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Abstract: Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic cancer.
In ~75% of PDAC, the tumor suppressor TP53 gene is mutated. Novel approaches to treat cancer
involve compounds called mutant TP53 reactivators. They interact with mutant TP53 proteins and
restore some of their growth suppressive properties, but they may also interact with other proteins,
e.g., TP63 and TP73. We examined the ability of the TP53 reactivator APR-246 to interact with eleven
modified berberine compounds (NAX compounds) in the presence and absence of WT-TP53 in
two PDAC cell lines: the MIA-PaCa-2, which has gain of function (GOF) TP53 mutations on both
alleles, and PANC-28, which lacks expression of the WT TP53 protein. Our results indicate the TP53
reactivator-induced increase in therapeutic potential of many modified berberines.

Keywords: TP53; PDAC; berberine; NAX compounds; mutant TP53 reactivators

1. Introduction

Pancreatic cancer is the second leading cause of death [1,2]. Most pancreatic cancers
are pancreatic ductal adenocarcinomas (PDAC) [1–3]. Their treatment consists of surgical
resection of the affected part of the pancreas. Unfortunately, the tumor usually comes
back, often due to metastasis to other organs [4,5], and once PDAC has metastasized, it is
difficult, if not impossible, to successfully treat. For decades, chemotherapy has been used
as treatment modality for various cancer patients [5,6] and PDAC patients. However, it is
usually a palliative and not curative approach [3,6–8].

Over the past 25–40 years, many of the genes implicated in PDAC have been identi-
fied [8–13]. Perhaps two of the best-known mutated genes are the oncogene KRAS and the
tumor suppressor gene TP53 [8–13].

Numerous types of the TP53 gene mutations have been documented in PDAC and
other cancers [14–21]. Some mutations are deletions or frame shift mutations and may
result in loss of either all or parts of the TP53 protein (truncations) [19]. These genetic events
could result in TP53 null cells. Such cells could also result from epigenetic alterations,
which suppress the expression of the TP53 gene.

Point mutations at the TP53 gene may result in a protein with an altered activity in
comparison to the WT protein. In some cases, these mutant TP53 proteins may have altered
growth regulatory properties and diverse biochemical effects. Such mutations are referred
to as GOF (gain of function) mutations [14–18]. The mutant GOF TP53 proteins may or
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may not induce the transcription of TP53-regulated genes or may induce the transcription
of other genes, which are not normally targets of TP53. In addition, the GOF mutations
may change interactions of the TP53 proteins with other regulatory proteins [14–18]. For
example, a mutant TP53 can in some cases interact with oncogenic KRas [22–24].

Despite our knowledge of key genes involved in PDAC, therapy remains difficult, and
PDAC patients usually have a poor outcome. Thus, there is dire need to develop more
effective approaches to treat PDAC.

Identification of low molecular weight TP53 activators (reactivators) that interact with
the mutant TP53 protein and restore some of its activity provide an approach to suppress
the effects of GOF TP53 mutations [25–27]. APR-246, also known as PRIMA-1MET and
Eprenetapopt, is a compound with such properties, and it has been examined in several
clinical trials [28–30]. APR-246 (2-hydroxymethyl-2-methoxymethyl-3-quinuclidinone) is a
prodrug and it is converted into 2-methylene-3-quinuclidinone (MQ) to become the active
form, which is a Michael acceptor [31].

The cytotoxic effects of APR-246 have been studied in various cancer types, e.g.,
hematopoietic and prostate cancers [32,33]. In addition, the abilities of APR-246 to suppress
proliferation in breast cancer [34,35], colorectal cancer (CRC) [36], glioblastoma [37], head
and neck cancers [38], melanoma [39], ovarian cancer [40,41], PDAC [42,43], and small and
non-small cell lung cancer cells have been demonstrated [44,45]. In addition, APR-246 has
been shown to overcome the drug resistance of certain primary ovarian cancer cells [41].

Part of the effects of APR-246 may be through the generation of reactive oxygen species
(ROS), which could alter the structure of the mutant TP53 protein [38,46], but APR-246 can
also bind the critical cysteine residues in the core binding domain of mutant TP53 protein
and change its conformation [47]. This can result in reactivation of TP53 activity [25,26,44].
Mutant TP53 “reactivators” may also bind TP63 and TP73 proteins [48]. These TP53
“reactivators” stabilize the proteins and maintain their correctly folded conformation.

