi.com/journal/biomolecules

https://doi.org/10.3390/biom12111576
https://doi.org/10.3390/biom12111576
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://orcid.org/0000-0003-0329-1360
https://orcid.org/0000-0002-3177-4346
https://doi.org/10.3390/biom12111576
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/article/10.3390/biom12111576?type=check_update&version=4

Biomolecules 2022, 12, 1576 2 of 18

(e.g., SVM) and (2) apply a variational quantum circuit to classify data on the quantum
computer in Hilbert space. Kernel-based classifiers that interfere the test and train data
and effectively calculate their Euclidean distance [19,23,24] and/or inner product [23–25]
have been developed and assessed on IBM quantum computers and performed close to
theoretical expectations if the number of gates were kept to a relatively small number [25].
Formally, supervised quantum models have been shown to be kernel methods [22], and it
has been suggested that quantum computers could enable kernel-based machine learning
in a similar way that GPU-accelerated hardware enabled deep learning [22]. As a result of
these developments, a number of kernel-based quantum machine learning studies have
been performed in which the trainability [26–29], expressivity [30,31], robustness [32,33]
and generalizability [30,31,33–35] of quantum kernel-based models implemented on NISQ-
era quantum computers have been studied as well as the extent to which quantum errors
can be mitigated on a classical computer [30,31].

In this work, we focus on a quantum kernel-based machine learning approach termed
quantum metric learning (QML) [26]. Here, a quantum embedding is learned by maximiz-
ing the Hilbert-Schmidt distance of data samples from two classes in such a way that two
classes are separated in Hilbert space. This enables a simple linear decision boundary to
be implemented in Hilbert space which represents a complex decision boundary in the
original feature space. This approach has all the advantages that come with kernel-based
approaches mentioned above along with a number of other attractive features for NISQ-
era quantum computing including: (1) simple, quantum-based cost function based on the
Hilbert-Schmidt distance, (2) seamless applicability as a hybrid quantum-classical approach
that reduces the dimensionality of the input feature space for quantum embedding to a
small number of qubits, (3) ability to directly visualize the extent to which samples with dif-
ferent class labels are separated and (4) ability to be implemented on a quantum computer
as a classifier using multiple swap gates [23–26]. Despite these highly promising attributes
of QML, the primary manuscript detailing the method [26] only demonstrated its ability to
separate training data. The ability of QML to generalize well by assessing a trained model
on test data was not shown. Consequently, we fill this gap by training and testing QML
with the original ImageNet Hymenoptera Dataset containing images of ants and bees [36]
as well as the University of California Irvine Machine Learning Breast Cancer Wisconsin
(Diagnostic) dataset [37]. The breast cancer dataset contains 30 normalized clinical features
for each breast cancer patient whose tumor was diagnosed as malignant and benign. We
used precision, recall and F1-score as performance metrics for test data. We also report
the resulting cost function for both train and test data. We reproduced the result that for
the original ant and bee image data, we were able to achieve a high level of separation
on training data. However, we found that the trained classifier did not perform well on
hold out test data. We noticed that the number of model parameters exceeded the number
of training samples, so we hypothesized that the model was overfitting the training data.
Application of principal component analysis (PCA) to reduce the input feature dimension
and number of model parameters did not significantly improve test performance on this
dataset. We turned to the breast cancer data which contained far fewer input features and
more samples and further applied PCA as well to reduce the input feature dimensions
and number of model parameters. We found that QML was able to perform well on both
training and test data in this setting. Thus, when adhering to conventional bias-variance
principles, namely, constraining the number of model parameters to be notably less than
the number of training samples, we find that QML-based classifiers generalize well. This is
true as long as the initial number of features (i.e., the number of features prior to PCA) is
not too high.

Biomolecules 2022, 12, 1576 3 of 18

2. Materials and Methods
2.1. Quantum Metric Learning Expressed as a Kernel-Based Quantum Model

In quantum metric learning, a quantum embedding,

|x〉 = Φ(x, θ) |0 . . . 0〉 , (1)

is learned where Φ(x, θ) is a feature map which maps the input data x to a quantum state
|x〉 which separates the data according to class labels in Hilbert space by maximizing the
Hilbert-Schmidt distance Dhs or, equivalently, by minimizing a cost function C defined in
terms of Dhs, through gradient descent of the model parameters θ. The Hilbert-Schmidt
distance is

Dhs(ρ, σ) = tr[(ρ− σ)2], (2)

where ρ and σ are density matrices representing ensembles of Ma and Mb training data
points a and b from class A and B, respectively:

ρ =
1

Ma
∑

a∈A
|a〉 〈a| (3)

and
σ =

1
Mb

∑
b∈B
|b〉 〈b| . (4)

The cost function C, whose range is [0, 1], that is minimized is

C = 1− 1
2

Dhs(ρ, σ). (5)

Once C is minimized, the parameters, θ, of the feature map are determined in such
a way that the training data {a, b} is separated in Hilbert space. In order to classify a test
sample, x, it must first be embedded using the feature map as shown in Equation (1). A
fidelity classifier [23–26] can then be defined by the difference in squared inner product
between the embedded test sample |x〉 and the respective class A and B embedded training
samples {|a〉 , |b〉}:

f (x) =
1

Ma
∑

a∈A
| 〈a|x〉 |2 − 1

Mb
∑
b∈B
| 〈b|x〉 |2 (6)

= 〈x| ρ− σ |x〉 . (7)

Equation (7) can be viewed as an expectation of a measurement,M, where

M = ρ− σ (8)

=
1

Ma
∑

a∈A
|a〉 〈a| − 1

Mb
∑
b∈B
|b〉 〈b| . (9)

Thus, the fidelity classifier may be expressed as follows:

f (x) = 〈x|M|x〉 (10)

= tr[|x〉 〈x|M]. (11)

Equation (11) is the definition of a quantum model (see Equation (34) of Schuld et al. [22])
which can be expressed as a quantum kernel-based model. We implement and assess the

Biomolecules 2022, 12, 1576 4 of 18

generalization performance of quantum metric learning using the following k-nearest
neighbor (KNN) kernel-based classifier:

ŷ = sgn(f (x)) (12)

= sgn(∑
a∈A

αaκ(a, x)− ∑
b∈B

αbκ(b, x)), (13)

where ŷ is the prediction for test sample x and sgn denotes the sign function. Comparison
of Equations (6) and (13) yields the result that αa = 1/Ma, αb = 1/Mb,

κ(a, x) = | 〈a|x〉 |2, (14)

and
κ(b, x) = | 〈b|x〉 |2, (15)

where κ(a, x) and κ(b, x) are defined as quantum kernels (see Equation (6) of Schuld et al. [22])
which are the inner product between the embedded test data, x, and training data, a and b,
respectively, in the context of a KNN classifier.

