Fatty Acids Profile and Antioxidant Properties of Raw Fermented Sausages with the Addition of Tomato Pomace
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tomato Pomace (TP) Preparation and Analysis
2.1.1. Antioxidant Activity of TP
DPPH Radical Scavenging Activity
ABTS+ Radical Scavenging Activity
2.1.2. Total Phenolics Content (TPC)
2.2. Dry Fermented Sausage Preparation and Analysis
2.2.1. Chemical Composition
2.2.2. The Physicochemical Parameters (pH, and Water Activity)
2.2.3. Fatty Acid Profile Measurements
2.2.4. Color Measurements
2.2.5. Microbiological Analyses
2.2.6. Biogenic Amines (BAs) Determination
2.2.7. ABTS*+ Radical Scavenging Activity
2.2.8. DPPH Radical Scavenging Activity
2.3. Statistical Analysis
3. Results
3.1. Results for Tomato Pomace
Antioxidant Activity of TP
3.2. Characteristics of Raw Fermented Sausages
3.2.1. Chemical Composition
3.2.2. pH and Water Activity
3.2.3. Fatty Acid Profile
3.2.4. Color Parameters
3.2.5. Results of Microbiological Analysis
3.2.6. Content in Biogenic Amines (BAs)
3.2.7. Antioxidant Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ritchie, H.; Roser, M. Meat and Dairy Production. Our World in Data. 2019. Available online: https://ourworldindata.org/meat-production (accessed on 31 October 2022).
- Cunha, L.C.M.; Monteiro, M.L.G.; Lorenzo, J.M.; Munekata, P.E.S.; Muchenje, V.; de Carvalho, F.A.L.; Conte-Junior, C.A. Natural antioxidants in processing and storage stability of sheep and goat meat products. Food Res. Int. 2018, 111, 379–390. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Cao, D.; Chen, Z.; Chen, B.; Li, J.; Guo, J.; Wei, Q. Red and processed meat consumption and cancer outcomes: Umbrella review. Food Chem. 2021, 356, 129697. [Google Scholar] [CrossRef] [PubMed]
- Campbell-Platt, G. Fermented meats—A world perspective. In Fermented Meats, 1st ed.; Campbell-Platt, G., Cook, P.E., Eds.; Blackie Academic & Professional: New York, NY, USA, 1995; pp. 39–52. [Google Scholar]
- Karwowska, M.; Kononiuk, A.D.; Borrajo, P.; Lorenzo, J.M. Comparative Studies on the Fatty Acid Profile and Volatile Compounds of Fallow Deer and Beef Fermented Sausages without Nitrite Produced with the Addition of Acid Whey. Appl. Sci. 2021, 11, 1320. [Google Scholar] [CrossRef]
- Chen, Q.; Hu, Y.; Wen, R.; Wang, Y.; Qin, L.; Kong, B. Characterisation of the flavour profile of dry fermented sausages with different NaCl substitutes using HS-SPME-GC-MS combined with electronic nose and electronic tongue. Meat Sci. 2021, 172, 108338. [Google Scholar] [CrossRef] [PubMed]
- Bis-Souza, C.V.; Pateiro, M.; Domínguez, R.; Lorenzo, J.M.; Penna, A.L.B.; da Silva Barretto, A.C. Volatile profile of fermented sausages with commercial probiotic strains and fructooligosaccharides. J. Food Sci. Technol. 2019, 56, 5465–5473. [Google Scholar] [CrossRef]
- Manessis, G.; Kalogianni, A.I.; Lazou, T.; Moschovas, M.; Bossis, I.; Gelasakis, A.I. Plant-derived natural antioxidants in meat and meat products. Antioxidants 2020, 9, 1215. [Google Scholar] [CrossRef]
- Arslan, B.; Soyer, A. Effects of chitosan as a surface fungus inhibitor on microbiological, physicochemical, oxidative and sensory characteristics of dry fermented sausages. Meat Sci. 2018, 145, 107–113. [Google Scholar] [CrossRef]
