The Ethnopharmacological Uses, Metabolite Diversity, and Bioactivity of Rhaponticum uniflorum (Leuzea uniflora): A Comprehensive Review
Abstract
:1. Introduction
2. Review Strategy
3. Ethnopharmacology
Plant Part | Locality | Traditional Use | Ref. |
---|---|---|---|
Roots | China | Anti-inflammatory, antipyretic, detoxifier, antitumor, lactation remedy | [7] |
Flowers | China | Relieving burning pain, clearing heat, detoxifying remedy | [9] |
Buryatia | Anti-inflammatory remedy at stomach deseases, gastroenteritis, pneumonia, bronchitis, tuberculosis | [10,11] | |
Tibet | Remedy for cleansing wounds and ulcers, indigestion, stomach and lung diseases, to treat skin diseases (boils, carbuncles), mastitis, rheumatoid arthritis | [12,13,14] | |
Herb | Mongolia | Anti-inflammatory remedy, increasing the vitality of the body | [15] |
Buds | Korea | Anti-inflammatory, detoxifier, antipyretic, and analgesic agent | [8] |
4. Metabolite Diversity
4.1. Sesquiterpenes
No | Compound | Formula | MW * | Herb | Leaves | Flowers | Seeds | Roots |
---|---|---|---|---|---|---|---|---|
Sesquiterpenes | ||||||||
1 | Rhaponticol | C15H24O3 | 252 | [17] | ||||
2 | Parthenolide | C15H20O3 | 248 | [9] | ||||
3 | Cynaropicrin | C19H22O6 | 364 | [18] | [19] | [19] | [19] | [19] |
4 | Cynaropicrin, desacyl- | C15H18O4 | 262 | [19] | ||||
5 | Cynaropicrin, 4′-deoxy- (aguerin B) | C19H22O5 | 330 | [18] | [19] | [19] | [19] | [19] |
6 | Repin | C19H22O7 | 362 | [19] | ||||
7 | Repin, 15-desoxy- (salograviolide C) | C17H20O6 | 320 | [18] | [19] | [19] | ||
8 | Repin, 8-desacyl- | C15H18O5 | 278 | [19] | ||||
9 | Janerin | C19H22O7 | 362 | [19] | ||||
10 | Janerin, 19-desoxy- | C19H22O6 | 346 | [19] | ||||
11 | Janerin, chloro- | C19H23ClO7 | 398.5 | [19] | ||||
12 | Repdiolide | C19H22O6 | 346 | [19] | ||||
13 | Chlorohyssopifolin A (centaurepensin, hyrcanin) | C19H24Cl2O7 | 435 | [19] | [20] | |||
14 | Chlorohyssopifolin E | C19H25ClO8 | 416 | [19] | ||||
Diterpenes | ||||||||
15 | Diosbulbin B | C19H20O6 | 344 | [21] | ||||
16 | Abietic acid | C20H30O2 | 302 | [9] | ||||
17 | Phytol | C20H40O | 296 | [6] | ||||
Triterpenes | ||||||||
18 | Ajugasteron C | C27H44O7 | 480 | [6] | [22] | [23,24,25] | ||
19 | Ajugasteron C 20,22-acetonide | C30H48O7 | 520 | [22] | [23,24,25] | |||
20 | Ajugasteron C 2,3;20,22-diacetonide | C33H52O7 | 560 | [22] | [23,24,26] | |||
21 | 5-Deoxycaladasterone (dacryhainansterone) | C27H42O6 | 462 | [22] | [27] | |||
22 | 5-Deoxycaladasterone (dacryhainansterone) 20,22-acetonide | C30H46O6 | 502 | [22] | [27] | [16,17] | ||
23 | 2-Deoxyecdysone | C27H44O5 | 448 | [22] | ||||
24 | 25-Deoxyecdysone | C27H44O5 | 448 | [22] | ||||
25 | 2-Deoxy-20-hydroxyecdysone | C27H44O6 | 464 | [28] | [22] | [29] | [28] | |
26 | Ecdysone | C27H44O6 | 464 | [6] | ||||
27 | 11α-Hydroxyecdysone | C27H44O7 | 480 | [23] | ||||
28 | 20-Hydroxyecdysone | C27H44O7 | 480 | [7,28,30] | [22] | [27] | [29] | [7,23,24,25,31,32] |
29 | 20-Hydroxyecdysone 2-O-acetate | C29H46O8 | 522 | [22] | ||||
30 | 20-Hydroxyecdysone 3-O-acetate | C29H46O8 | 522 | [22] | [27] | |||
31 | 20-Hydroxyecdysone 25-O-acetate (viticosterone E) | C29H46O8 | 522 | [6] | ||||
32 | 20-Hydroxyecdysone 20,22-acetonide | C30H48O7 | 520 | [6] | [22] | [27] | ||
33 | 20-Hydroxyecdysone 2,3;20,22-diacetonide | C33H52O7 | 560 | [22] | ||||
34 | 20-Hydroxyecdysone 3-O-glucoside | C33H54O12 | 642 | [6] | ||||
35 | 20-Hydroxyecdysone 25-O-glucoside | C33H54O12 | 642 | [6] | ||||
36 | 20-Hydroxyecdysone 2-O-cinnamate | C36H50O8 | 610 | [33] | ||||
37 | 29-Hydroxy-24(28)-dehydromakisterone C | C29H46O8 | 522 | [22] | ||||
38 | Inokosterone (callinecdysone A) | C27H44O7 | 480 | [22] | [27] | |||
39 | Inokosterone 20,22-acetonide | C30H48O7 | 520 | [22] | ||||
40 | Inokosterone 20,22-acetonide 25-O-acetate | C32H50O8 | 562 | [22] | ||||
41 | Integristerone A | C27H44O8 | 496 | [28] | [22] | [28] | ||
42 | Integristerone A 20,22-acetonide | C30H48O8 | 536 | [22] | [27] | |||
43 | Makisterone C (podecdysone A, lemmasterone) | C29H48O7 | 508 | [22] | ||||
44 | Makisterone C 20,22-acetonide | C32H52O7 | 548 | [27] | [27] | |||
45 | Polypodine B | C27H44O8 | 496 | [22] | ||||
46 | Polypodine B 20,22-acetonide | C30H48O8 | 536 | [27] | ||||
47 | Polypodine B 2-O-cinnamate | C36H50O9 | 626 | [33] | ||||
48 | Ponasterone A | C27H44O6 | 464 | [22] | ||||
49 | Rapisterone C | C29H48O7 | 508 | [23] | ||||
50 | Rhapontisterone (punisterone) | C27H44O8 | 496 | [7] | [22] | [7,23,31,32] | ||
51 | Rhapontisterone R1 | C29H42O9 | 534 | [32] | ||||
52 | Rubrosterone | C19H26O5 | 334 | [6] | ||||
53 | Turkesterone | C27H44O8 | 496 | [7,30] | [22] | [7,31] | ||
54 | Turkesterone 20,22-acetonide | C30H48O8 | 536 | [22] | ||||
55 | Turkesterone 2-O-cinnamate | C36H50O9 | 626 | [33] | ||||
56 | Uniflorsterone | C27H44O7 | 480 | [34] | ||||
57 | Roburic acid | C30H48O2 | 440 | [9] | ||||
58 | Urs-12-en-3-one (α-amyrenone) | C30H48O | 424 | [35] | ||||
59 | Urs-12-en-3β-ol (α-amyrin) | C30H50O | 426 | [35] | [35] | |||
60 | 3-Oxo-urs-12-en-24-oic acid methyl ester | C31H48O3 | 468 | [35] | ||||
61 | 3β-Hydroxy-urs-12-en-28-oic acid (ursolic acid) | C30H48O3 | 456 | [35] | [25,36,37] | |||
62 | 3β-Hydroxy-urs-12,18(19)-dien-28-oic acid 28-O-glucoside | C36H56O8 | 616 | [25] | ||||
63 | 3β-Hydroxy-urs-12,18(19)-dien-28-oic acid 3-O-arabinoside-28-O-glucoside | C41H64O12 | 748 | [25] | ||||
64 | 3β-Hydroxy-urs-12,18(19)-dien-28-oic acid 3,28-di-O-glucoside | C42H66O13 | 778 | [38] | ||||
65 | 3β-Hydroxy-urs-9(11),12-dien-28-oic acid 3-O-arabinoside-28-O-glucoside (unifloroside) | C41H64O12 | 748 | [39] | ||||
66 | 3β-Hydroxy-urs-12,19(29)-dien-28-oic acid 28-O-glucoside | C36H56O8 | 616 | [25] | ||||
67 | 3β-Hydroxy-urs-12,19(29)-dien-28-oic acid 3,28-di-O-glucoside | C42H66O13 | 778 | [38] | ||||
68 | 3β,19α-Dihydroxy-urs-12-en-28-oic acid (pomolic acid) | C30H48O4 | 472 | [25,40] | ||||
69 | Pomolic acid 28-O-glucoside | C36H58O9 | 634 | [25,39] | ||||