2.2. The Quantum Metric Learning Embedding Circuit

Various adaptations of Lloyd et al.’s hybrid quantum metric learning embedding [26]
were used throughout this work. See Figure 1A for a full illustration of the general
embedding. The quantum component of the algorithm (the trainable quantum feature map, a
repeating circuit ansatz consisting of single-qubit Rx, Ry rotation gates and two-qubit ZZ
coupling gates [26,38] resulting in 12 trainable quantum parameters) was left unchanged.
The classical components leading to the intermediate x1 and x2 inputs to the quantum
feature map were replaced and varied. We note that the quantum circuit is precisely the
same as that of Lloyd et al. [26]. The example ansatz in Figure 3 of [26] is for three inputs
(x1, x2 and x3). However, we and Lloyd et al. [26] use two inputs (x1 and x2) to assess QML
on real world datasets.

We now describe the effects that the Rx(xi), Ry(θj) and ZZ(θj) gates have on the two-
qubit state at the kth stage of the circuit, |xk〉, where i = 1, 2, j = 1, 2, ..., 12, k = 1, 2, ..., 14 and

|xk〉 = αk |00〉+ βk |01〉+ γk |10〉+ δk |11〉 . (16)

For example, |x1〉 = |00〉 with α1 = 1 and β1 = γ1 = γ1 = 0 is the initial two-qubit
state entering the circuit on the left of Figure 1A. The state |x14〉 = |x〉 is the final state
shown on the right of the circuit in Figure 1A. The operation of the first Rx(x1) and Rx(x2)
gates yields |x2〉, where

α2 =
1
2

cos (
x1 + x2

2
) +

1
2

cos (
x1 − x2

2
), (17)

β2 = − i
2

sin (
x1 + x2

2
) +

i
2

sin (
x1 − x2

2
), (18)

γ2 = − i
2

sin (
x1 + x2

2
)− i

2
sin (

x1 − x2

2
) (19)

and
δ2 = −1

2
cos (

x1 − x2

2
) +

1
2

cos (
x1 + x2

2
). (20)

Biomolecules 2022, 12, 1576 5 of 18

We see that the two-qubit state becomes angularly embedded by a combination real
and complex coefficients containing sine and cosine functions. The operation of the first
ZZ(θ1) entangler gate yields |x3〉, where

α3 = e
−iθ1

2 α2, (21)

β3 = e
iθ1
2 β2, (22)

γ3 = e
iθ1
2 γ2 (23)

and
δ3 = e

−iθ1
2 δ2. (24)

The operation of the Ry(θ2) and Ry(θ3) gates then yields |x4〉, where

α4 =
α3 − δ3

2
cos (

θ2 + θ3

2
) +

α3 + δ3

2
cos (

θ2 − θ3

2
)

− β3 + γ3

2
sin (

θ2 + θ3

2
) +

β3 − γ3

2
sin (

θ2 − θ3

2
),

(25)

β4 =
β3 + γ3

2
cos (

θ2 + θ3

2
) +

β3 − γ3

2
cos (

θ2 − θ3

2
)

+
α3 − δ3

2
sin (

θ2 + θ3

2
)− α3 + δ3

2
sin (

θ2 − θ3

2
),

(26)

γ4 =
β3 + γ3

2
cos (

θ2 + θ3

2
)− β3 − γ3

2
cos (

θ2 − θ3

2
)

+
α3 − δ3

2
sin (

θ2 + θ3

2
) +

α3 + δ3

2
sin (

θ2 − θ3

2
)

(27)

and

δ4 = −α3 − δ3

2
cos (

θ2 + θ3

2
) +

α3 + δ3

2
cos (

θ2 − θ3

2
)

+
β3 + γ3

2
sin (

θ2 + θ3

2
) +

β3 − γ3

2
sin (

θ2 − θ3

2
).

(28)

In this way, we see that we get growing products of sine and cosine components (in
terms of both the linear trainable parameters, xi, and the ’quantum’ trainable parameters,
θj) in each element of the resulting vector as we progress through the circuit. As the circuit
ansatz is repeated further, this results in an increase in both the ’sharpness’ and the number
of peaks and troughs representing the angular embedded data, allowing for the high levels
of expressivity needed for effective embedding.

When working with the Hymenoptera ants and bees image dataset, the replaceable
classical part of the embedding consisted of images of ants and bees that had been standard-
ized and normalized. We explored passing them through a pre-trained ResNet-18 network
(without the final layer) as well as working with them directly. The first approach resulted
in 512 classical input features [26,39], while the second approach yielded 150528 classi-
cal input features. In the second approach, the features were then always dimensionally
reduced via PCA to prevent there being an exceptionally high number of trainable pa-
rameters. When working with the breast cancer dataset, the replaceable classical part of
the embedding corresponded to 30 normalized input clinical features. This resulted in
30 classical input features.

Biomolecules 2022, 12, 1576 6 of 18

Figure 1. Diagrams illustrating the training process and results of the quantum feature map: (A) Di-
agram of the general quantum metric embedding used. The model takes n classical input features
and reduces them to two intermediary values (x1 and x2) through matrix multiplication with a 2× n
parameter matrix, whose elements behave as trainable linear parameters. Thus, n input features
yield 2n trainable linear parameters. The resulting intermediate (x1, x2) values are then used as
input alongside 12 trainable ’quantum’ parameters (θ1–θ12) to progress through the quantum feature
map. Each sample ultimately ends up in the embedded |x〉 state in which the Hilbert-Schmidt
distance between different classes is maximized through iterative training of the linear and quantum
parameters. The illustrated approach represents a generalized adaption of the hybrid quantum metric
learning embedding used by Lloyd et al. [26] (B) Scatter plot of the (x1, x2) values of the Hymenoptera
dataset with 512 ResNet features (corresponding to 1024 trainable linear parameters) after 0 steps
of training. Datapoints from both the training set and the test set are depicted. We note that we
used precisely the same train and test samples as in the original study [26] for the Hymenoptera
data which corresponded to 61% train and 39% test. (C) Scatter plot of the (x1, x2) values of the
Hymenoptera dataset with 512 ResNet features after 1500 steps of training using the PennyLane
software package [40]. Datapoints from both the training set and the test set are depicted.

These n classical input features were then multiplied by a 2× n parameter matrix,
resulting in 2n trainable linear parameters and the two inputs (x1, x2) to the quantum
feature map. In many cases in both datasets, the initial input features also underwent
dimensional reduction through principal component analysis (PCA) to yield lower values
of n, so as to help minimize overfitting by the subsequent models. However, when working
with this dimensional reduction approach, it was also important not to reduce the number
of linear parameters too much so as to retain the expressivity of the models.