- Gallego, M.; Mora, L.; Escudero, E.; Toldrá, F. Bioactive peptides and free amino acids profiles in different types of European dry-fermented sausages. Int. J. Food Microb. 2018, 276, 71–78. [Google Scholar] [CrossRef]
- Cao, C.C.; Feng, M.Q.; Sun, J.; Xu, X.L.; Zhou, G.H. Screening of lactic acid bacteria with high protease activity from fermented sausages and antioxidant activity assessment of its fermented sausages. CyTA-J. Food. 2019, 17, 347–354. [Google Scholar] [CrossRef] [Green Version]
- Yu, D.; Feng, M.Q.; Sun, J. Influence of mixed starters on the degradation of proteins and the formation of peptides with antioxidant activities in dry fermented sausages. Food Control 2021, 123, 107743. [Google Scholar] [CrossRef]
- Jayasena, D.D.; Jung, S.; Bae, Y.S.; Park, H.B.; Lee, J.H.; Jo, C. Comparison of the amounts of endogenous bioactive compounds in raw and cooked meats from commercial broilers and indigenous chickens. J. Food Compos. Anal. 2015, 37, 20–24. [Google Scholar] [CrossRef]
- Jayasena, D.D.; Jung, S.; Kim, S.H.; Kim, H.J.; Alahakoon, A.U.; Lee, J.H.; Jo, C. Endogenous functional compounds in Korean native chicken meat are dependent on sex, thermal processing and meat cut. J. Sci. Food Agric. 2015, 95, 771–775. [Google Scholar] [CrossRef] [PubMed]
- Purchas, R.W.; Rutherfurd, S.M.; Pearce, P.D.; Vather, R.; Wilkinson, B.H.P. Concentrations in beef and lamb of taurine, carnosine, coenzyme Q10, and creatine. Meat Sci. 2004, 66, 629–637. [Google Scholar] [CrossRef]
- Andrés, A.I.; Petrón, M.J.; Delgado-Adámez, J.; López, M.; Timón, M.L. Effect of tomato pomace extracts on the shelf-life of modified atmosphere-packaged lamb meat. J. Food Process. Pres. 2017, 41, e13018. [Google Scholar] [CrossRef]
- Purriños, L.; Bermúdez, R.; Franco, D.; Carballo, J.; Lorenzo, J.M. Development of volatile compounds during the manufacture of dry-cured “Lacón,” a Spanish traditional meat product. J. Food Sci. 2011, 76, 89–97. [Google Scholar] [CrossRef]
- Karre, L.; López, K.; Getty, J.J. Natural antioxidants in meat and poultry products. Meat Sci. 2013, 94, 220–227. [Google Scholar] [CrossRef]
- Honikel, K.O. The use and control of nitrate and nitrite for the processing of meat products. Meat Sci. 2008, 78, 68–76. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, C.; Han, W.; Zhang, J.; Hou, J. Analysis of the monitoring status of residual nitrite in meat products in China from 2000 to 2011. Meat Sci. 2018, 136, 30–34. [Google Scholar] [CrossRef]
- Asioli, D.; Aschemann-Witzel, J.; Caputo, V.; Vecchio, R.; Annunziata, A.; Næs, T.; Varela, P. Making sense of the “clean label” trends: A review of consumer food choice behavior and discussion of industry implications. Food Res. Int. 2017, 99, 58–71. [Google Scholar] [CrossRef]
- de Andrade Lima, M.; Kestekoglou, I.; Charalampopoulos, D.; Chatzifragkou, A. Supercritical Fluid Extraction of Carotenoids from Vegetable Waste Matrices. Molecules 2019, 24, 466. [Google Scholar] [CrossRef]
- Hygreeva, D.; Pandey, M.C.; Radhakrishna, K. Potential applications of plant based derivatives as fat replacers, antioxidants and antimicrobials in fresh and processed meat products. Meat Sci. 2014, 98, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Giovanelli, G.; Paradiso, A. Stability of dried and intermediate moisture tomato pulp during storage. J. Agric. Food Chem. 2002, 50, 7277–7281. [Google Scholar] [CrossRef] [PubMed]