BBR is an isoquinoline quaternary alkaloid (a 5,6-dihydrodibenzo[a,g]quinolizinium)
derivative [49–52], which is present in numerous plants. It has been consumed as a nu-
traceutical for many aliments for centuries. More recently, BBR has been shown to improve
cancer therapy, as it suppresses many genes associated with cell growth, inflammation,
prevention of apoptosis, invasion, and metastasis [49,50]. Treatment of “normal cells”
with BBR appears to have minimal effects. In contrast, BBR suppressed the proliferation
of cancerous (e.g., breast, colon, liver, pancreatic) cells [51–55], inhibited the growth of
MIA-PaCa-2 PDAC cells in a xenograft nu/nu mouse model [56], and did not affect the
weight of the mice and appeared to be well tolerated [56].

BBR appears to act on cells through multiple mechanisms. For example, BBR treat-
ment can result in the production of reactive oxygen species (ROS) [49,52], induction of
autophagy, apoptosis, and cellular senescence, suppression of events associated with mi-
gration and metastasis such as inhibition of cytokine/chemokine expression, (interleukin-6
(IL-6), tumor necrosis factor-α, monocyte chemo-attractant protein 1 (MCP1) and COX-2 pro-
duction [49,57–60]. BBR treatment induces AMP-activated protein kinase (AMPK) [61] and
TP53 activation via ROS and inhibits mTORC1 phosphorylation [56]. BBR can also induce
double strand DNA breaks (DBS) [62]. In some cases, these processes are TP53 dependent.

A diagram of the effects of APR-246 and BBR on various aspects of cancer growth is
presented in Figure 1.

As expected for a nutraceutical, BBR normally is not highly toxic or growth inhibitory.
Thus, multiple approaches have been made to increase the effectiveness of BBR to suppress
cell growth and other processes. A panel of modified BBRs has been developed (NAX
compounds) [63–65]. Some of these modified BBRs interact with their intracellular targets
more effectively than BBR [66–70]. For example, NAX014 inhibited β-catenin signaling at
100-fold lower concentrations than BBR [70].

In the following studies, we examined the abilities of the mutant TP53 reactivator
APR-246 to increase the abilities of BBR and NAX compounds to inhibit the proliferation of
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two PDAC cell lines, one of which has GOF mutations in the p53 protein and the other of
which is TP53 null, before and after introduction of WT-TP53.
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Figure 1. Diagram representing effects of APR-246, BBR and NAX compounds on TP53 activity
and cell growth and apoptosis. Restoration of some of the activity of WT TP53 will have effects on
expression of miRs, cell cycle regulators and apoptotic molecules. NAC, N-acetylcysteine; APR-246,
2-hydroxymethyl-2-methoxymethyl-3-quinuclidinone; MQ, 2-methylene-3-quinuclidinone; BBR,
berberine; Mut-TP53, mutant TP53; green arrows, promote activity; red arrows, block activity; red X
in arrow, activity is blocked.

2. Materials and Methods
2.1. Cell Lines

The sources of the PDAC cell lines and culture conditions have been extensively
described previously [71–79].

2.2. Sources of APR-246, BBR and NAX Compounds

The sources of these compounds have been previously described. APR-246 was bought
from Selleck Chemicals (Houston, TX, USA). BBR was purchased from MilliporeSigma
(Saint Louis, MO, USA). Dr. Paolo Lombardi provided the NAX compounds (Naxospharma
(Novate Milanese, Italy).

2.3. Transduction of MIA-PaCa-2 and PANC-28 Cells with a Vector Encoding WT-TP53 or an
Empty Vector Control

The sources of vectors encoding WT-TP53 and pLXSN been described previously [80,81].
Retroviral transduction was previously described [75,82–84].

2.4. Measurements of Cellular Proliferation

Cellular growth assays were performed as described [75,81–84] by MTT assays. In
the experiments where a low dose of APR-246 was added with BBR and the various NAX
compound, on day 0, the indicated cell lines were seeded in the 96-well plates. On day 1,
various 2-fold dilutions were made of the BBR and NAX compounds in centrifuge tubes,
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and then they were added in triplicate wells to the 96-well plates in duplicate. After the
BBR and NAX compounds were added, 12.5 nM APR-246 was added to one set of plates,
while an equal volume of tissue culture medium was added to the other set of plates.