2.3. Training the Quantum Metric Learning Models

The quantum feature map itself provided 4× 3 = 12 trainable quantum parameters
(i.e., 4 repeated circuit ansatzes containing 3 parameters per ansatz) and as such, every
model consisted of 2n+ 12 total trainable parameters. Each model was randomly initialized
and trained for 1500 steps with a batch size of 10, using the root mean squared propagation
(RMSProp) optimizer with a step size of 0.01. With successful training, each new (x1, x2)
input to the model becomes embedded into a state |x〉 in Hilbert space such that the Hilbert-
Schmidt distances between the embedded states of opposing classes, shown in Equation (2),

Biomolecules 2022, 12, 1576 7 of 18

are maximized or equivalently, the Hilbert-Schmidt cost function, Equation (5), is mini-
mized. The hybrid parameter optimization steps were performed using the PennyLane
software package [40] and the embedded data were subsequently classified by a k-nearest
neighbor (KNN) classifier.

2.4. ImageNet Hymenoptera Dataset

The first dataset used to explore Lloyd et al.’s quantum metric learning embedding [26]
was the ImageNet Hymenoptera image dataset [36]. This dataset consists of 397 colored
images of ants and bees in various environments. Each sample can thus be assigned a
class of either ant or bee. By default, the dataset is split into a training set and a test set
in the approximate ratio of 3:2. This train-test split was manually changed at times, as
dictated by a random seed. Each image was standardized into a resolution of 224× 224
then normalized using the PyTorch Normalize function [41] to yield ImageNet’s preferred
mean pixel values of (0.485, 0.456, 0.406) and standard deviation pixel values of (0.229,
0.224, 0.225) [36,41]. Notably, this ants/bees dataset is the same dataset as the one used by
Lloyd et al. in their paper [26], as well as by Mari et al. in their 2019 paper on quantum
transfer learning [39].

2.4.1. Training QML Models with Feature Extraction Using ResNet-18

The first step in assessing the hybrid embedding was to investigate the resulting
training cost, test cost, test set precision, test set recall and test set F1-score using the same
embedding setup as presented in the demo code associated with Lloyd et al.’s paper [26].
This setup includes the pre-trained ResNet-18 component which converts each normalized
ant or bee image into 512 input features. The 2× 512 = 1024 resulting linear parameters
and 12 quantum parameters of the quantum feature map were optimized as detailed above.

2.4.2. Training QML Models with Feature Extraction Using ResNet-18 Followed by PCA

To help address the potential issue of overfitting due to the high number of parameters
used when training the linear half of the model, principal component analysis (PCA)
was performed on the 512 output features of the ResNet. First, for each sample, the
ResNet output features were normalized using the scikit-learn StandardScaler function [42],
resulting in a mean of 0 and a standard deviation of 1 for each feature. The 512 normalized
features were then reduced to 256, 64, 16, 4 and 2 principal components, leading also to a
reduction in the number of linear model parameters. For instance, whenever the features of
each sample were reduced to 256 principal components, the model would be trained with
512 linear parameters (as opposed to the original 1024 linear parameters). With a reduction
to 4 principal components, the model would be trained using just 8 linear parameters.
In general, n principal components were multiplied by a 2× n matrix to yield the two-
dimensional (x1, x2) values used as input to the quantum feature map. The elements
of the 2× n matrix change between each training iteration, acting as 2n trainable linear
parameters. Other than this change to the number of trainable parameters, the training
setup of the optimizer was kept the same as in the non-PCA case.

2.4.3. Training QML Models with Feature Extraction Using PCA

A more direct form of PCA was also used on the Hymenoptera image dataset. Instead
of passing the images through a ResNet first, the 224× 224× 3 = 150528 normalized
pixel datapoints per image were reduced directly down to 256, 64, 16, 4 and 2 principal
components. As before, these principal components were then multiplied by a 2 × n
parameter matrix to yield the (x1, x2) values and 2n trainable linear parameters, where n is
the number of principal components. These (x1, x2) values were again used as input to the
quantum feature map, then optimized using the optimization approach detailed above.

Biomolecules 2022, 12, 1576 8 of 18

2.5. UCI ML Breast Cancer Wisconsin (Diagnostic) Dataset

The second dataset that we used was the University of California Irvine Machine
Learning Breast Cancer Wisconsin (Diagnostic) Dataset [37]. This dataset consists of
569 breast cancer samples, each associated with 30 quantitative values such as cell radius,
symmetry and smoothness. Each sample in the dataset can be classified as either benign or
malignant. At different points in this work, the dataset was manually divided into different
train-test splits (as determined by set random seeds), each in the ratio of 3:2.

2.5.1. Training QML Models Using All Input Features

As with the Hymenoptera dataset, the goal was to establish how well the hybrid
embedding generalizes. To begin, the 30 quantitative attributes of the breast cancer dataset
were normalized using the scikit-learn StandardScaler function [42], such that the mean and
standard deviation of each attribute became 0 and 1, respectively. The normalized attributes
were then matrix-multiplied with a 2× 30 parameter matrix, resulting in a set of x1 and
x2 values associated with each sample, as well as a set of 60 trainable linear parameters
corresponding to the elements in the matrix. Mirroring the steps that were performed on
the Hymenoptera dataset, the 60 linear parameters and 12 quantum parameters were then
trained as detailed above. For this dataset, two sets of results were collected in separate
tables. Each set of results came from a different pseudo-random train-test split of the data
as determined by a random seed. Two sets of results were obtained to account for potential
bias in the splits caused by chance.

2.5.2. Training QML Models with Feature Extraction using PCA

Taking the same approach as with the Hymenoptera dataset, PCA was also performed
on the 30 normalized features of the breast cancer dataset to reduce the number of train-
able parameters.

Two new sets of models were trained according to the same train-test splits as estab-
lished in the non-PCA case. Each of these two sets consisted of models trained from 30,
16, 8, 4 and 2 principal components. Just as with the Hymenoptera dataset, the resulting
principal components were multiplied by a 2× n parameter matrix where n is the number
of principal components. This approach yields (x1, x2) values and 2n linear parameters
needed for training and embedding. The same optimizer configuration was used as in all
prior cases.

2.6. Assessing Quantum Metric Learning Model Performance

For all the QML models generated for both datasets, training costs, test costs, test
set precision scores, test set recall scores and test set F1-scores resulting from each of the
train-test splits were calculated. x1, x2 scatter plots and Hilbert space mutual data overlap
matrices were generated to examine the level of expressivity of the models and to further
review the ability of these models to separate and classify test data.