- Shao, D.; Atungulu, G.G.; Pan, Z.; Yue, T.; Zhang, A.; Fan, Z. Characteristics of isolation and functionality of protein from tomato pomace produced with different industrial processing methods. Food Bioprocess Technol. 2014, 7, 532–541. [Google Scholar] [CrossRef]
- Ruiz Celma, A.; Cuadros, F.; López-Rodríguez, F. Characterisation of industrial tomato by-products from infrared drying process. Food Bioprod. Process. 2009, 87, 282–291. [Google Scholar] [CrossRef]
- Toor, R.K.; Savage, G.P. Antioxidant activity in different fractions of tomatoes. Food Res. Int. 2005, 38, 487–494. [Google Scholar] [CrossRef]
- Ferreres, F.; Taveira, M.; Pereira, D.M.; Valentão, P.; Andrade, P.B. Tomato (Lycopersicon esculentum) seeds: New flavonols and cytotoxic effect. J. Agric. Food Chem. 2010, 58, 2854–2861. [Google Scholar] [CrossRef]
- Omoni, A.O.; Aluko, R.E. The anti-carcinogenesis and anti- atherogenic effects of lycopene: A review. Trends Food Sci. Technol. 2005, 16, 344–350. [Google Scholar] [CrossRef]
- Calvo, M.M.; Garcia, M.L.; Selgas, M.D. Dry fermented sausages enriched with lycopene from tomato peel. Meat Sci. 2008, 80, 167–172. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, J.; Gao, R.; Ye, F.; Zhao, G. Sustainable valorisation of tomato pomace: A comprehensive review. Trends Food Sci. Technol. 2019, 86, 172–187. [Google Scholar] [CrossRef]
- Taveira, M.; Silva, L.R.; Vale-Silva, L.A.; Pinto, E.; Valentão, P.; Ferreres, F. Lycopersicon esculentum Seeds: An industrial byproduct as an antimicrobial agent. J. Agric. Food Chem. 2010, 58, 9529–9536. [Google Scholar] [CrossRef]
- Candogan, K. The effect of tomato paste on some quality characteristics of beef patties during refrigerated storage. Eur. Food Res. Technol. 2002, 215, 305–309. [Google Scholar] [CrossRef]
- Sánchez-Escalante, A.; Torrescano, G.; Djenane, D.; Beltran, J.A.; Roncales, P. Stabilisation of colour and odour of beef patties by using lycopene-rich tomato and peppers as a source of antioxidants. J. Sci. Food Agric. 2003, 83, 187–194. [Google Scholar] [CrossRef]
- Eyiler, E.; Oztan, A. Production of frankfurters with tomato powder as a natural additive. LWT-Food Sci. Technol. 2011, 44, 307–311. [Google Scholar] [CrossRef]
- Wang, Q.; Xiong, Z.; Li, G.; Zhao, X.; Wu, H.; Ren, Y. Tomato peel powder as fat replacement in low-fat sausages: Formulations with mechanically crushed powder exhibit higher stability than those with air flow ultra-microcrushed powder. Eur. J. Lipid Sci. Technol. 2016, 118, 175–184. [Google Scholar] [CrossRef]
- Azabou, S.; Abid, Y.; Sebii, H.; Felfoul, I.; Gargouri, A.; Attia, H. Potential of the solid-state fermentation of tomato by products by Fusarium solani pisi for enzymatic extraction of lycopene. LWT-Food Sci. Technol. 2016, 68, 280–287. [Google Scholar] [CrossRef]
- Mirabella, N.; Castellani, V.; Sala, S. Current options for the valorization of food manufacturing waste: A review. J. Clean. Prod. 2014, 65, 28–41. [Google Scholar] [CrossRef] [Green Version]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 5–30. [Google Scholar] [CrossRef]