70 | Pomolic acid 3-O-arabinoside-28-O-glucoside (ziyuglycoside I) | C41H66O13 | 766 | [25,39] | ||||
71 | Pomolic acid 3-O-arabinoside (ziyuglycoside II) | C35H56O8 | 604 | [25,39] | ||||
72 | 3-Oxo-19α-hydroxy-urs-12-en-28-oic acid | C30H46O4 | 470 | [25,36,40] | ||||
73 | 2α,3β,19α-Trihydroxy-urs-12-en-28-oic acid (tormentic acid) | C30H48O5 | 488 | [36] | ||||
74 | Tormentic acid 28-O-glucoside (rosamutin, rosamultin) | C36H58O10 | 650 | [25,39] | ||||
75 | 2α,3β,19α-Trihydroxy-urs-12-en-23,28-dioic acid 28-O-glucoside (sauvissimoside R1) | C36H56O12 | 680 | [25,39] | ||||
76 | 2α,3α,19α-Trihydroxy-urs-12-en-28-oic acid | C30H48O5 | 488 | [18,29] | ||||
77 | 2α,3α,19α,25-Tetrahydroxy-urs-12-en-28-oic acid | C30H48O6 | 504 | [40] | ||||
78 | 2α,3α,19α,25-Tetrahydroxy-urs-12-en-23,28-dioic acid | C30H46O8 | 534 | [25] | ||||
79 | Olean-12-en-3β-ol (β-amyrin) | C30H50O | 426 | [35] | [35] | |||
80 | 3β-Hydroxy-olean-12-en-28-oic acid (oleanolic acid) | C30H48O3 | 456 | [41] | ||||
81 | 2α,3β,19α-Trihydroxy-olean-12-en-28-oic acid (arjunic acid) | C30H48O5 | 488 | [36] | ||||
82 | β-Sitosterol | C29H50O | 414 | [35] | [40,41] | |||
83 | β-Sitosterol 28-O-glucoside (daucosterol) | C35H60O6 | 576 | [25] | ||||
84 | Stigmasterol | C29H48O | 412 | [35] | [41] | |||
85 | Stigmastan-3,5-diene | C29H48 | 396 | [35] | [35] | |||
86 | Stigmast-4-en-3-on | C29H48O | 412 | [35] | ||||
Thiophenes | ||||||||
87 | Arctinal | C12H8OS2 | 232 | [17,41] | ||||
88 | Arctinone b | C13H10OS2 | 246 | [17,41,42] | ||||
89 | Arctinone b, 7-chloro- | C13H9ClOS2 | 280.5 | [41,42] | ||||
90 | Arctinol b | C13H12O2S2 | 264 | [17] | ||||
91 | Arctic acid | C12H8O2S2 | 248 | [17,25,40] | ||||
92 | 2,2′-Dithiophene, 5-methoxy- | C9H8OS2 | 196 | [41] | ||||
93 | 2,2′-Dithiophene, 5-methoxy-5′-(1-propynyl)- | C12H10OS2 | 234 | [41] | ||||
94 | 2,2′-Dithiophene, 5-(4-acetoxy-1-butynyl)- | C14H12O2S2 | 276 | [41] | ||||
95 | Rhaponthienylenol | C13H14O3S2 | 282 | [6] | ||||
96 | Rhapontiynethiophene A | C11H7ClS2 | 238.5 | [42] | ||||
97 | Rhapontiynethiophene B | C13H10O2S | 230 | [42] | ||||
98 | Thiophene, 2-(pentadiynyl-1,3)-5-(3,4-dihydroxy-butynyl-1)- | C13H10O2S | 230 | [17] | ||||
Hydroxycinnamates | ||||||||
99 | Cinnamic acid | C9H8O2 | 148 | [9] | ||||
100 | Cinnamaldehyde | C9H8O | 132 | [9] | ||||
101 | 4-O-Caffeoylquinic acid | C16H18O9 | 354 | [43] | [29] | |||
102 | 5-O-Caffeoylquinic acid | C16H18O9 | 354 | [43] | [9] | [29] | ||
103 | 1,3-Di-O-caffeoylquinic acid | C25H24O12 | 516 | [43] | ||||
104 | 1,5-Di-O-caffeoylquinic acid | C25H24O12 | 516 | [43] | ||||
105 | 3,4-Di-O-caffeoylquinic acid | C25H24O12 | 516 | [43] | [29] | |||
106 | 3,5-Di-O-caffeoylquinic acid | C25H24O12 | 516 | [30] | [9] | [29] | ||
107 | 4,5-Di-O-caffeoylquinic acid | C25H24O12 | 516 | [29] | ||||
108 | Isoferuoyl serotonin | C20H20N2O4 | 352 | [29] | ||||
Flavonoids | ||||||||
109 | Apigenin | C15H10O5 | 270 | [33] | [16] | |||
110 | Apigenin 7-O-glucoside (cosmosiin) | C21H20O10 | 432 | [33] | [16] | |||
111 | Apigenin 7-O-glucuronide | C21H18O11 | 446 | [33] | [16] | |||
112 | Apigenin 6-C-glucoside (isovitexin) | C21H20O10 | 432 | [33] | ||||
113 | Apigenin 8-C-glucoside (vitexin) | C21H20O10 | 432 | [33] | [9] | |||
114 | Apigenin 6,8-di-C-glucoside (vicenin-2) | C27H30O15 | 594 | [16] | ||||
115 | 6-Methoxyapigenin (hispidulin) | C16H12O6 | 300 | [33] | ||||
116 | Luteolin | C15H10O5 | 286 | [16] | [29] | |||
117 | Luteolin 7-O-glucoside (cynaroside) | C21H20O11 | 448 | [33] | ||||
118 | Luteolin 7-O-(6″-O-cinnamoyl)-glucoside | C30H26O12 | 578 | [33] | [29] | |||
119 | Luteolin 7-O-(2″-O-caffeoyl)-glucoside (rhaunoside G) | C30H26O14 | 610 | [33] | ||||
120 | Luteolin 7-O-(6″-O-caffeoyl)-glucoside | C30H26O14 | 610 | [33] | ||||
121 | Luteolin 7-O-glucuronide | C21H18O12 | 462 | [33] | ||||
122 | Luteolin 7-O-rutinoside (scolymoside) | C27H30O15 | 594 | [33] | ||||
123 | Luteolin 3′-O-glucoside (dracocephaloside) | C21H20O11 | 448 | [33] | ||||
124 | Luteolin 4′-O-glucoside | C21H20O11 | 448 | [33] | ||||
125 | Luteolin 6-C-glucoside (isoorientin) | C21H20O11 | 448 | [33] | ||||
126 | Luteolin 8-C-glucoside (orientin) | C21H20O11 | 448 | [33] | ||||
127 | Luteolin 6,8-di-C-glucoside (lucenin-2) | C27H30O16 | 610 | [33] | ||||
128 | 3′-Methoxyluteolin (chrysoeriol) | C16H12O6 | 300 | [33] | [30] | |||
129 | 6-Hydroxyluteolin | C15H10O6 | 302 | [33] | ||||
130 | 6-Hydroxyluteolin 7-O-glucoside | C21H20O12 | 464 | [33] | [29] | |||
131 | 6-Hydroxyluteolin 7-O-(6″-O-cinnamoyl)-glucoside (rhaunoside B) | C30H26O13 | 594 | [33] | [29] | |||
132 | 6-Hydroxyluteolin 7-O-(2″-O-caffeoyl)-glucoside (rhaunoside A) | C30H26O15 | 626 | |||||
133 | 6-Hydroxyluteolin 7-O-(6″-O-caffeoyl)-glucoside (spicoside A) | C30H26O15 | 626 | [33] | ||||
134 | 6-Hydroxyluteolin 7-O-rutinoside | C27H30O16 | 610 | [33] | ||||
135 | 6-Hydroxyluteolin 4′-O-glucoside (rhaunoside C) | C21H20O12 | 464 | [33] | ||||
136 | 6-Methoxyluteolin (nepetin) | C16H12O7 | 316 | [33] | ||||
137 | 6-Methoxyluteolin 7-O-glucoside (nepitrin) | C22H22O12 | 478 | [33] | ||||
138 | 6-Methoxyluteolin 7-O-(6″-O-cinnamoyl)-glucoside (rhaunoside E) | C31H28O13 | 608 | [33] | ||||
139 | 6-Methoxyluteolin 7-O-(6″-O-caffeoyl)-glucoside (rhaunoside D) | C31H28O15 | 640 | [33] | ||||
140 | 6-Methoxyluteolin 7-O-rutinoside | C28H32O16 | 624 | [33] | ||||
141 | 6-Methoxyluteolin 3′-O-glucoside (rhaunoside F) | C22H22O12 | 478 | [33] | ||||
142 | 6-Methoxyluteolin 4′-O-glucoside | C22H22O12 | 478 | [33] | ||||
143 | 6,8-Dihydroxyluteolin 7-O-glucoside (zeravschanoside) | C21H20O13 | 480 | [33] | ||||
144 | 5,6,7,4′-Tetrahydroxy-3′-methoxyflavone (nodifloretin) | C16H12O7 | 316 | [33] | ||||
145 | 5,6,7,3′-Tetrahydroxy-4′-methoxyflavone | C16H12O7 | 316 | [33] | ||||
146 | Kaempferol | C15H10O6 | 286 | [30] | ||||
147 | Kaempferol 3-O-rhamnoside (quercitrin) | C21H20O11 | 448 | [30] | ||||
148 | 6-Hydroxykaempferol | C15H10O7 | 302 | [33] | ||||