3. Results
3.1. Hymenoptera Dataset

As detailed in the Methods section, we trained and tested the Hymenoptera image
and Breast Cancer Wisconsin (Diagnostic) datasets using the hybrid classical-quantum
classifier shown in Figure 1A. We started with the Hymenoptera dataset using the same
approach as Lloyd et al. [26]. In Figure 1B,C, we show a scatter plot of the inputs to the
quantum circuit for train and test data before and after 1500 steps of training, respectively.
Figure 1B illustrates that we recapitulate the ability of quantum metric learning (QML)
to perfectly separate the Hymenoptera image training data when using the ResNet-18
layer with 512 input features in the same way as is seen in Lloyd et al.’s work [26]. With
1024 linear parameters and 12 quantum parameters, the training set (x1, x2) datapoints
seem to cluster very well two-dimensionally after 1500 steps. In contrast, as shown in

Biomolecules 2022, 12, 1576 9 of 18

Figure 1C, the test set datapoints remain very poorly separated. This contrast in separability
suggests that the model is severely overfitting in this case.

Figure 2 illustrates the Hilbert space mutual data overlap gram matrices demonstrating
the classifiability associated with the training and test results provided in Figure 1C. As
expected from a case that shows a high level of overfitting, the training data is separated
almost perfectly in Hilbert space (as seen in Figure 2B) while the test data remains barely
separated at all (as seen in Figure 2D), demonstrating that the embedding generalizes
poorly with the Hymenoptera dataset.

Figure 2. Gram matrices for mutual data overlap (i.e., | 〈x|x′ 〉 |2) in Hilbert space for 10 ant and
10 bee samples from the Hymenoptera dataset where 0 and 1 correspond to no and perfect overlap,
respectively. In each case, 512 ResNet features (corresponding to 1024 trainable linear parameters)
were used. The stronger the separation between the purple tiles (bees) and the yellow tiles (ants), the
better the model’s ability to classify. The Hymenoptera dataset’s default train-test split was used for
these results. The PennyLane software package was used to train the embedding [40]. (A) Mutual
data overlap in Hilbert space for training set datapoints at optimization step 0. (B) Mutual data
overlap in Hilbert space for training set datapoints at optimization step 1500. (C) Mutual data overlap
in Hilbert space for test set datapoints at optimization step 0. (D) Mutual data overlap in Hilbert
space for test set datapoints at optimization step 1500.

Summarised in Table 1 are the results of training the model on the Hymenoptera
dataset in various ways. A specific random seed of ’123’ was used for the train-test split in
every row other than the first. The first row uses the same default train-test split as was
used in Lloyd et al.’s work [26]. It also corresponds to the results shown in Figures 1 and 2.

Biomolecules 2022, 12, 1576 10 of 18

Table 1. Test set assessment outcomes for training performed on the Hymenoptera dataset’s training
set. Corresponding training costs are also given. In each row, training was performed for 1500 itera-
tions using the root mean squared propagation optimizer (step size of 0.01) and a batch size of 10.
All values are given to four decimal places. The features in row 1 did not undergo PCA, while the
features from the rest of the rows did. A random seed of ’123’ used for the train-test split in every
row other than the first (the first row used the default train-test split of the Hymenoptera dataset).
The same random seed of ’123’ was used for all subsequent evaluations in all rows. The best value
for each column is shown in bold.

No. of Features ResNet (y/n) Training Cost Test Cost Precision Recall F1-Score

512 y 0.0141 0.9931 0.6184 0.5663 0.5912
256 y 0.9944 0.9885 0.5326 0.5976 0.5632
256 n 0.9947 0.9859 0.4945 0.5488 0.5202
64 y 0.9756 0.9942 0.4891 0.5488 0.5172
64 n 0.9956 0.9928 0.4828 0.5122 0.4970
16 y 0.9926 0.9897 0.5000 0.5488 0.5233
16 n 0.9969 0.9892 0.4831 0.5244 0.5029
4 y 0.9909 0.9911 0.4545 0.4878 0.4706
4 n 0.9959 0.9947 0.4783 0.5366 0.5057
2 y 0.9700 0.9928 0.4545 0.4878 0.4706
2 n 0.9954 0.9965 0.4316 0.5000 0.4633

Test set F1-score and precision are maximized when using the original setup involving
the full 512 output features of ResNet-18 with no further feature reduction through PCA.
Training cost is minimized at 512 features, but the corresponding test cost is high, which
provides further evidence of overfitting and poor generalization. This also means that
the minimized training cost of 0.0141 is likely achieved only when overfitting the training
data. The lowest test cost, which is achieved with 256 principal component features and
no ResNet step, is hardly reduced from its maximum value of 1. The test set recall is
maximized at 256 principal component features with the ResNet step.

Although the 512 feature setup and 256 principal component feature setups seemed
to perform slightly better than entirely random class assignment, the resulting scores
are still very poor. The highest F1-score being just 0.5912 and the lowest test cost still
being as high as 0.9859. Furthermore, regardless of whether or not a ResNet step was
used, subsequent feature reduction through PCA only worsened F1-score while drastically
increasing training costs. Thus, after reducing the number of parameters, there seems to
have been a drop in expressivity, which prevented overfitting. However, this was due
to training costs becoming much worse. While it can be said than none of the models in
Table 1 demonstrate good test set classification performance, the observed ability for PCA
to prevent overfitting is still worth noting, despite it being achieved exclusively through
increased training cost values in this case.

3.2. Breast Cancer Dataset

Figure 3A,B illustrate the effects of training the hybrid model for 1500 iterations on
the breast cancer dataset. Both the training set and test set (x1, x2) values seem to have
separated reasonably well in two dimensions, which contrasts with the Hymenoptera
dataset result where only the training set separated well. However, neither set separates
well enough for entirely distinct non-overlapping clusters to form (as was seen in Figure 1C).
While the training set datapoints in Figure 1 separated into very tight clusters that were
isolated from other surrounding clusters, the clusters in Figure 3B are much broader and
less well defined. This more modest training set separation, in conjunction with the much
greater similarity between the training set clusters and test set clusters indicates that the
level of overfitting is much lower when using the breast cancer dataset.

Biomolecules 2022, 12, 1576 11 of 18

Figure 3. Scatter plots of the (x1, x2) values of the breast cancer dataset with 30 starting features
(corresponding to 60 trainable linear parameters). Datapoints from both the training set and the test
set are depicted. A random seed of ’1’ was used for the train-test split of this data. The PennyLane
software package was used to optimize the parameters [40]. (A) Scatter plot of the (x1, x2) values
after 0 training steps. (B) Scatter plot of the (x1, x2) values after 1500 training steps.