- Vinha, A.F.; Alves, R.C.; Barreira, S.V.P.; Castro, A.; Costa, A.S.G.; Beatriz, M.; Oliveira, P.P. Effect of peel and seed removal on the nutritional value and antioxidant activity of tomato (Lycopersicon esculentum L.) fruits. LWT-Food Sci. Technol. 2014, 55, 197–202. [Google Scholar] [CrossRef] [Green Version]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Tarko, T.; Duda-Chodak, A.; Bebak, A. Biological activity of selected fruit and vegetables. Food. Sci. Technol. Qual. 2012, 4, 55–65. [Google Scholar]
- Gaafar, A.A.; Salama, Z.; Asker, M.; Bagato, O. In-vitro, Antiviral, Antimicrobial and Antioxidant Potential Activity of Tomato pomace. Int. J. Pharm. Sci. Rev. Res. 2015, 32, 262–272. [Google Scholar]
- Cicco, N.; Lanorte, M.; Paraggio, M.; Viggiano, M. A reproductible, rapid and inexpensive Folin-Ciocalteu micro-method in determining phenolic of plant methanol extract. Microchem. J. 2009, 91, 107–110. [Google Scholar] [CrossRef]
- Azabou, S.; Sebiia, H.; Ben Taheurb, F.; Abida, Y.; Jridic, M.; Nasric, M. Phytochemical profile and antioxidant properties of tomato by-products as affected by extraction solvents and potential application in refined olive oils. Food Biosci. 2020, 36, 100664. [Google Scholar] [CrossRef]
- Commission Regulation (EU). No. 1129/2011 of 11 November 2011 amending Annex II to Regulation (EC) No. 1333/2008 of the European Parliament and of the Council by establishing a Union list of food additives. J. Eur. Union. 2011, 295, 1–177. [Google Scholar]
- Association of Official Analytical Chemists [AOAC]. Official Methods of Analysis, 18th ed.; AOAC: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Folch, J.; Lees, M.; Sloane-Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- AMSA. Meat Color Measurements Guidelines; American Meat Science Association: Savoy, IL, USA, 2012. [Google Scholar]
- Commision Internationale de l’Eclairage. Recommendations on Uniform Colour Spaces, Colour Difference Equations, Psychometric Color Terms; Supplement No. 2; Bureal Central de la CIE: Paris, France, 1978. [Google Scholar]
- Mokrzycki, W.S.; Tatol, M. Color difference ∆E—A survey. In Proceedings of the Machine Graphic & Vision, Warsaw, Poland, 24–26 September 2012. [Google Scholar]
- Jung, S.; Choe, J.; Kim, B.; Yun, H.; Kruk, Z.A.; Jo, C. Effect of dietary mixture of gallic acid and linoleic acid on antioxidative potential and quality of breast meat from broilers. Meat Sci. 2010, 86, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Ferysiuk, K.; Wójciak, K.M.; Materska, M. Phytochemical profile of Silybum marianum (L.) Gaertn. and Graminis rhizoma and its influence on the bioactivity and shelf life of industrially produced pâtè. Int. J. Food Sci. Technol. 2020, 55, 1586–1598. [Google Scholar] [CrossRef]
- Erel, O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 2004, 37, 277–285. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant determination by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- George, B.; Kaur, C.; Khurdiya, D.S.; Kapoor, H.C. Antioxidants in tomato (Lycopersium esculentum) as a function of genotype. Food Chem. 2004, 84, 45–51. [Google Scholar] [CrossRef]
- Valverde, V.G.; González, I.N.; Alonso, J.G.; Periago, M.J. Antioxidant bioactive compounds in selected industrial processing and fresh consumption tomato cultivars. Food Bioprocess Technol. 2013, 6, 391–402. [Google Scholar] [CrossRef]
- Rehal, J.K.; Aggarwal, P.; Dhaliwal, I.; Szarma, M.; Kaushik, P.A. Tomato Pomace Enriched Gluten-Free Ready-to-Cook Snack’s Nutritional Profile, Quality, and Shelf Life Evaluation. Horticulturae 2022, 8, 403. [Google Scholar] [CrossRef]