149 | 6-Hydroxykaempferol 7-O-glucoside | C21H20O12 | 464 | [33] | ||||
150 | 6-Hydroxykaempferol 7-O-(6″-O-caffeoyl)-glucoside | C30H26O15 | 626 | [33] | ||||
151 | 6-Methoxykaempferol 7-O-glucoside | C22H22O12 | 478 | [33] | ||||
152 | Quercetin | C15H10O7 | 302 | [30] | ||||
153 | Quercetin 3-O-rhamnoside (quercitrin) | C21H20O11 | 448 | [9] | ||||
154 | Quercetin 3-O-glucoside (isoquercitrin) | C21H20O12 | 464 | [9] | ||||
155 | Quercetin 3-O-rutinoside (rutin) | C27H30O16 | 610 | [9] | ||||
156 | 6-Hydroxyquercetin (quercetagetin) | C15H10O8 | 318 | [33] | ||||
157 | 6-Hydroxyquercetin 7-O-glucoside (quercetagitrin) | C21H20O13 | 480 | [33] | ||||
158 | 6-Hydroxyquercetin 7-O-(6″-O-caffeoyl)-glucoside | C30H26O16 | 642 | [33] | ||||
159 | 6-Methoxyquercetin 7-O-glucoside (patulitrin) | C22H22O13 | 494 | [33] | ||||
160 | 3′-Methoxyquercetin (isorhamnetin) | C16H12O6 | 300 | [33] | [9] | |||
161 | 4′-Methoxyquercetin (diosmetin) | C16H12O6 | 300 | [30] | ||||
162 | Catechin | C15H14O6 | 190 | [25] | ||||
Lignans | ||||||||
163 | Hemislin B | [30] | ||||||
164 | Hemislin B O-glucoside | [30] | ||||||
165 | Arctigenin | C21H24O6 | 372 | [9] | ||||
166 | Arctigenin O-glucoside (arctiin) | C27H34O11 | 534 | [9] | ||||
167 | Carthamogenin | C21H22O6 | 370 | [29] | ||||
168 | Carthamoside | C27H32O11 | 532 | [29] | ||||
169 | 6″-O-Acetyl carthamoside | C29H34O12 | 574 | [29] | ||||
170 | Tracheloside | C27H34O12 | 550 | [29] | ||||
Other phenolics | ||||||||
171 | 3,5-Dimethoxy-4-hydroxybenzaldehyde (syringaldehyde) | C9H10O4 | 182 | [9] | ||||
172 | 3,3′,4-Tri-O-methyl-ellagic acid | C17H12O8 | 344 | [25] | ||||
173 | Coumarin | C9H6O2 | 146 | [9] | ||||
174 | Ligustilide | C12H14O2 | 190 | [9] | ||||
Amino acids | ||||||||
175 | Alanin | C3H7NO2 | 89 | [44] | [44] | |||
176 | Arginin | C6H14N4O2 | 174 | [44] | [44] | |||
177 | Glycine | C2H5NO2 | 75 | [44] | [44] | |||
178 | Histidin | C6H9N3O2 | 155 | [44] | ||||
179 | Lysine | C6H14N2O2 | 146 | [44] | [44] | |||
180 | Leucin | C6H13NO2 | 131 | [44] | ||||
181 | Methionine | C5H11NO2S | 149 | [44] | ||||
182 | Phenylalanine | C9H11NO2 | 165 | [44] | [44] | |||
183 | Proline | C5H9NO2 | 115 | [44] | [44] | |||
184 | Serine | C3H7NO3 | 105 | [44] | [44] | |||
185 | Tyrosine | C9H11NO3 | 181 | [44] | [44] | |||
186 | Threonine | C4H9NO3 | 119 | [44] | [44] | |||
187 | Valin | C5H11NO2 | 117 | [44] | ||||
Nucleosides and vitamins | ||||||||
188 | Cordycepin (3′-deoxyadenosine) | C10H13N5O3 | 251 | [9] | ||||
189 | Thiamine (vitamin B1) | C12H17N4OS+ | 265 | [45] | [45] | |||
190 | Riboflavine (vitamin B2) | C17H20N4O6 | 376 | [45] | [45] | |||
191 | Pantothenic acid (vitamin B5) | C9H17NO5 | 219 | [45] | [45] | |||
192 | Nicotinic acid (niacin, vitamin B3) | C6H5NO2 | 123 | [45] | [45] | |||
193 | Nicotinamide | C6H6N2O | 122 | [9] | ||||
194 | Pyridoxine (vitamin B6) | C8H11NO3 | 169 | [45] | [45] | |||
195 | Folic acid (vitamin B9) | C19H19N7O6 | 441 | [45] | ||||
Alkanes | ||||||||
196 | Pentacosane | C25H52 | 352 | [35] | ||||
197 | Heptacosane | C27H56 | 380 | [35] | ||||
198 | Octacosane | C28H58 | 394 | [35] | ||||
199 | Nonacosane | C29H60 | 408 | [35] | ||||
Fatty acids | ||||||||
200 | Tetradecanoic acid (myristic acid; 14:0) | C14H28O2 | 228 | [35] | [35] | |||
201 | Pentadecanoic acid (15:0) | C15H30O2 | 242 | [35] | [35] | |||
202 | Hexadecanoic acid (palmitic acid; 16:0) | C16H32O2 | 256 | [35] | [35] | |||
203 | Heptadecanoic acid (margaric acid; 17:0) | C17H34O2 | 270 | [35] | [35] | |||
204 | Octadecanoic acid (stearic acid; 18:0) | C18H36O2 | 284 | [35] | [35] | |||
205 | Icosanoic acid (arachic acid; 20:0) | C20H40O2 | 312 | [35] | [35] | |||
206 | Heneicosanoic acid (21:0) | C21H42O2 | 326 | [35] | ||||
207 | Docosanoic acid (behenic acid; 22:0) | C22H44O2 | 340 | [35] | [35] | |||
208 | Tricosanoic acid (23:0) | C23H46O2 | 354 | [35] | [35] | |||
209 | Tetracosanoic acid (lignoceric acid; 24:0) | C24H48O2 | 368 | [35] | [35] | |||
210 | Pentacosanoic acid (25:0) | C25H50O2 | 382 | [35] | [35] | |||
211 | Hexacosanoic acid (cerotic acid; 26:0) | C26H52O2 | 396 | [35] | ||||
212 | Octacosanoic acid (montanic acid; 28:0) | C28H56O2 | 424 | [35] | ||||
213 | Triacontanoic acid (melissic acid; 30:0) | C30H60O2 | 452 | [35] | ||||
214 | Hexadec-7-enoic acid (16:1n9) | C16H30O2 | 254 | [35] | [35] | |||
215 | Octadec-9-enoic acid (oleic acid; 18:1n9) | C18H34O2 | 282 | [35] | ||||
216 | Octadeca-9,12-dienoic acid (linoleic acid; 18:2n6) | C18H32O2 | 280 | [35] | [35] | |||
217 | Octadeca-9,12,15-trienoic acid (linolenic acid; 18:3n3) | C18H30O2 | 278 | [35] | [9] | [35] | ||
Carbohydrates | ||||||||
218 | Glucose | C6H12O6 | 180 | [46] | [46] | [46] | [46] | |
219 | Fructose | C6H12O6 | 180 | [46] | [46] | [46] | [46] | |
220 | Sucrose | C12H22O11 | 342 | [46] | [46] | [46] | [46] | |
221 | Kestose (1F-β-fructofuranosyl sucrose) | C18H32O16 | 504 | [46] | [46] | |||
222 | Nystose (di-(1F-β-fructofuranosyl) sucrose) | C24H42O21 | 666 | [46] | [46] | |||
223 | 1F-β-Fructofuranosyl nystose | C30H52O26 | 828 | [46] | [46] | |||
224 | Di-(1F-β-fructofuranosyl) nystose | C36H62O31 | 990 | [46] | [46] | |||
225 | Tri-(1F-β-fructofuranosyl) nystose | C42H72O36 | 1152 | [46] | [46] |
4.2. Diterpenes
4.3. Triterpenes
4.4. Thiophenes
4.5. Hydroxycinnamates
4.6. Flavonoids
4.7. Lignans
4.8. Other Compounds
5. Chromatographic Analysis of R. uniflorum
6. Bioactivities
6.1. Anti-Inflammatory Activity
6.2. Antitumor Activity
6.3. Immune-Stimulating Activity
6.4. Nervous System Effects
6.5. Stress-Protective Activity
6.6. Actoprotective and Anabolic Activity
6.7. Antihypoxic and Anti-Ischemic Activity
6.8. Hepatoprotective Activity
6.9. Anti-Aterosclerotic and Hypolypidemic Activity
6.10. Other Activities
7. Toxicity
8. Conclusions
9. Patents