2.5. Clonogenicity Assays

Clonogenicity assays were carried out as described [75–78]. Low doses of APR-246
BBR and NAX060 were determined by titration experiments to not suppress growth by
more than 50% Figures 2 and 3 [77–79].
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Figure 2. The ability of APR-246 to suppress the growth of PDAC cells is dependent on the presence
of either an WT-TP53 or mut-TP53 protein. Panel (A) MIA-PaCa-2 + pLXSN cells (control cells lacking
WT-TP53 but containing GOF TP53 and pLXSN) (red squares) and MIA-PaCa-2 + WT-TP53 cells
(containing both WT-TP53 and GOF TP53) (blue triangles). Panel (B) PANC-28 + pLXSN cells (lacking
detectable TP53 but containing and pLXSN) (red squares) and PANC-28 + WT-TP53 cells (containing
both WT-TP53 and GOF TP53) (blue triangles). These experiments were repeated 4 times, and similar
results were obtained. Blue and red arrows on the X-axis indicate when the IC50s were estimated,
*** = p < 0.0001, NS, not statistically significant.
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Figure 3. APR-246 does not enhance the responses of berberine or NAX012 to MIA-PaCa-2 cells
containing or lacking WT-TP53 protein. Panel (A) MIA-PaCa-2 + pLXSN cells treated with different
concentrations of BBR (red squares) or with different concentrations of BBR and a low dose of APR-246
(blue triangles). Panel (B) MIA-PaCa-2 + WT-TP53 cells treated with different concentration of BBR
(red squares) or with different concentrations of BBR and a low dose of APR-246 (blue triangles).
Panel (C) MIA-PaCa-2 + pLXSN cells treated with different concentrations of NAX012 (red squares)
with different concentrations of NAX012 and a low dose of APR-246 (blue triangles). Panel (D)
MIA-PaCa-2 + WT-TP53 cells treated with different concentration of NAX012 (red squares) or with
different concentrations of NAX012 and a low dose of APR-246 (blue triangles). These experiments
were repeated 4 times, and similar results were observed. * = p < 0.05, NS, not statistically significant.
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2.6. Statistical Analysis

MTT experiments were set up as described [77–79] in triplicate, with a series of 11 serial
2-fold dilutions as well as an untreated control. The means and standard deviation of the
samples were calculated by GraphPad Prism software (San Diego, CA, USA). Statistical
significance of the comparison of two means of IC50s of two different culture conditions
(+/− 12.5 nM APR-246) or clonogenicity of two different cell types was calculated using
the GraphPad QuickCalcs software using an unpaired t test with a 95% confidence interval.

3. Results
3.1. Effects of the Mutant TP53 Reactivator on Two PDAC Cell Lines

The effects of the mutant TP53 reactivator were examined on two PDAC cell lines:
MIA-PaCa-2, which contains GOF TP53 genes on both alleles [71], and PANC-28, which
does not express detectable levels of the TP53 protein [73]. Into these cells, we introduced
either a vector containing the WT-TP53 cDNA [79] or the control parental vector (pLXSN)
lacking any insert [80]. Both vectors encode resistance to G418.

MIA-PaCa-2 + WT-TP53 cells were about 1.5-fold more sensitive to APR-246 than
MIA-PaCa-2 + pLXSN cells (Figure 2A). PANC-28 + pLXSN cells were not sensitive to
APR-246 (IC50 > 2000 nM). However, upon introduction of WT-TP53 into the cells, they
became > 8-fold more sensitive to APR-246 (IC50 = 250 nM) (Figure 2B).

3.2. Interactions between Berberine (BBR), Chemically Modified BBRs (NAX Compounds) and
APR-246 in MIA-PaCa-2 + pLXSN and MIA-PaCa-2 + WT-TP53 Cells

To determine whether the effects of BBR and NAX compounds on the growth of
PDAC cells could be enhanced by the mutant TP53 reactivator APR-246, MIA-PaCa-2 cells
containing or lacking TP53 were plated in the presence and absence of a low concentration
of APR-246. The addition of 12.5 nM APR-246 had a mild effect on the sensitivity of
MIA-PaCa-2 + pLXSN and MIA-PaCa-2 + WT-TP53 cells. As in both cases, the IC50 of the
combination of BBR and APR-246 decreased only 1.1-fold (Figure 3A,B). These results are
also summarized in Table 1.