Figure 4 depicts the Hilbert space mutual data overlaps (i.e., | 〈x|x′〉 |2) associated with
the training and test scatter plot results shown in Figure 3. It is clear from Figure 4B,D that
both the training set embeddings and the test set embeddings separate relatively well in
Hilbert space when using the trained model. The Hilbert space separation and resulting
classifiability of the test set appear comparable to those of the training set, which serves as
further evidence that overfitting is less of an issue with this dataset.

However, the test set is still classified observably worse than the training set, as seen
by the significantly misplaced ’lines’ of overlap present within Figure 4D. Thus, despite
the improvements compared to the previous dataset, there is still a moderate level of
overfitting occurring. Consequently, there is still room for generalization performance to
be improved further.

Figure 5 demonstrates the effects of carrying out PCA on the 30 input features of the
breast cancer dataset. As seen in Figure 5B,D, PCA seems to bring both training set and
test set (x1, x2) values into tighter two-dimensional clusters compared to those seen in
Figure 3B. This generally has the effect of reducing the relative surface area of the borders
between neighboring clusters, which could potentially correlate with better classification
after subsequent embedding.

It is worth noting that in Figure 5A (with feature reduction to 8 principal components),
the (x1, x2) values seem to start off reasonably well separated in two-dimensions as a result
of the prior PCA step. Then after 1500 steps of training, Figure 5B shows how the model
is able to further separate the values such that much more distinctive, globular clusters
are formed with a much lower relative surface area where the clusters meet. In contrast,
Figure 5C shows that the (x1, x2) values resulting from 4 principal components begin
in a much less well separated two-dimensional state after the initial PCA step. Despite
this, the trained model is still able to separate the values into quite distinctive clusters, as
shown in Figure 5D. In fact, the two-dimensional area of cluster overlap in Figure 5D still
seems to be slightly smaller than the area of cluster overlap in Figure 3B. In other words,
regardless of whether PCA is able to group the pre-training (x1, x2) values by class, the
resulting post-training test set is well separated. Interestingly, the PCA-based post-training
separation (Figure 5B,D) appears to be better than its non-PCA counterpart (Figure 3B).
Thus, we find that feature reduction through PCA can consistently contribute to better
generalization performance for this dataset.

Biomolecules 2022, 12, 1576 12 of 18

Figure 4. Gram matrices depicting mutual data overlap in Hilbert space (i.e., | 〈x|x′ 〉 |2) for 10 benign
and malignant train and test samples from the breast cancer dataset. In each case, 30 starting
features (corresponding to 60 trainable linear parameters) were used, with no subsequent PCA
feature reduction. The stronger the separation between the purple tiles (benign) and the yellow tiles
(malignant), the better the model’s ability to classify. A random seed of ’1’ was used for the train-test
split of this data. The PennyLane software package was used to train the embedding [40]. (A) Mutual
data overlap in Hilbert space for training set datapoints at optimization step 0. (B) Mutual data
overlap in Hilbert space for training set datapoints at optimization step 1500. (C) Mutual data overlap
in Hilbert space for test set datapoints at optimization step 0. (D) Mutual data overlap in Hilbert
space for test set datapoints at optimization step 1500.

A final observation is that the 8 principal component model (with 16 trainable linear
parameters) seems to demonstrate greater expressivity than the 4 principal component
model (with 8 trainable linear parameters). While the 8 principal component model moves
the (x1, x2) values into more distinctive, globular clusters, the 4 principal component model
instead moves the values into a simpler, more linear shape. It seems that having fewer
trainable linear parameters can cause the model to lose expressively, leading to less well-
defined clusters and perhaps worse post-embedding classification. However, as seen in
Figures 1C and 3B, having too many parameters, and, thus, too much expressivity for a
limited number of samples, can lead to overfitting and noisier clustering.

Biomolecules 2022, 12, 1576 13 of 18

Figure 5. Scatter plots of the (x1, x2) values of the breast cancer dataset following feature reduction
through PCA. Datapoints from both the training set and the test set are depicted. A random seed
of ’1’ was used for the train-test split of this data. The PennyLane software package was used to
optimize the parameters [40]. (A) Scatter plot of (x1, x2) values associated with 8 principal components
after 0 training steps. These 8 principle components correspond to 16 trainable linear parameters.
(B) Scatter plot of (x1, x2) values associated with 8 principal components after 1500 training steps.
These 8 principle components correspond to 16 trainable linear parameters. (C) Scatter plot of
(x1, x2) values associated with 4 principal components after 0 training steps. These 4 principle
components correspond to 8 trainable linear parameters. (D) Scatter plot of (x1, x2) values associated
with 4 principal components after 1500 training steps. These 4 principle components correspond to
8 trainable linear parameters.

Figure 6 illustrates the mutual test data overlaps in Hilbert space (i.e., | 〈x|x′〉 |2)
that correspond to the scatter plots from Figure 5. After training, the purple and yellow
tiles seem to have separated better when 8 principal components were used (Figure 6B)
compared to when 4 principal components were used (Figure 6D). In particular, there are
overall not as many ’lines’ of misassigned overlap running across the four grouped squares
in Figure 6B. This suggests that that the 8 principal component model is better at maximally
separating embedded test data in Hilbert space than the 4 principal component model and
is thus better at classifying new data. This aligns with the higher expressivity observed
within the 8 principal component clusters of Figure 5B. Not surprisingly, there appears
to be an optimal number of principal components for a given number of samples, which
yields the best embedding ability, model expressivity and generalizability.

Biomolecules 2022, 12, 1576 14 of 18

Figure 6. Gram matrices depicting mutual data overlap in Hilbert space (i.e., | 〈x|x′ 〉 |2) for 10 benign
and 10 malignant train and test samples from the breast cancer dataset. In each case, PCA was used to
reduce the number of features (and thus the number of trainable linear parameters). The stronger the
separation between the purple tiles (benign) and the yellow tiles (malignant), the better the model’s
ability to classify. A random seed of ’1’ was used for the train-test split of this data. The PennyLane
software package was used to train the embeddings [40]. (A) Mutual data overlap in Hilbert space for
test set datapoints at optimization step 0, using (x1, x2) values generated from 8 principal components.
(B) Mutual data overlap in Hilbert space for test set datapoints at optimization step 1500, using
(x1, x2) values generated from 8 principal components. (C) Mutual data overlap in Hilbert space for
test set datapoints at optimization step 0, using (x1, x2) values generated from 4 principal components.
(D) Mutual data overlap in Hilbert space for test set datapoints at optimization step 1500, using
(x1, x2) values generated from 4 principal components.

Summarised in Tables 2 and 3 are the results of training the hybrid model on the breast
cancer dataset in various ways. A different random seed (for creating a pseudo-random
pre-determined train-test split) was used for each table. Within each table, the random seed
of choice (and thus the specific train-test split) stays consistent. Table 3 also corresponds to
the results in Figures 3–6.