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, Z.; Chen, Y.L.; Chen, Y.S.; Lin, Y.R.; Liu, S.W.; Ge, X.J.; Gao, T.G.; Zhu, S.X.; Liu, Y.; Yang, Q.E.; et al. Rhaponticum Ludwig. In Flora of China, 2nd ed.; Wu, Z.Y., Raven, P.H., Hong, D.Y., Eds.; Science Press: Beijing, China; Missouri Botanical Garden Press: St. Louis, MI, USA, 2011; Volume 20–21, pp. 177–179. [Google Scholar]
- Kokolska, L.; Janovska, D. Chemistry and pharmacology of Rhaponticum carthamoides: A review. Phytochemistry 2009, 70, 842–855. [Google Scholar] [CrossRef] [PubMed]
- Mosbah, H.; Chahdoura, H.; Kammoun, J.; Hlila, M.B.; Louati, H.; Hammami, S.; Flamini, G.; Achour, L.; Selmi, B. Rhaponticum acaule (L.) DC. essential oil: Chemical composition, in vitro antioxidant and enzyme inhibition properties. BMC Complement. Altern. Med. 2018, 18, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dashti, A.; Shokrzade, M.; Karami, M.; Habibi, E. Phytochemical Identification, acute and subchronic oral toxicity assessments of hydroalcoholic extract of Acroptilon repens in BALB/c mice: A toxicological and mechanistic study. Heliyon 2022, 8, e08940. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-P.; Zhang, J.; Dong, M.; Zhang, M.-L.; Huo, C.-H.; Shi, Q.-W.; Gu, Y.-C. Chemical constituents of plants from the genus Rhaponticum. Chem. Biodiv. 2010, 7, 594–609. [Google Scholar] [CrossRef] [PubMed]
- Malyshev, L.I. Rhaponticum Hill. (Leuzea DC.). In Flora of Siberia; Malyshev, L.I., Ed.; CRC Press: Boca Raton, FL, USA, 2007; Volume 13, pp. 322–341. [Google Scholar] [CrossRef]
- Guo, D.A.; Lou, Z.C. Separation and quantitative determination of three phytoecdysteroids in Rhaponticum uniflorum by high performance liquid chromatography. J. Chin. Pharm. Sci. 1992, 1, 60–65. [Google Scholar]
- Lee, J.-H.; Hwang, K.H.; Kim, G.H. Inhibition of wild herb Rhaponticum uniflorum on synthesis of inflammatory mediators in macrophage cells. Food Sci. Biotechnol. 2013, 22, 567–572. [Google Scholar] [CrossRef]
- Zhen, D.; Liu, C.; Huang, T.; Fu, D.; Bai, X.; Ma, Q.; Jiang, M.; Gong, G. Ethanol extracts of Rhaponticum uniflorum (L.) DC inflorescence ameliorate LPS-mediated acute lung injury by alleviating inflammatory responses via the Nrf2/HO-1 signaling pathway. J. Ethnopharmacol. 2022, 2965, 115497. [Google Scholar] [CrossRef]
- Gammermann, A.F.; Semichov, B.V. Dictionary of Tibetan-Latin-Russian Names of Medicinal Plant Materials used in Tibetan Medicine; AN SSSR: Ulan-Ude, Russia, 1963; pp. 68–70. [Google Scholar]
- Aseeva, T.A.; Dashiev, D.B.; Dashiev, A.D.; Nikolaev, S.M.; Surkova, N.A.; Chekhirova, G.V.; Yurina, T.A. Tibetan Medicine of Buryats; SO RAN: Novosibirsk, Russia, 2008; pp. 218–220. [Google Scholar]
- Batorova, S.M.; Yakovlev, G.P.; Aseeva, T.A. Handbook of Medicinal Plants of Traditional Tibetan Medicine; Nauka: Novosibirsk, Russia, 2013; pp. 209–292. [Google Scholar]
- Dashiev, D.B. Dud Rtsi: The Canon of Tibetan Medicine; Vostochnaya Literatura: Moscow, Russia, 2001; pp. 620–622. [Google Scholar]
- Singh, B.; Surmal, O.; Singh, B.; Mudasir, B.S.; Bhat, N.; Chowdhary, M.A.; Srinivas, S.; Shahnawaz, M. Folklore plants used in Tibetan Mountain based Sowa-Rigpa system of food and medicine: A close look on plant-people perception to herbal cure. In Plants for Novel Drug Molecules. Ethnobotany to Ethnopharmacology; Singh, B., Sharma, Y.P., Eds.; New India Publishing Agency: New Delhi, India, 2021; pp. 2–38. [Google Scholar]
- Khaidav, T.; Altanchimeg, B.; Varlamova, T.C. Medical Plants in Mongolian Medicine; Gosizdatelstvo: Ulaan-Bator, Mongolia, 1985; pp. 232–236. [Google Scholar]
- Hu, B.; Zhen, D.; Bai, M.; Xuan, T.; Wang, Y.; Liu, M.; Yu, L.; Bai, D.; Fu, D.; Wei, C. Ethanol extracts of Rhaponticum uniflorum (L.) DC flowers attenuate doxorubicin-induced cardiotoxicity via alleviating apoptosis and regulating mitochondrial dynamics in H9c2 cells. J. Ethnopharmacol. 2022, 28824, 114936. [Google Scholar] [CrossRef]
- Wei, H.-X.; Gao, W.-Y.; Tian, Y.-J.; Guan, Y.-K.; Huang, M.-H.; Cheng, D.-L. New eudesmane sesquiterpene and thiophene derivatives from the roots of Rhaponticum uniflorum. Pharmazie 1997, 52, 245–247. [Google Scholar]
- Huneck, S.; Knapp, H.D. Inhaltsstoffe weiterer Compositen aus der Mongolei. Pharmazie 1986, 41, 673–675. [Google Scholar]
- Olennikov, D.N. Guaiane-type sesquiterpenes from Rhaponticum uniflorum. Chem. Nat. Comp. 2019, 55, 157–159. [Google Scholar] [CrossRef]
- Bruno, M.; Bancheva, S.; Rosselli, S.; Maggio, A. Sesquiterpenoids in subtribe Centaureinae (Cass.) Dumort (tribe Cardueae, Asteraceae): Distribution, 13C NMR spectral data and biological properties. Phytochemistry 2013, 95, 19–93. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Shi, R.; Yang, C. Isolation and identification of diosbulbin B in the aqueous extract of Rhaponticum uniflorum. J. Beijing Univ. Trad. Chin. Med. 2004, 27, 58–61. [Google Scholar]
- Olennikov, D.N. Minor ecdysteroids from Rhaponticum uniflorum leaves from Eastern Siberia. Chem Nat Comp. 2018, 54, 798–800. [Google Scholar] [CrossRef]
- Cheng, J.K.; Zhang, Y.H.; Zhang, Z.Y.; Cheng, D.L.; Zhang, G.L. Studies of ecdysterones from Rhaponticum uniflorum. Chem. J. Chin. Univ. 2002, 11, 2084–2088. [Google Scholar]
- Zhang, Y.H.; Wang, H.Q. Ecdysteroids from Rhaponticum uniflorum. Pharmazie 2001, 56, 828–829. [Google Scholar]
- Zhang, Y.; Cheng, J.K.; Yang, L.; Cheng, D.L. Triterpenoids from Rhaponticum uniflorum. J. Chin. Chem. Soc. 2002, 49, 117–124. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Li, X.P.; Lu, Z.G.; Wang, H.Q. A new ecdysteroid from Rhaponticum uniflorum. Chin. Chem. Lett. 2001, 12, 797–798. [Google Scholar]
- Olennikov, D.N. Makisterone C-20,22-acetonide from Rhaponticum uniflorum. Chem. Nat. Comp. 2018, 54, 930–933. [Google Scholar] [CrossRef]
- Vorob’eva, A.N.; Rybin, V.G.; Zarembo, E.V.; Boltenkov, E.V. Phytoecdysteroids from Stemmacantha uniflora. Chem. Nat. Comp. 2006, 42, 742–744. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Kashchenko, N.I. New inhibitors of pancreatic α-amylase from Rhaponticum uniflorum. Appl. Biochem. Microbiol. 2023, 59, 77–82. [Google Scholar]