- Tarko, T.; Sobusiak, J.; Duda-Chodak, A. Ways of using waste from the fruit and vegetable industry. Ferment. Ind. 2009, 3, 32–34. [Google Scholar]
- Luisa García, M.; Calvo, M.M.; Dolores Selgas, M. Beef hamburgers enriched in lycopene using dry tomato peel as an ingredient. Meat Sci. 2009, 83, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.S.; Jin, S.K.; Yang, M.R.; Chu, G.M.; Park, J.H.; Rashid, R.H.I.; Kim, J.Y.; Kang, S.N. Efficacy of tomato powder as antioxidant in cooked pork patties. Asian-Australas. J. Anim. Sci. 2013, 26, 1339–1346. [Google Scholar] [CrossRef] [Green Version]
- Savadkoohi, S.; Hoogenkamp Shamsi, K.; Farahnaky, A. Color, sensory and textural attributes of beef frankfurter, beef ham and meat-free sausage containing tomato pomace. Meat Sci. 2014, 97, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Ghafouri-Oskuei, H.; Javadi, A.; Reza Saeidi Asl, M.; Azadmard-Damirchi, S.; Armin, M. Quality properties of sausage incorporated with flaxseed and tomato powders. Meat Sci. 2020, 161, 107957. [Google Scholar] [CrossRef]
- Andrés, A.I.; Petrón, M.J.; Adámez, J.D.; López, M.; Timón, M.L. Food by-products as potential antioxidant and antimicrobial additives in chill stored raw lamb patties. Meat Sci. 2017, 129, 62–70. [Google Scholar] [CrossRef]
- Saksomboon, K.; Meemookich, S.; Kaewsaad, T.; Limroongreungrat, K.; Theprugsa, P. Effect of tomato powder on quality of Chinese sausage. Int. J. Agric. Technol. 2020, 16, 711–720. [Google Scholar]
- Teye, G.A.; Wood, J.D.; Whittington, F.M.; Stewart, A.; Sheard, P.R. Influence of dietary oils and protein level on pork quality. 2. Effects on properties of fat and processing characteristics of bacon and frankfurter-style sausages. Meat Sci. 2006, 73, 166–177. [Google Scholar] [CrossRef]
- Karwowska, M.; Dolatowski, Z.J. Effect of acid whey and freeze-dried cranberries on lipid oxidation and fatty acid composition of nitrite-/nitrate-free fermented sausage made from deer meat. Asian-Australas. J. Anim. Sci. 2017, 30, 85–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deraz, S.F.; Khalil, A.A. A model system for conversion of metmyoglobin to bright red myoglobin derivatives in organic sausages using potential probiotic lactic acid bacteria. South Asian J. Life Sci. 2018, 6, 22–35. [Google Scholar]
- Mladenović, K.G.; Grujović, M.Ž.; Kiš, M.; Furmeg, S.; Jaki Tkalec, V.; Stefanović, O.D.; Kocić-Tanackov, S.D. Enterobacteriaceae in food safety with an emphasis on raw milk and meat. Appl. Microbiol. Biotechnol. 2021, 105, 8615–8627. [Google Scholar] [CrossRef] [PubMed]
- Borrajo, P.; Karwowska, M.; Stasiak, D.M.; Lorenzo, J.M.; Żyśko, M.; Solska, E. Comparison of the Effect of Enhancing Dry Fermented Sausages with Salvia hispanica and Nigella sativa Seed on Selected Physicochemical Properties Related to Food Safety during Processing. Appl. Sci. 2021, 11, 9181. [Google Scholar] [CrossRef]
- Bazargani-Gilani, B.; Aliakbarl, J.; Tajik, H. Effect of pomegranate juice dipping and chitosan coating enriched with Zataria multiflora Boiss essential oil on the shelf-life of chicken meat during refrigerated storage. Innov. Food Sci. Emerg. Technol. 2015, 29, 280–287. [Google Scholar] [CrossRef]