We emphasize that the differences between the results of Tables 2 and 3 come solely
from the differences in random seeds used. In both result sets, test set F1-score is maximized
and test cost is minimized when PCA is performed to produce 8 principal components.
Meanwhile, training cost is minimized when all 30 principal components are used (i.e., the
same as the initial number of features in the dataset). Test set precision and recall are
maximized at either 8 or 16 principal components in each case and are all much higher than
the Hymenoptera test set precision and recall scores from Table 1.

Based on our analysis of the breast cancer dataset, it is evident that lowering the
number of input features through PCA (thus lowering the number of trainable linear
parameters) reduces the level of overfitting by the trained hybrid model. This is observed in
the shrinking difference between training costs and test costs. This arises from increases in

Biomolecules 2022, 12, 1576 15 of 18

training costs and is sometimes coupled with decreases in test costs, as well as improvement
in test set F1-scores. However, when there are too few linear parameters, F1-scores and test
costs worsen again. This is consistent with the observations made relating to Figure 5B,D,
where a reduction in the number of features caused the clusters to be more linear (less
globular) in shape, pertaining to a decrease in expressivity.

For this particular dataset, reducing the 30 initial features to 8 principal components
(16 trainable linear parameters) seems to be the ideal compromise for good generalizability
in terms of minimizing overfitting while maximizing expressivity.

Table 2. Test set assessment outcomes for training performed on the UCI ML Breast Cancer Wisconsin
(Diagnostic) Dataset training set. Corresponding training costs are also given. In each row, training
was performed for 1500 iterations using the root mean squared propagation optimizer (step size of
0.01) and a batch size of 10. All values are given to four decimal places. The features in row 1 did
not undergo PCA, while the features from the rest of the rows did. A random seed of ’123’ was used
in each row, for both the train-test split and for all subsequent evaluations. The best value for each
column is shown in bold.

No. of Features Training Cost Test Cost Precision Recall F1-Score

30 0.1727 0.3623 0.9032 0.9790 0.9396
30 0.1465 0.3751 0.9091 0.9790 0.9428
16 0.2692 0.3023 0.9338 0.9860 0.9592
8 0.2757 0.2903 0.9226 1.0000 0.9597
4 0.2569 0.3440 0.9156 0.9860 0.9495
2 0.3953 0.3817 0.8981 0.9860 0.9400

Table 3. Test set assessment outcomes for training performed on the UCI ML Breast Cancer Wisconsin
(Diagnostic) Dataset training set. Corresponding training costs are also given. In each row, training
was performed for 1500 iterations using the root mean squared propagation optimizer (step size of
0.01) and a batch size of 10. All values are given to four decimal places. The features in row 1 did
not undergo PCA, while the features from the rest of the rows did. A random seed of ’1’ was used
in each row, both for the train-test split and for all subsequent evaluations. The best value for each
column is shown in bold.

No. of Features Training Cost Test Cost Precision Recall F1-Score

30 0.2026 0.2791 0.9205 0.9720 0.9456
30 0.1750 0.2899 0.9211 0.9790 0.9492
16 0.2201 0.3101 0.9281 0.9930 0.9595
8 0.2497 0.2646 0.9655 0.9790 0.9722
4 0.2885 0.2913 0.9467 0.9930 0.9693
2 0.3450 0.3306 0.9517 0.9650 0.9583

4. Discussion

We implemented the hybrid classical-quantum machine learning approach termed
quantum metric learning [26]. Specifically, we addressed the following gap: while the
approach was shown to separate training samples perfectly on a Hymenoptera dataset
containing images of ants and bees, the performance of the trained models on hold out test
data was not assessed. When using the same circuit, dataset and train-test split as seen
in Lloyd et al.’s paper [26], it was found that the resulting hybrid model severely overfits
the training data and generalizes poorly. While almost perfect Hilbert space-embedded
separation was achieved with the training data, the test data yielded very poor results with
an F1-score of only 0.5912. Reducing the number of linear parameters through principal
component analysis (PCA) produced even worse outcomes for both the training set and
the test set. This is likely due to a decrease in model expressivity. Specifically, a drop in
test set recall and F1-score was observed, along with a very steep increase in training cost.
The increase in training cost was so dramatic (from 0.0141 to ≥0.9700) that the training

Biomolecules 2022, 12, 1576 16 of 18

cost values became comparable to those of the test. After omitting the ResNet-18 step and
carrying out PCA directly on the pixel data, there were no improvements to the results. We
found that no method resulted in even modest generalizability for this dataset which had a
large number of features compared to the number of samples.

The breast cancer dataset consists of a significantly smaller number of features, while
having a greater number of total samples. Even without carrying out PCA, the trained
models seemed to generalize reasonably well for the test data, yielding high F1-scores of
0.9396 and 0.9456. However, there was still some evidence of overfitting, with training
costs of 0.1727 and 0.2026 being associated with much higher test costs of 0.3623 and 0.2791,
respectively. When PCA was performed on the initial features, resulting test set F1-scores
were always higher than that of their non-PCA counterpart, while differences between the
training costs and test costs were often much lower. Not surprisingly, we also found that
test costs and F1-scores tended to worsen again if the number of principal components
was too low. For the breast cancer dataset, the ideal balance of high expressivity and low
overfitting needed for good generalization was found to be at 8 principal components
(16 linear parameters). This yielded an F1-score as high as 0.9722 and a test cost as low as
0.2646 (with a similar training cost of 0.2497). Of course, the optimal number of principal
components would vary depending on the dataset.

Quantum metric learning models appear to follow the traditional bias-variance con-
straints, namely, good generalization results if the number of model parameters is signifi-
cantly lower than the number of training samples. The above requirements are fulfilled by
the breast cancer dataset, where there are 72 initial parameters (resulting from just 30 initial
features) and as many as 357 training samples. The initial 72 parameter model generalized
well and parameter reduction through PCA served to improve this generalization even
further, most notably after a reduction to just 28 model parameters. In contrast, the Hy-
menoptera dataset has as many as 1036 initial parameters (resulting from at least 512 initial
features) while having only 244 training samples; the initial 1036 parameter model general-
ized poorly and parameter reduction through PCA offered no significant improvement.

For future explorations, it would be insightful to vary the shape of the quantum
feature map (and thus the number of quantum parameters involved) and to assess the
subsequent effects this has on the expressivity and overfitting observed in any resulting
trained models. The quantum feature map can be varied both in its length (the number of
’horizontal’ repetitions of each gate) and its width (the number of qubits used). It could
be the case that varying the dimensions of the quantum feature map changes the ideal
ratio between the number of initial parameters and the number of samples to achieve good
generalization performance. It would also be valuable to explore methods of dimensional
reduction other than PCA, such as classical or quantum auto-encoding. Comparisons in
generalization performance and classification accuracy between quantum metric learning
and other methods of classification (using the breast cancer dataset, as well as a broad
range of other datasets) would also be insightful.