- Du, Y.; Wang, X.-Q.; Bao, B.-Q.; Hang, H. Chemical constituents from flowers of Rhaponticum uniflorum. Chin. Tradit. Herb. Drugs. 2016, 47, 2817–2821. [Google Scholar] [CrossRef]
- Li, X.-Q.; Wang, J.-H.; Wang, S.-X.; Li, X. A new phytoecdysone from the roots of Rhaponticum uniflorum. J. Asian Nat. Prod. Res. 2000, 2, 225–229. [Google Scholar] [CrossRef]
- Guo, D.A.; Lou, Z.C.; Gao, C.Y.; Quao, L.; Peng, J.R. Phytoecdysteroids of Rhaponticum uniflorum roots. Acta Pharm. Sin. 1991, 26, 442–446. [Google Scholar]
- Olennikov, D.N.; Kashchenko, N.I. New flavonoids and turkesterone-2-O-cinnamate from leaves of Rhaponticum uniflorum. Chem. Nat. Comp. 2019, 55, 256–264. [Google Scholar] [CrossRef]
- Cheng, J.; Huang, M.; Zhang, Z.; Cheng, D.; Zhang, G. A new ecdysterone from Rhaponticum uniflorum. Acta Bot. Boreali-Occident. Sin. 2002, 22, 1457–1459. [Google Scholar]
- Tsybiktarova, L.P.; Garmaeva, L.L.; Taraskin, V.V.; Nikolaeva, I.G.; Radnaeva, L.D.; Tykheev, Z.A.; Nikolaeva, G.G. Composition of lipids from Rhaponticum uniflorum. Chem. Nat. Comp. 2017, 53, 939–940. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Zang, J.G.; Xie, J.M.; Cheng, G.L.; Cheng, D.L. Triterpenes from root of Rhaponticum uniflorum. China J. Chin. Materia Med. 2005, 30, 1833–1836. [Google Scholar]
- Zhang, X.-P.; Yang, Y.; Wu, M.; Li, L.-G.; Zhang, M.-L.; Huo, C.-H.; Gu, Y.-C.; Shi, Q.-W. Chemical constituents of Rhaponticum uniflorum. Chin. Trad. Herbal Drugs 2010, 41, 859–862. [Google Scholar]
- Zhang, Y.H.; Wu, Y.; Yang, L.; Liu, Z.L.; Cheng, D.L. Two new triterpenoid saponins from Rhaponticum uniflorum. Chin. Chem. Lett. 2009, 20, 690–693. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Li, X.P.; Lu, Z.G.; Wang, H.Q. A new triterpenoid saponin from Rhaponticum uniflorum (Compositae). Acta Bot. Sin. 2002, 44, 359–361. [Google Scholar]
- Zhang, Y.; Wang, W.; Wang, T.; Wang, H. Triterpenes and other constituents from Rhaponticum uniflorum. J. Chin. Pharm. Sci. 2001, 10, 113–114. [Google Scholar]
- Wei, H.; Gao, W.; Guan, Y.; Huang, M.; Cheng, D.; Wei, L. Studies on lipophilic chemical constituents of Rhaponticum uniflorum. J. Lanzhou Univ. 1997, 41, 139–142. [Google Scholar]
- Liu, H.-L.; Guo, Y.-W. Three new thiophene acetylenes from Rhaponticum uniflorum (L.) DC. Helv. Chim. Acta 2008, 91, 130–135. [Google Scholar] [CrossRef]
- Shantanova, L.N.; Olennikov, D.N.; Matkhanov, I.E.; Gulyaev, S.M.; Toropova, A.A.; Nikolaeva, I.G.; Nikolaev, S.M. Rhaponticum uniflorum and Serratula centauroides extracts attenuate emotional injury in acute and chronic emotional stress. Pharmaceuticals 2021, 14, 1186. [Google Scholar] [CrossRef]
- Garmaeva, L.L.; Nikolaeva, I.G.; Nikolaeva, G.G. Amino acids from Rhaponticum uniflorum. Chem. Nat. Comp. 2017, 53, 607–608. [Google Scholar] [CrossRef]
- Garmaeva, L.L.; Nikolaeva, I.G.; Nikolaeva, G.G.; Tsybiktarova, L.P. Vitamin B content in Rhaponticum uniflorum. Chem. Nat. Comp. 2015, 51, 978–979. [Google Scholar] [CrossRef]
- Olennikov, D.N. Free carbohydrates, glucofructans, and other polysaccharides from Rhaponticum uniflorum. Chem. Nat. Comp. 2018, 54, 751–754. [Google Scholar] [CrossRef]
- Kawasaki, T.; Komori, T.; Setoguchi, S. Furanoid norditerpenes from Dioscoreaceae Plants. I. Diosbulbins A, B and C from Dioscorea bulbifera L. forma spontanea Making et Nemoto. Chem. Pharm. Bull. 1968, 16, 2430–2435. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Niu, C.; Wang, J.; Ji, L.; Wang, Z. Diosbulbin B-induced liver injury in mice and its mechanism. Hum. Exp. Toxicol. 2014, 33, 729–736. [Google Scholar] [CrossRef]
- Russell, G.B.; Horn, D.H.S.; Middleton, E.J. New phytoecdysones from Dacrydium intermedium. J. Chem. Soc. 1971, 71. [Google Scholar] [CrossRef]
- Russell, G.; Fenemore, P.; Horn, D.; Middleton, E. Insect moulting hormones: The phytoecdysones of Dacrydium intermedium. Austr. J. Chem. 1972, 25, 1935. [Google Scholar] [CrossRef]
- Wu, L.-H.; Annie Bligh, S.W.; Leon, C.J.; Li, X.-S.; Wang, Z.-T.; Branford-White, C.J.; Simmonds, M.S.J. Chemotaxonomically significant roburic acid from Section Cruciata of Gentiana. Biochem. Syst. Ecol. 2012, 43, 152–155. [Google Scholar] [CrossRef]
- Ren, Y.L.; Yang, J.S. Hemislin B glucoside, a new lignan from Hemistepta lyrata. Chin. Chem. Lett. 2002, 13, 859–861. [Google Scholar]
- Harmatha, J.; Buděšínský, M.; Vokáč, K.; Pavlík, M.; Grüner, K.; Laudová, V. Lignan glucosides and serotonin phenylpropanoids from the seeds of Leuzea carthamoides. Collect. Czech. Chem. Commun. 2007, 72, 334–346. [Google Scholar] [CrossRef]
- Zhu, L.; Lu, Y.; Chen, D. Composition of essential oil from inflorescences of Rhaponticum uniflorum (L.) DC. China, J. Chin. Materia Med. 1991, 16, 739–740. [Google Scholar]
- Gao, Y.; Xu, Y. Analysis of composition of the essential oil of Rhaponticum uniflorum. J. Anshan Teachers College 2013, 2, 38–40. [Google Scholar]
- Nikolaeva, I.G.; Tsybiktarova, L.P.; Garmaeva, L.L.; Nikolaeva, G.G.; Olennikov, D.N.; Matkhanov, I.E. Determination of ecdysteroids in Fornicium uniflorum (L.) and Serratula centauroides (L.) raw materials by chromatography-UV spectrophotometry. J. Anal. Chem. 2017, 72, 854–861. [Google Scholar] [CrossRef]
- Huang, H.; Wang, X.; Du, Y.; Li, C. Simultaneous determination of six components in the flowers of Rhaponticum uniflorum by HPLC. Chin. J. Pharm. Anal. 2017, 37, 956–961. [Google Scholar] [CrossRef]
- Jeong, Y.H.; Oh, Y.-C.; Cho, W.-K.; Yim, N.-H.; Ma, J.Y. Anti-inflammatory effect of rhapontici radix ethanol extract via inhibition of NF-B and MAPK and induction of HO-1 in macrophages. Mediat. Inflamm. 2016, 2016, 7216912. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Li, J.; Li, Y.; Wang, D.; Liu, Y.; Jia, Y.; Li, R. Rhaponticum uniflorum inhibits malignant phenotype of gastric cancer cells by down-regulating expression of oncogenic small RNA. Chin. Arch. Trad. Chin. Med. 2017, 17, 3078–3081. [Google Scholar]