Table 1. Effects of WT-TP53 on the sensitivity of MIA-PaCa-2 PDAC cells to APR-246 1.

Berberine or
NAX

Compound

MIA-PaCa-
2 + pLXSN
(-APR-246)

MIA-PaCa-2
+ pLXSN
(+12.5 nM
APR-246)

p Value
and Statistical
Significance

Symbol

Fold
Change

+/−
APR-246

MIA-PaCa-2
+ WT-TP53
(-APR-246)

MIA-PaCa-2
+ WT-TP53
(+12.5 nM
APR-246)

p Value
and Statistical
Significance

Symbol

Fold
Change

+/−
APR-246

Berberine 1200 nM 1100 nM p = 0.047, * 1.1 × ↓ 1100 nM 1000 nM p = 1, NS 1.1 × ↓
NAX012 1000 nM 1000 nM p = 1, NS 1 × 700 nM 700 nM p = 1, NS 1 ×
NAX014 1100 nM 1000 nM p = 0.048, * 1.1 × ↓ 700 nM 160 nM p < 0.0001, *** 4.4 × ↓
NAX035 500 nM 450 nM p = 0.035, * 1.1 × ↓ 300 nM 16 nM p < 0.0001, *** 18.8 × ↓
NAX038 600 nM 500 nM p < 0.0001, *** 1.2 × ↓ 380 nM 300 nM p = 0.004, ** 1.3 × ↓
NAX042 380 nM 300 nM p = 0.005, * 1.3 × ↓ 300 nM 13 nM p < 0.0001, *** 23 × ↓
NAX053 300 nM 200 nM p = 0.0002, ** 1.5 × ↓ 200 nM 2 nM p < 0.0001, *** 100 × ↓
NAX054 >2000 nM >2000 nM p = 1, NS 1 × >2000 nM 1000 nM p < 0.0001, *** >2 × ↓
NAX060 800 nM 400 nM p < 0.0001, *** 2 × ↓ 220 nM 2 nM p < 0.0001, *** 110 × ↓
NAX075 >2000 nM 500 nM p < 0.0001, *** >4 × ↓ 1000 nM 2.8 nM p < 0.0001, *** 357 × ↓
NAX077 >2000 nM 800 nM p < 0.0001, *** >2.5 × ↓ 1900 nM 1100 nM p = 0.0052, * 1.7 × ↓
NAX111 300 nM 100 nM p < 0.0001, *** 3 × ↓ 250 nM 200 nM p < 0.0001, *** 1.3 × ↓

1 Determined as described in [78,79,82–84]. *** = p < 0.0001, ** = p < 0.005, * = p < 0.05, and NS = not statistically significant.

Then, the combination of APR-246 with 11 structurally different NAX compounds
was examined in MIA-PaCa-2 + WT-TP53 and MIA-PaCa-2 + pLXSN. The low dose
of APR-246 did not lower the IC50 of NAX012 in either MIA-PaCa-2 + WT-TP53 or
MIA-PaCa-2 + pLXSN cells (Figure 3C,D), and had only a mild effect on the sensitiv-
ity of MIA-PaCa-2 + pLXSN to NAX014 as the IC50 decreased 1.1-fold (Figure 4A). In
contrast, the presence of APR-246 had a more significant effect on the sensitivity of
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MIA-PaCa-2 + WT-TP53 cells to NAX014, as the IC50 decreased 4.4-fold from 700 to 160 nM
(Figure 4B).
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Figure 4. APR-246 is more effective in enhancing the effects of NAX014 and NAX035 in MIA-
PaCa-2 cell when WT-TP53 is present. Panel (A) MIA-PaCa-2 + pLXSN cells treated with different
concentrations of NAX014 (red squares) or with different concentrations of NAX014 and a low dose of
APR-246 (blue triangles). Panel (B) MIA-PaCa-2 + WT-TP53 cells treated with different concentrations
of NAX014 (red squares) or with different concentrations of NAX014 and a low dose of APR-246 (blue
triangles). Panel (C) MIA-PaCa-2 + pLXSN cells treated with different concentrations of NAX035 (red
squares) or with different concentrations of NAX035 and a low dose of APR-246 (blue triangles). Panel
(D) MIA-PaCa-2 + WT-TP53 cells treated with different concentrations of NAX035 (red squares) or
with different concentrations of NAX035 and a low dose of APR-246 (blue triangles). The experiments
were repeated 4 times, and similar results were observed. *** = p < 0.0001, ** = p < 0.005, * = p < 0.05,
NS, not statistically significant.