Author Contributions: Conceptualization, S.B.; methodology, J.K. and S.B.; software, J.K.; validation,
J.K.; formal analysis, J.K.; investigation, J.K. and S.B.; data curation, J.K.; writing—original draft
preparation, J.K. and S.B.; writing—review and editing, J.K. and S.B.; visualization, J.K.; supervision,
S.B.; project administration, S.B.; funding acquisition, S.B. All authors have read and agreed to the
published version of the manuscript.

Funding: S.B. was funded in part by the National Science Foundation grant number IIS-2106913.
GlaxoSmithKline paid the publication costs.

Data Availability Statement: The ImageNet Hymenoptera dataset can be accessed on Kaggle: https://
www.kaggle.com/datasets/melodytsekeni/hymenoptera-data, accessed on 21 October 2022. The Breast
Cancer Wisconsin (Diagnostic) Data Set can be accessed through UCI: https://archive.ics.uci.edu/
ml/datasets/breast+cancer+wisconsin+(diagnostic), accessed on 21 October 2022. The code used in
this manuscript can be accessed on GitHub: https://github.com/Rlag1998/QML_Generalization,
accessed on 21 October 2022.

https://www.kaggle.com/datasets/melodytsekeni/hymenoptera-data
https://www.kaggle.com/datasets/melodytsekeni/hymenoptera-data
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic)
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic)
https://github.com/Rlag1998/QML_Generalization

Biomolecules 2022, 12, 1576 17 of 18

Acknowledgments: We acknowledge the support of Fausto Artico and Kevin Harrigan from Glaxo-
SmithKline.

Conflicts of Interest: Stefan Bekiranov consults with GlaxoSmithKline on quantum computing and
quantum machine learning which does not represent a conflict of interest regarding the present manuscript.

Abbreviations
The following abbreviations are used in this manuscript:

QML quantum metric learning
PC principal component
PCA principal component analysis
KNN k-nearest neighbor

References
1. Preskill, J. The Physics of Quantum Information. arXiv 2022, arXiv:2208.08064.
2. Cao, Y.; Romero, J.; Olson, J.P.; Degroote, M.; Johnson, P.D.; Kieferová, M.; Kivlichan, I.D.; Menke, T.; Peropadre, B.; Sawaya,

N.P.D.; et al. Quantum Chemistry in the Age of Quantum Computing. Chem. Rev. 2019, 119, 10856–10915. PMID: 31469277.
[CrossRef] [PubMed]

3. Grover, L.K. A Fast Quantum Mechanical Algorithm for Database Search. In Proceedings of the Twenty-Eighth Annual ACM
Symposium on Theory of Computing; Association for Computing Machinery, New York, NY, USA, 3–5 May 1996; STOC ’96,
pp. 212–219.

4. Shor, P. Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings of the 35th Annual Symposium
on Foundations of Computer Science, Santa Fe, New Mexico, 20–22 November 1994; pp. 124–134.

5. Biamonte, J.; Wittek, P.; Pancotti, N.; Rebentrost, P.; Wiebe, N.; Lloyd, S. Quantum machine learning. Nature 2017, 549, 195.
[CrossRef] [PubMed]

6. Spagnolo, N.; Vitelli, C.; Sansoni, L.; Maiorino, E.; Mataloni, P.; Sciarrino, F.; Brod, D.J.; Galvão, E.F.; Crespi, A.; Ramponi, R.; et al.
General Rules for Bosonic Bunching in Multimode Interferometers. Phys. Rev. Lett. 2013, 111, 130503. [CrossRef] [PubMed]

7. Amin, M.H.; Andriyash, E.; Rolfe, J.; Kulchytskyy, B.; Melko, R. Quantum Boltzmann Machine. Phys. Rev. X 2018, 8, 021050
[CrossRef]

8. Kieferová, M.; Wiebe, N. Tomography and generative training with quantum Boltzmann machines. Phys. Rev. A 2017, 96, 062327.
[CrossRef]

9. Wiebe, N.; Braun, D.; Lloyd, S. Quantum Algorithm for Data Fitting. Phys. Rev. Lett. 2012, 109, 050505. [CrossRef]
10. Lloyd, S.; Mohseni, M.; Rebentrost, P. Quantum principal component analysis. Nat. Phys. 2014, 10, 631 . [CrossRef]
11. Wiebe, N.; Kapoor, A.; Svore, K.M. Quantum Deep Learning. arXiv 2014, arXiv:1412.3489.
12. Dunjko, V.; Taylor, J.M.; Briegel, H.J. Quantum-Enhanced Machine Learning. Phys. Rev. Lett. 2016, 117, 130501. [CrossRef]
13. Kapoor, A.; Wiebe, N.; Svore, K. Quantum perceptron models. In Proceedings of the Advances in Neural Information Processing

Systems, Barcelona, Spain, 5–10 December 2016; pp. 3999–4007.
14. Low, G.H.; Yoder, T.J.; Chuang, I.L. Quantum inference on Bayesian networks. Phys. Rev. A 2014, 89, 062315. [CrossRef]
15. Wiebe, N.; Granade, C. Can small quantum systems learn? arXiv 2015, arXiv:1512.03145.
16. Giovannetti, V.; Lloyd, S.; Maccone, L. Quantum Random Access Memory. Phys. Rev. Lett. 2008, 100, 160501. [CrossRef]
17. Rebentrost, P.; Mohseni, M.; Lloyd, S. Quantum Support Vector Machine for Big Data Classification. Phys. Rev. Lett. 2014, 113, 130503.

[CrossRef]
18. Preskill, J. Quantum Computing in the NISQ era and beyond. Quantum 2018, 2, 79. [CrossRef]
19. Schuld, M.; Fingerhuth, M.; Petruccione, F. Implementing a distance-based classifier with a quantum interference circuit. EPL

(Europhys. Lett.) 2017, 119, 60002. [CrossRef]
20. Havlícek, V.; Córcoles, A.D.; Temme, K.; Harrow, A.W.; Kandala, A.; Chow, J.M.; Gambetta, J.M. Supervised learning with

quantum-enhanced feature spaces. Nature 2019, 567, 209–212. [CrossRef]
21. Schuld, M.; Killoran, N. Quantum Machine Learning in Feature Hilbert Spaces. Phys. Rev. Lett. 2019, 122, 040504. [CrossRef]
22. Schuld, M. Supervised quantum machine learning models are kernel methods. arXiv 2021, arXiv:2101.11020.
23. Blank, C.; Park, D.K.; Rhee, J.K.K.; Petruccione, F. Quantum classifier with tailored quantum kernel. NPJ Quantum Inf. 2020, 6, 41.