- Jin, A.-H.; Gao, F.; Xu, H.-X.; Quan, J.-S. Effects of Rhaponticum uniflorum on angiogenesis and apoptosis of H22 transplanted tumor tissue in mice. Chin. Pharm. J. 2016, 51, 280–283. [Google Scholar]
- Chen, H.; Wang, C.X.; Zhang, M.; Tang, X.F. Effect of Radix rhapontici on the expression of transcription factor Ets-1 and Prx1 in oral cancer. Beijing J. Stomatol. 2016, 24, 83–86. [Google Scholar]
- Chen, H.; Wang, C.; Qi, M.; Ge, L.; Tian, Z.; Li, J.; Zhang, M.; Wang, M.; Huang, L.; Tang, X. Anti-tumor effect of Rhaponticum uniflorum ethyl acetate extract by regulation of peroxiredoxin1 and epithelial-to-mesenchymal transition in oral cancer. Front. Pharmacol. 2017, 8, 870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, A.H.; Xu, H.X.; Liu, W.J.; Quan, J.S.; Zhe, X.Y. Studies on anti-tumor effect and mechanism of Rhaponticum uniflorum in H22-bearing mice. Chin. J. Exp. Tradit. Med. Form. 2011, 5, 165–167. [Google Scholar]
- Zhou, T.; Wang, C.; Feng, L.; Tan, X.; Jia, X. Screening of active fractions from Rhaponticum uniflorum (L.) DC. for anti-lung cancer. Chin. Trad. Patent Med. 2016, 39, 2099–2105. [Google Scholar]
- Yan, X.; Zhao, H.; Guan, Y.; Song, Y.; Meng, J. A study on the effect of ethanol extract of Radix rhapontici on erythrocyte immune function in rats. Afr. J. Tradit. Complement. Altern. Med. 2013, 10, 538–541. [Google Scholar] [CrossRef]
- Khobrakova, V.B.; Tugarina, Y.A.; Toropova, A.A.; Olennikov, D.N.; Abidueva, L.R. Effect of the dry Rhaponticum uniflorum (L.) DC extract on the state of the immune and antioxidant systems of the body in experimental immunodeficiency. Probl. Biol. Med. Pharm. Chem. 2022, 25, 43–49. [Google Scholar] [CrossRef]
- Tatarinova, N.K.; Razuvaeva, Y.G.; Shantanova, L.N. Anxiolytic effect of Rhaponticum uniflorum root extract. Acta Biomed. Sci. 2015, 2, 92–94. [Google Scholar]
- Piao, L.; Zhang, X.W.; Jin, X.Z. Anti-senile effect of Rhaponticum uniflorm (L.) DC. extract on D-galactose induced senile in rats. Lishizhen Med. Materia Medica Res. 2006, 10, 1918–1919. [Google Scholar]
- Zou, L.; Du, L.; Dong, A.; Li, X. Effects of the alcohol extract of Rhaponticum uniflorum (L.) DC. on learning and memory in the senescent mice induced by D-galactose. J. Shenyang Pharm. Univ. 2003, 30, 128–131. [Google Scholar]
- Razuvaeva, Y.G.; Markova, K.V.; Toropova, A.A.; Olennikov, D.N. Influence of Rhaponticum uniflorum dry extract on the white rats in positive supported tests. Probl. Biol. Med. Pharm. Chem. 2020, 23, 28–33. [Google Scholar] [CrossRef]
- Markova, K.V.; Razuvaeva, Y.G.; Toropova, A.A.; Olennikov, D.N. Morphological assessment of neuroprotective effects of Rhaponticum uniflorum and Serratula centauroides dry extracts in hypoxia/reoxygenation. J. Biomed. 2022, 18, 56–62. [Google Scholar] [CrossRef]
- Shantanova, L.N.; Matkhanov, I.E.; Nikolaev, S.M.; Nikolaeva, I.G.; Khitrikheev, V.E. Stress-protective activity of Rhaponticum uniflorum extracts. J. Pharm. Qual. Assur. Iss. 2020, 2, 4–10. [Google Scholar] [CrossRef]
- Markova, K.V.; Toropova, A.A.; Razuvaeva, Y.G.; Olennikov, D.N. Studying of the anti-ischemic action of Rhaponticum uniflorum and Serratula centauroides dry extracts on a model of bilateral occlusion of the carotid arteries. Acta Biomed. Sci. 2022, 7, 28–36. [Google Scholar] [CrossRef]
- Yin, J.-F.; He, X.; Jin, H.-N.; Yin, X.-Z.; Quan, J.-S. Protective effect of Rhaponticum uniflorum ethanol extract on oxidative damage of chang liver cells. Lishizhen Med. Mater. Med. Res. 2016, 27, 289–291. [Google Scholar]
- He, X.; Liu, C.-Y.; Yin, J.-F.; Jin, H.-N.; Yin, X.-Z.; Quan, J.-S. Rhaponticum uniflorum inhibits H2O2-induced apoptosis of liver cells via JNK and NF-κB pathways. Chin. J. Chin. Materia Med. 2017, 63, 1189–1193. [Google Scholar]
- Song, H.; Zhao, W.-X.; Wang, Y.-J.; Quan, J.-S. Effect of Rhaponticum uniflorum on hepatic oxidative stress and DNA damage induced by carbon tetrachloride. Chin. Pharm. J. 2013, 48, 1915–1918. [Google Scholar]
- Wang, Y.; Zhang, C.F.; Yang, Z.L. Experimental study of Rhaponticum uniflorum for antihyperlipidemia. Acta Chin. Med. Pharmacol. 2012, 4, 24–26. [Google Scholar]
- Zhang, B.; Liu, Y.; Zhang, C.; Yang, Z. Effect of Rhaponticum uniflorum on oleic acid-induced fat accumulation in HepG2 cells. Asia-Pacific Trad. Med. 2013, 9, 10–12. [Google Scholar]
- Li, Y.-T.; Li, L.; Chen, J.; Hu, T.-C.; Huang, J.; Guo, Y.-W.; Jiang, H.-L.; Shen, X. 7-Chloroarctinone-b as a new selective PPARγ antagonist potently blocks adipocyte differentiation. Acta Pharmacol. Sin. 2009, 30, 1351–1358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.-Y.; Jin, A.-H.; Quan, J.-S. Antioxidative effect of Rhaponticum uniflorum water extract in vitro. Food Res. Devel. 2012, 24, 12–14. [Google Scholar]
- Quan, J.-S.; Zhang, Z.-H.; Liu, C.-Y.; Jin, A.-H.; Yin, X.-Z. Comparative of antioxidative effect of different solvent fractuions of Rhaponticum uniflorum. Food Res. Devel. 2011, 23, 204–206. [Google Scholar]
- Kim, Y.; Lee, H.-S. Antibacterial effects of oriental herb extract against Gardnerella vaginalis. Korean, J. Microbiol. Biotechnol. 2006, 34, 70–73. [Google Scholar]
- Razuvaeva, Y.G.; Toropova, A.A.; Ubeeva, E.A.; Banzaraksheev, V.G.; Ausheva, V.V. Preclinical study of the safety of Rhaponticum uniflorum root extract. J. Pharm. Qual. Assur. 2021, 32, 34–39. [Google Scholar] [CrossRef]
- Hall, I.H.; Lee, K.H.; Starnes, C.O.; Sumida, Y.; Wu, R.Y.; Waddell, T.G.; Cochran, J.W.; Gerhart, K.G. Anti-inflammatory activity of sesquiterpene lactones and related compounds. J. Pharm. Sci. 1979, 68, 537–542. [Google Scholar] [CrossRef]
- Das, N.; Mishra, S.K.; Bishayee, A.; Ali, E.S.; Bishayee, A. The phytochemical, biological, and medicinal attributes of phytoecdysteroids: An updated review. Acta Pharm. Sin. B 2021, 11, 1740–1766. [Google Scholar] [CrossRef]
- Ríos, J.L.; Recio, M.C.; Maáñez, S.; Giner, R.M. Natural triterpenoids as anti-inflammatory agents. Stud. Nat. Prod. Chem. 2000, 22, 93–143. [Google Scholar] [CrossRef]