- dos Santos Cruxen, C.E.; Graciele, C.; Funck, D.; Haubert, L.; da Silva Dannenber, D.; de Lima Marques, J.; Chaves, F.C.; Silvaab, W.P.; Fiorentini, A.M. Selection of native bacterial starter culture in the production of fermented meat sausages: Application potential, safety aspects, and emerging technologies. Food Res. Int. 2019, 122, 371–382. [Google Scholar] [CrossRef]
- Vieco-Saiz, N.; Belguesmia, Y.; Raspoet, R.; Auclair, E.; Gancel, F.; Kempf, I.; Drider, D. Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Front. Microbiol. 2019, 10, 57. [Google Scholar] [CrossRef] [Green Version]
- Reis, J.; Paula, A.; Casarotti, S.; Penna, A. Lactic acid bacteria antimicrobial compounds: Characteristics and applications. Food Eng. Rev. 2012, 4, 124–140. [Google Scholar] [CrossRef]
- Doeun, D.; Davaatseren, M.; Myung-Sub, C. Biogenic amines in foods. Food Sci. Biotechnol. 2017, 26, 1463–1474. [Google Scholar] [CrossRef]
- Świder, O.; Roszko, M.Ł.; Wójcicki, M.; Szymczyk, K. Biogenic Amines and Free Amino Acids in Traditional Fermented Vegetables-Dietary Risk Evaluation. J. Agric. Food Chem. 2020, 68, 856–868. [Google Scholar] [CrossRef]
- Linares, D.M.; Martín, M.C.; Ladero, V.; Álvarez, M.A.; Fernández, M. Biogenic amines in dairy products. Crit. Rev. Food Sci. Nutr. 2011, 51, 691–703. [Google Scholar] [CrossRef] [PubMed]
- Latorre-Moratalla, M.; Bover-Cid, S.; Veciana-Nogués, M.T.; Vidal-Carou, M.C. Control of biogenic amines in fermented sausages: Role of starter cultures. Front. Microbiol. 2012, 3, 169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kononiuk, A.D.; Karwowska, M. Comparison of selected parameters related to food safety of fallow deer and beef uncured fermented sausages with freeze-dried acid whey addition. Meat Sci. 2020, 161, 108015. [Google Scholar] [CrossRef]
- De Mey, E.; De Klerck, K.; De Maere, H.L.; Derdelinckx, G.; Peeters, M.-C.; Fraeye, I.; Heyden, Y.V.; Paelinck, H. The occurrence of N-nitrosamines, residual nitrite and biogenic amines in commercial dry fermented sausages and evaluation of their occasional relation. Meat Sci. 2014, 96, 821–828. [Google Scholar] [CrossRef] [PubMed]
- Grootveld, M.; Percival, B.C.; Zhang, J. Extensive chemometric investigations of distinctive patterns and levels of biogenic amines in fermented foods: Human health implications. Foods 2020, 9, 1807. [Google Scholar] [CrossRef]
- Faustino, M.; Veiga, M.; Sousa, P.; Costa, E.M.; Silva, S.; Pintado, M. Agro-Food byproducts as a new source of natural food additives. Molecules 2019, 24, 1056. [Google Scholar] [CrossRef]
- Riazi, F.; Zeynali, F.; Hoseini, E.; Behmadi, H.; Savadkoohi, S. Oxidation phenomena and color properties of grape pomace on nitrite-reduced meat emulsion systems. Meat Sci. 2016, 121, 350–358. [Google Scholar] [CrossRef]
- Ramli, A.N.M.; Manap, N.W.A.; Bhuyar, P.; Azelee, N.I.W. Passion fruit (Passiflora edulis) peel powder extract and its application towards antibacterial and antioxidant activity on the preserved meat products. Appl. Sci. 2020, 2, 1748. [Google Scholar] [CrossRef]
Properties | Freeze-Dried TP |
---|---|
DPPH [mg Trolox eqv. g−1] | 0.120 ± 0.004 |
ABTS [mg Trolox eqv. g−1] | 0.112 ± 0.007 |
TPC [mg gallic acid eqv. g−1] | 4.080 ± 0.167 |
Compound | SK | STP 0.5% | STP 1% | STP 1.5% |
---|---|---|---|---|
Fat | 22.23 ± 0.02 a | 24.80 ± 0.01 c | 24.46 ± 0.01 d | 23.00 ± 0.02 b |
Protein | 33.88 ± 0.02 c | 31.85 ± 0.02 a | 31.88 ± 0.02 a | 33.74 ± 0.01 b |