[CrossRef]
24. Park, D.K.; Blank, C.; Petruccione, F. The theory of the quantum kernel-based binary classifier. Phys. Lett. 2020, 384, 126422.

[CrossRef]
25. Kathuria, K.; Ratan, A.; McConnell, M; Bekiranov, S. Implementation of a Hamming distance–like genomic quantum classifier

using inner products on ibmqx2 and ibmq_16_melbourne. Quantum Mach. Intell. 2020, 2, 7. [CrossRef]
26. Lloyd, S.; Schuld, M.; Ijaz, A.; Izaac, J.; Killoran, N. Quantum embeddings for machine learning. arXiv 2022, arXiv:2001.03622.
27. Thumwanit, N.; Lortaraprasert, C.; Yano, H.; Raymond, R. Trainable Discrete Feature Embeddings for Variational Quantum

Classifier. arXiv 2021, arXiv:2106.09415.

http://doi.org/10.1021/acs.chemrev.8b00803
http://www.ncbi.nlm.nih.gov/pubmed/31469277
http://dx.doi.org/10.1038/nature23474
http://www.ncbi.nlm.nih.gov/pubmed/28905917
http://dx.doi.org/10.1103/PhysRevLett.111.130503
http://www.ncbi.nlm.nih.gov/pubmed/24116759
http://dx.doi.org/10.1103/PhysRevX.8.021050
http://dx.doi.org/10.1103/PhysRevA.96.062327
http://dx.doi.org/10.1103/PhysRevLett.109.050505
http://dx.doi.org/10.1038/nphys3029
http://dx.doi.org/10.1103/PhysRevLett.117.130501
http://dx.doi.org/10.1103/PhysRevA.89.062315
http://dx.doi.org/10.1103/PhysRevLett.100.160501
http://dx.doi.org/10.1103/PhysRevLett.113.130503
http://dx.doi.org/10.22331/q-2018-08-06-79
http://dx.doi.org/10.1209/0295-5075/119/60002
http://dx.doi.org/10.1038/s41586-019-0980-2
http://dx.doi.org/10.1103/PhysRevLett.122.040504
http://dx.doi.org/10.1038/s41534-020-0272-6
http://dx.doi.org/10.1016/j.physleta.2020.126422
http://dx.doi.org/10.1007/s42484-020-00017-7

Biomolecules 2022, 12, 1576 18 of 18

28. Suzuki, Y.; Yano, H.; Gao, Q.; Uno, S.; Tanaka, T.; Akiyama, M.; Yamamoto, N. Analysis and synthesis of feature map for
kernel-based quantum classifier. Quantum Mach. Intell. 2019, 2, 9. [CrossRef]

29. García, D.P.; Cruz-Benito, J.; García-Peñalvo, F.J. Systematic Literature Review: Quantum Machine Learning and its applications.
arXiv 2022, arXiv:2201.04093.

30. Hubregtsen, T.; Wierichs, D.; Gil-Fuster, E.; Derks, P.J.H.S.; Faehrmann, P.K.; Meyer, J.J. Training Quantum Embedding Kernels on
Near-Term Quantum Computers. arXiv 2021, arXiv:2105.02276.

31. Wang, X.; Du, Y.; Luo, Y.; Tao, D. Towards understanding the power of quantum kernels in the NISQ era. Quantum 2021, 5, 531.
[CrossRef]

32. LaRose, R.; Coyle, B. Robust data encodings for quantum classifiers. Phys. Rev. 2020, 102, 032420. [CrossRef]
33. Easom-Mccaldin, P.; Bouridane, A.; Belatreche, A.; Jiang, R. On Depth, Robustness and Performance Using the Data Re-Uploading

Single-Qubit Classifier. IEEE Access 2021, 9, 65127–65139. [CrossRef]
34. Canatar, A.; Peters, E.; Pehlevan, C.; Wild, S.M.; Shaydulin, R. Bandwidth Enables Generalization in Quantum Kernel Models.

arXiv 2022, arXiv:2206.06686.
35. Caro, M.C.; Huang, H.Y.; Cerezo, M.; Sharma, K.; Sornborger, A.; Cincio, L.; Coles, P.J. Generalization in quantum machine

learning from few training data. Nat. Commun. 2022, 13, 4919. [CrossRef]
36. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the

2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.
37. Dua, D.; Graff, C. UCI Machine Learning Repository. 2019. Available online: http://archive.ics.uci.edu/ml (accessed on

1 August 2022).
38. Farhi, E.; Goldstone, J.; Gutmann, S. A Quantum Approximate Optimization Algorithm. arXiv 2014, arXiv:1411.4028.
39. Mari, A.; Bromley, T.R.; Izaac, J.; Schuld, M.; Killoran, N. Transfer learning in hybrid classical-quantum neural networks. arXiv

2019, arXiv:1912.08278.
40. Bergholm, V.; Izaac, J.; Schuld, M.; Gogolin, C.; Ahmed, S.; Ajith, V.; Alam, M.S.; Alonso-Linaje, G.; AkashNarayanan, B.; Asadi,

A.; et al. PennyLane: Automatic differentiation of hybrid quantum-classical computations. arXiv 2018, arXiv:1811.04968.
41. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:

An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32; Wallach,
H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2019;
pp. 8024–8035.

42. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg,
V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

http://dx.doi.org/10.1007/s42484-020-00020-y
http://dx.doi.org/10.22331/q-2021-08-30-531
http://dx.doi.org/10.1103/PhysRevA.102.032420
http://dx.doi.org/10.1109/ACCESS.2021.3075492
http://dx.doi.org/10.1038/s41467-022-32550-3
http://archive.ics.uci.edu/ml

	Introduction
	Materials and Methods
	Quantum Metric Learning Expressed as a Kernel-Based Quantum Model
	The Quantum Metric Learning Embedding Circuit
	Training the Quantum Metric Learning Models
	ImageNet Hymenoptera Dataset
	Training QML Models with Feature Extraction Using ResNet-18
	Training QML Models with Feature Extraction Using ResNet-18 Followed by PCA
	Training QML Models with Feature Extraction Using PCA

	UCI ML Breast Cancer Wisconsin (Diagnostic) Dataset
	Training QML Models Using All Input Features
	Training QML Models with Feature Extraction using PCA

	Assessing Quantum Metric Learning Model Performance

	Results
	Hymenoptera Dataset
	Breast Cancer Dataset

	Discussion
	References