- da Cruz, R.M.D.; Mendonça-Junior, F.J.B.; de Mélo, N.B.; Scotti, L.; de Araújo, R.S.A.; de Almeida, R.N.; de Moura, R.O. Thiophene-based compounds with potential anti-inflammatory activity. Pharmaceuticals 2021, 14, 692. [Google Scholar] [CrossRef]
- Maleki, S.J.; Crespo, J.F.; Cabanillas, B. Anti-inflammatory effects of flavonoids. Food Chem. 2019, 299, 125124. [Google Scholar] [CrossRef]
- Nikolaeva, G.G.; Zanabandarova, Z.M.; Nikolaev, S.M. Antihypoxic and Adaptogenic Remedy. Patent RU2771555, 5 May 2022. [Google Scholar]
- Kawasaki, Y.; Hori, M.; Yamamoto, Y.; Hiraki, J. Cosmetic Composition and Production Thereof. U.S. Patent 20,060,018,867, 26 January 2006. [Google Scholar]
- Anonymous. Production Technology of Rhaponticum uniflorum Sauce. Patent CN104172099A, 15 July 2014. [Google Scholar]
- He, D.; Li, R. Aqueous Dispersion Granulated Insecticide Containing Rhaponticum uniflorum. Patent CN100426969C, 31 December 2006. [Google Scholar]
- Nikolaev, S.M.; Nikolaeva, I.G.; Shantanova, L.N.; Nikolaeva, G.G.; Garmaeva, L.L.; Tatarinova, N.K.; Razuvaeva, Y.G.; Matkhanov, I.E.; Li, S.; Pack, S. Stress-Protective Remedy. Patent RU2582282, 20 April 2016. [Google Scholar]
- Nikolaev, S.M.; Shantanova, L.N.; Nikolaeva, I.G.; Razuvaeva, Y.G.; Nikolaeva, G.G.; Toropova, A.A.; Tsybiktarova, L.P.; Garmaeva, L.L.; Matkhanov, I.E. Anxiolytic Remedy. Patent RU2705582, 18 November 2019. [Google Scholar]
Compounds | Column | Elution Mode (I—Isocratic; G—Gradient), Eluents, Gradient Programm; Flow Rate (ν) | Column Temperature (T), Detector 1 (D), Analysis Duration (t) | Ref. |
---|---|---|---|---|
28, 50, 53 | Ultrasphere ODS (250 × 4.6 mm, 5 μm; Hichrom Ltd., Lutterworth, UK) | I; MeOH-H2O 40:60; ν 1.5 mL/min | T 20°C; D: UV (λ 242 nm); t 15 min | [7] |
25, 28, 41 | Zorbax ODS (250 × 4.6 m, 5 μm; Agilent Technologies, Santa-Clara, CA, USA) | I; MeCN-H2O 20:80; ν 2 mL/min | T 55 °C; D: UV; t 20 min | [28] |
25, 28, 41, 53 | ProntoSIL 120-5 C18 AQ (60 × 1 mm, 1 μm; Knauer, Berlin, Germany) | G; A: 4.1 M LiClO4-0.1 M HClO4 5:95, B: MeCN; 0–15 min 5–58% B; ν 0.15 mL/min | T 35 °C; D: UV (λ 248 nm); t 15 min | [56] |
28, 109, 116, 128, 147, 163 | YMC-Pack C18 (250 × 4.6 mm, 5 μm; YMC Co. Ltd., Kyoto, Japan) | G; A: 0.2% H3PO4, B: MeCN; 0–15 min 20–25% B, 15–50 min 25–40% B; ν 0.8 mL/min | T 35 °C; D: UV (λ 254 nm); t 50 min | [57] |
28, 38, 101–107, 111, 121 | GLC Mastro C18 (150 × 2.1 mm, 3 μm; Shimadzu, Kyoto, Japan) | G; A: 0.5% HCOOH in water, B: 0.5% HCOOH in MeCN; 0–2 min 5–6% B, 2–9 min 6–11% B, 9–15 min 11–25% B, 15–20 min 25–55% B, 20–25 min 55–5% B | T 35 °C; D: PDA (λ 254 nm), MS; t 25 min | [43] |
2, 16, 57, 99, 100, 102, 106, 113, 153–155, 160, 164, 165, 170, 173, 174, 188, 193, 217 | Waters Acquity UPLC HSS T3 C18 (100 × 2.1 mm, 1.8 μm) | G; A: MeCN, B:0.1% HCOOH; 0–10 min 100% B, 10–20 min 100–70% B, 10–25 min 70–60% B, 25–30 min 60–50% B, 30–40 min 50–30% B, 40–45 min 30–0% B, 45–60 min 0% B, 60–60.1 min 0–100% B, 60.1–70min 100% B; ν 0.2 mL/min | T 30 °C; D: DAD (λ 254 nm), MS; t 70 min | [9] |
Origin | Compound | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
25 | 28 | 41 | 50 | 53 | 109 | 116 | 128 | 147 | 163 | |
Roots | ||||||||||
China [7] | 0.12–0.45 | 0.01–0.06 | 0.01–0.07 | |||||||
Russia [28,56] | Tr.–0.02 | 0.09–0.85 | Tr. | 0.16 | ||||||
Flowes | ||||||||||
China [7] | 0.78 | 0.02 | Tr. | |||||||
Russia [28] | 0.03 | |||||||||
Leaves | ||||||||||
China [7,41] | 0.27–1.35 | Tr.–0.09 | Tr. | 0.08–0.24 | 0.19–0.60 | 0.03–0.05 | 0.66–1.26 | 0.42–2.26 | ||
Russia [28] | Tr.–0.06 | 0.02–0.85 | Tr.–0.02 | |||||||
Stems | ||||||||||
China [7] | 0.62 | 0.05 | 0.02 | |||||||
Russia [28] | Tr. | 0.03–0.47 | Tr. | |||||||
Herb | ||||||||||
Russia [56] | 0.24 | 1.06 | 0.10 | 0.21 |
Extract, Compound | Assay, Model | Dose a | Positive Control | Result b | Ref. |
---|---|---|---|---|---|
Anti-inflammatory activity | |||||
In vitro study | |||||
Roots ethanol extract | LPS-stimulation of murine macrophage RAW 264.7 cells | 10–100 μg/mL | Dexamethasone (10 μg/mL) | Inhibition NO, TNF-α, IL-6, IL-1β, iNOS, COX-2, HO-1, NF-κB, phospho-IκBα, IκBα, ERK1/2, p38, JNK | [58] |
Roots hexane, chloroform, ethyl acetate, butanol, water extracts | LPS-stimulation of murine macrophage RAW 264.7 cells | 5–100 μg/mL | NG-monomethyl-L- arginine monoacetate (10 μM) | Inhibition NO, PGE2, IL-1β, IL-6, iNOS | [8] |
Flower ethanol extract | Doxorubicin-initiated cardiotoxicity of embryonic rat cardiomyocytes H9c2 | 12.5–800 μg/mL | Dexrazoxane (7.5 μg/mL) | Inhibition ROS, Bax, cleaved-caspase-3, cleaved-caspase-9, cleaved-PARP, NF-κB | [16] |
In vivo study | |||||
Flower ethanol extract | Oropharyngeal aspirational LPS induced acute lung injury of male BALB/c mice | 100–400 mg/kg | Dexamethasone (5 mg/kg) | Inhibition TNF-α, IL-6, NO, p-p38, p-JNK, p-ERK, TLR4, Myd88, p-IκB, p-p65, Keap1; stimulation Nrf2, HO-1, NQO1 | [9] |
Antitumor activity | |||||
In vitro study | |||||
Root ethanol extract | AGS human gastric adenocarcinoma cell | 50–150 μg/mL | 5-Fluorouracil (5 mg/kg) | Inhibition of tumor cells grow | [59] |
Roots ethyl acetate extract | Cell carcinoma cell line SCC15 | 50 μg/mL | 5-Fluorouracil (5 μg/mL) | Inhibition tumor grow, ETS1, Prx1 | [60] |
Root methylene chloride, ethyl acetate, butanol extracts | Human lung adenocarcinoma cells A549 and H1299 | 10–500 μg/mL | 5-Fluorouracil (5 mg/kg) | Inhibition of tumor cells grow | [61] |
In vivo study | |||||
Roots ethanol extract | Mice bearing H22 hepatoma cells | 100–400 mg/kg p.o. | 5-Fluorouracil (5 mg/kg) | Anti-angiogenic and pro-apoptotic effects against H22 hepatoma cells | [62] |
Roots ethyl acetate extract | Human OSCC cell line SCC15 | 12.5–100 μg/mL | 5-Fluorouracil (5 mg/kg) | Induction of apoptosis; suppression of cell invasion and migration; inhibition Prx1, vimentin, Snail | [63] |