Moisture | 37.87 ± 0.10 c | 37.10 ± 0.04 b | 37.04 ± 0.07 b | 36.21 ± 0.11 a |
Collagen | 2.54 ± 0.23 a | 2.74 ± 0.46 ab | 3.21 ± 0.22 ab | 3.39 ± 0.29 b |
Salt | 4.00 ± 0.15 a | 3.90 ± 0.04 a | 3.82 ± 0.12 a | 3.80 ± 0.09 a |
Properties | SK | STP 0.5% | STP 1% | STP 1.5% |
---|---|---|---|---|
pH | 4.71 ± 0.14 | 4.68 ± 0.01 | 4.71 ± 0.01 | 4.71 ± 0.02 |
Water activity | 0.888 ± 0.006 | 0.892 ± 0.002 | 0.890 ± 0.003 | 0.885 ± 0.007 |
Compound | SK | STP 0.5% | STP 1% | STP 1.5% |
---|---|---|---|---|
SFA | 9.43 ± 0.08 b | 10.44 ± 0.08 c | 10.3 ± 0.11 c | 8.1 ± 0.13 a |
MUFA | 9.98 ± 0.11 b | 10.97 ± 0.07 c | 10.83 ± 0.16 c | 8.44 ± 0.11 a |
PUFA | 2.07 ± 0.05 b | 2.48 ± 0.02 c | 2.45 ± 0.09 c | 1.91 ± 0.01 a |
n-3 | 0.09 ± 0.01 a | 0.12 ± 0.01 b | 0.12 ± 0.01 b | 0.09 ± 0.00 a |
n-6 | 1.98 ± 0.04 b | 2.35 ± 0.01 c | 2.33 ± 0.09 c | 1.82 ± 0.01 a |
Color Parameter | SK | STP 0.5% | STP 1% | STP 1.5% |
---|---|---|---|---|
L* | 50.12 ± 5.09 ab | 51.63 ± 3.36 b | 49.77 ± 2.78 ab | 45.55 ± 1.21 a |
a* | 9.76 ± 2.15 a | 11.48 ± 2.38 ab | 13.31 ± 1.45 bc | 15.72 ± 0.84 c |
b* | 6.64 ± 1.18 a | 9.64 ± 1.81 b | 10.73 ± 1.36 bc | 12.36 ± 1.04 c |
∆E | 3.77 | 5.41 | 9.49 |
Bacteria | SK | STP 0.5% | STP 1% | STP 1.5% |
---|---|---|---|---|
Enterobacteriaceae [log CFU g−1] | 3.02 ± 0.06 c | 3.15 ± 0.09 c | 2.46 ± 0.15 b | 1.74 ± 0.22 a |
Lactic acid bacteria [log CFU g−1] | 8.60 ± 0.06 ab | 8.77 ± 0.01 c | 8.57 ± 0.05 a | 8.74 ±0.08 bc |
E. coli [log CFU g−1] | <10 | <10 | <10 | <10 |
Compound | SK | STP 0.5% | STP 1% | STP 1.5% |
---|---|---|---|---|
Tyramine | 38.00 ± 3.00 a | 41.30 ± 1.50 a | 45.70 ± 1.20 a | 38.30 ± 4.70 a |
Putrescine | 53.30 ± 5.80 c | 37.00 ± 3.00 b | 26.3 ± 1.20 a | 24.3 ± 1.50 a |
Cadaverine | 86.70 ± 4.60 a | 105.00 ± 2.60 b | 110.70 ± 6.80 b | 104.30 ± 3.10 b |
Spermidine | 2.70 ± 0.60 a | 3.00 ± 0.00 a | 3.00 ± 0.00 a | 3.30 ± 0.60 a |
Agmatine | 0.70 ± 1.20 a | 4.30 ± 0.60 ab | 5.30 ± 0.60 b | 3.30 ± 2.90 ab |
Spermine | 15.00 ± 1.00 a | 13.70 ± 1.50 a | 12.30 ± 3.80 a | 13.00 ± 2.60 a |
Total | 197.00 ± 13.20 a | 204.30 ± 9.50 a | 203.30 ± 8.00 a | 186.00 ± 7.50 a |
Properties | SK | STP 0.5% | STP 1% | STP 1.5% |
---|---|---|---|---|
DPPH [mg Trolox eqv. g−1] | 0.069 ± 0.006 a | 0.085 ± 0.004 b | 0.095 ± 0.003 bc | 0.102 ± 0.001 c |
ABTS [mg Trolox eqv. g−1] | 0.069 ± 0.001 a | 0.102 ± 0.001 b | 0.121 ± 0.001 c | 0.139 ± 0.001 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skwarek, P.; Karwowska, M. Fatty Acids Profile and Antioxidant Properties of Raw Fermented Sausages with the Addition of Tomato Pomace. Biomolecules 2022, 12, 1695. https://doi.org/10.3390/biom12111695
Skwarek P, Karwowska M. Fatty Acids Profile and Antioxidant Properties of Raw Fermented Sausages with the Addition of Tomato Pomace. Biomolecules. 2022; 12(11):1695. https://doi.org/10.3390/biom12111695
Chicago/Turabian StyleSkwarek, Patrycja, and Małgorzata Karwowska. 2022. "Fatty Acids Profile and Antioxidant Properties of Raw Fermented Sausages with the Addition of Tomato Pomace" Biomolecules 12, no. 11: 1695. https://doi.org/10.3390/biom12111695
APA StyleSkwarek, P., & Karwowska, M. (2022). Fatty Acids Profile and Antioxidant Properties of Raw Fermented Sausages with the Addition of Tomato Pomace. Biomolecules, 12(11), 1695. https://doi.org/10.3390/biom12111695