Roots water extract | Mice bearing H22 hepatoma cells | 100–400 mg/kg p.o. | 5-Fluorouracil (5 mg/kg) | Inhibition tumor grow, TNF-α | [64] |
Immune-stimulating activity: in vivo study | |||||
Roots ethanol extract | Erythrocyte immune function of rats | 3–15 mg/kg; i.p. | - | Enhancement of erythrocyte immune function | [65] |
Leaf ethanol extract | Cyclophosphamide-induced immunodeficiency of CBA×C57Bl/6 mice | 100 mg/kg; i.p. | Echinacea extract (200 mg/kg) | Increasing of the cellular, humoral, and macrophage immunity | [66] |
Nervous system effects: in vivo study | |||||
Roots ethanol extract | Elevated plus maze test and dark/light chamber of Wistar rats | 100–300 mg/kg; p.o. | Rhaponticum carthamoides extract (100 mg/kg) | Anti-anxiety effect | [67] |
Roots ethanol extract | D-galactose-induced aging of mice | 20–100 mg/kg; p.o. | - | Anti-aging effect | [68] |
Roots ethanol extract | Passive avoidance test of mice | 20–100 mg/kg; p.o. | - | Improving memory impairment | [69] |
Leaf ethanol extract | Passive avoidance test of mice | 50–200 mg/kg; p.o. | Rhaponticum carthamoides extract (100 mg/kg) | Anxiolytic effect | [70] |
Leaf ethanol extract | Hypoxia/reoxygenation of Wistar rats | 100–200 mg/kg; p.o. | Rhaponticum carthamoides extract (100 mg/kg) | Neuroprotective effect | [71] |
Stress-protective activity: in vivo study | |||||
Roots ethanol extract | Immobilization stress and psycho-emotional stress tests of Wistar rats | 100–300 mg/kg; p.o. | Rhaponticum carthamoides extract (100 mg/kg) | Stress-protective effect | [67,72] |
Actoprotective and anabolic activity: in vivo study | |||||
Roots ethanol extract | Physical endurance test of Wistar rats | 100–300 mg/kg; p.o. | Rhaponticum carthamoides extract (100 mg/kg) | Increasing of overall physical endurance, working capacity, ATP in muscles, skeletal muscle mass; decrease metabolic acidosis | [67,68] |
Antihypoxic and anti-ischemic activity: in vivo study | |||||
Roots ethanol extract | Hypercapnic, hemic, histotoxic hypoxia of Wistar rats | 50–200 mg/kg; p.o. | Rhaponticum carthamoides extract (100 mg/kg) | Antihypoxic effect | [67] |
Leaf ethanol extract | Bilateral carotid artery occlusion of Wistar rats | 50–200 mg/kg; p.o. | Rhaponticum carthamoides extract (100 mg/kg) | Decrease mortality, neurological deficit, severity of cerebral edema | [73] |
Hepatoprotective activity | |||||
In vitro study | |||||
Root ethanol extract | H2O2-induced liver cells damage | 12.5–400 μg/mL | - | Icreasing cell viability; reduction LDH, ALT, AST, MDA; increasing GSH | [74] |
Root ethanol extract | H2O2-induced HepG2 cells damage | 25–400 μg/mL | - | Icreasing cell viability, SOD, GSH; reduction LDH, ALT, AST, MDA, caspase-3, 8, 9, cytoplasmic cytochrome C, p-JNK, nuclear NF-κB | [75] |
In vivo study | |||||
Roots water extract | Carbon tetrachloride-induced acute liver injury of mice | 50–200 mg/kg; i.p. | Bifendate (10 mg/kg) | Reduction serum ALT, AST, liver level of LOOH, MDA; increasing liver CAT, GSH-Px, SOD, Mn-SOD, Na+-K+-ATPase and Ca2+-Mg2+-ATPase; DNA damage of hepatocyte | [76] |
Anti-aterosclerotic and hypolypidemic activity: in vivo study | |||||
Root ethanol, water extract | Hypercholesterol diet of mice | 100–400 mg/kg; p.o. | - | Decreasing total cholesterol, total glycerides, LDL-C; icreasing HDL-C | [77] |
Root ethanol extract | Oleic acid-induced fat accumulation in HepG2 cells | 10–500 μg/mL; p.o. | - | Decreasing total cholesterol, total glycerides, LDL-C; icreasing HDL-C | [78] |
Inhibition of PPARγ receptors: in vitro study | |||||
Roots ethanol extract; 7-chloroarctinone b | Cell-based transactivation assay | 1.18–10 μM | - | Inhibition of rosiglitazone-induced transcriptional activity of PPARγ | [79] |
Antioxidant activity: in vitro study | |||||
Root water extract | Total antioxidant activity, hydroxyl radical scavenging, Fe2+-induced lipid peroxidation in liver mitochondria | 0–100 μg/mL | Ascorbic acid | Antioxidant activity | [80] |
Root butanol extract | Total antioxidant activity, hydroxyl radical scavenging, Fe2+-induced lipid peroxidation in liver mitochondria | 0–100 μg/mL | Ascorbic acid | Antioxidant activity | [81] |
Herb ethanol extract | Radical-scavenging activity against 2,2-diphenyl-1-picrylhydrazyl radicals; 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid cation-radicals; superoxide radicals; Fe2+-chelating activity | 5–1000 μg/mL | Ascorbic acid | Antioxidant activity | [43] |
Antibacterial activity: in vitro study | |||||
Root water extract | Inhibition of Gardnerella vaginalis | 0–20 mg/mL | Ampicillin | Bacterial grow inhibition | [82] |
Diuretic activity: in vivo study | |||||
Root water extract | 3-Month application of extract solution by Wistar rats | 100–500 mg/mL; p.o. | - | Moderarte increase of diuresis | [58] |
Antidiabetic activity: in vitro study | |||||
Seed water extract, flavonoids, lignans | Inhibition of pancreatic α-amylase | 0–100 μg/mL | Acarbose | Moderarte inhibition of α-amylase | [29] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olennikov, D.N. The Ethnopharmacological Uses, Metabolite Diversity, and Bioactivity of Rhaponticum uniflorum (Leuzea uniflora): A Comprehensive Review. Biomolecules 2022, 12, 1720. https://doi.org/10.3390/biom12111720
Olennikov DN. The Ethnopharmacological Uses, Metabolite Diversity, and Bioactivity of Rhaponticum uniflorum (Leuzea uniflora): A Comprehensive Review. Biomolecules. 2022; 12(11):1720. https://doi.org/10.3390/biom12111720
Chicago/Turabian StyleOlennikov, Daniil N. 2022. "The Ethnopharmacological Uses, Metabolite Diversity, and Bioactivity of Rhaponticum uniflorum (Leuzea uniflora): A Comprehensive Review" Biomolecules 12, no. 11: 1720. https://doi.org/10.3390/biom12111720
APA StyleOlennikov, D. N. (2022). The Ethnopharmacological Uses, Metabolite Diversity, and Bioactivity of Rhaponticum uniflorum (Leuzea uniflora): A Comprehensive Review. Biomolecules, 12(11), 1720. https://doi.org/10.3390/biom12111720