In the presence of APR-246, the sensitivity of MIA-PaCa-2 + pLXSN cells to NAX035
decreased only slightly (1.1-fold), but in MIA-PaCa-2 + WT-TP53 cells, the TP53 reactivator
reduced the NAX035 IC50 almost 19-fold (Figure 4C,D).

Addition of the low dose of APR-246 had a mild effect on the sensitivity of both
MIA-PaCa-2 + pLXSN MIA-PaCa-2 + WT-TP53 cells to NAX038 as the IC50 decreased,
respectively, 1.2- and 1.3-fold (Figure 5A,B).

A dose of APR-246 had a similar mild effect on the sensitivity of MIA-PaCa-2 + pLXSN
to NAX042 (Figure 5, Panel C). In contrast, APR-246 had a more significant effect on the
sensitivity of MIA-PaCa-2 + WT-TP53 cells to NAX042 as the IC50 decreased 23-fold, from
300 to 13 nM (Figure 5D).

APR-246 decreased the sensitivity of MIA-PaCa-2 + pLXSN cells to NAX053 only
1.5-fold (Figure 6, Panel A), but it had a more significant on the sensitivity of MIA-PaCa-2 +
WT-TP53 cells to NAX053 as the IC50 decreased 100-fold from 200 to 2 nM (Figure 6B).

Previously we have observed that NAX054 did not have any significant effects on
MIA-PaCa-2 cells [77,78]. Likewise, NAX054 did not have effects on MIA-PaCa-2 + pLXSN
in the presence of ABR-246. However, in MIA-PaCa-2 + WT-TP53 cells, APR-246 reduced
the IC50 to NAX054 at least two-fold (Figure 6C,D).

The low dose of APR-246 had an effect on the sensitivity of MIA-PaCa-2 + pLXSN
cells to NAX075 as the IC50 decreased >4-fold from >2000 to 500 nM (Figure 7C), but it had
a more significant effect on the sensitivity of MIA-PaCa-2 + WT-TP53 cells to NAX075 as
the IC50 decreased 357-fold from 1000 to 2.8 nM (Figure 7D).
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Figure 5. APR-246 has minimal effects on the responses of NAX038 on MIA-PaCa-2 cells in the presence
and absence of WT-TP53, while APR-246 enhances the responses of NAX042 in MIA-PaCa-2 cells when
WT-TP53 is present. Panel (A) MIA-PaCa-2 + pLXSN cells treated with different concentrations of NAX038
(red squares) or with different concentrations of NAX054 and a low dose of APR-246 (blue triangles). Panel
(B) MIA-PaCa-2 + WT-TP53 cells treated with different concentrations of NAX038 (red squares) or with
different concentrations of NAX038 and a low dose of APR-246 (blue triangles). Panel (C) MIA-PaCa-2 +
pLXSN cells treated with different concentration of NAX042 (red squares) or with different concentrations
of NAX042 and a low dose of APR-246 (blue triangles). Panel (D) MIA-PaCa-2 + WT-TP53 cells treated
with different concentrations of NAX042 (red squares) or with different concentrations of NAX042 and a
low dose of APR-246 (blue triangles). The measurements were repeated 4 times, and similar results were
observed. *** = p < 0.0001, ** = p < 0.005, * = p < 0.05.
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Figure 6. APR-246 enhances the responses of NAX053 in MIA-PaCa-2 when WT-TP53 is present,
while APR-236 has less effects on the responses of NAX054 on MIA-PaCa-2 cells in the presence of
WT-TP53. Panel (A) MIA-PaCa-2 + pLXSN cells treated with different concentrations of NAX053
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(red squares) or with different concentrations of NAX053 and a low dose of APR-246 (blue triangles).
Panel (B) MIA-PaCa-2 + WT-TP53 cells treated with different concentrations of NAX053 (red squares)
or with different concentrations of NAX053 and a low dose of APR-246 (blue triangles). Panel
(C) MIA-PaCa-2 + pLXSN cells treated with different concentration of NAX054 (red squares) or
with different concentrations of NAX054 and a low dose of APR-246 (blue triangles). Panel (D)
MI-PaCa-2 + WT-TP53 cells treated with different concentrations of NAX054 (red squares) or with
different concentrations of NAX054 and a low dose of APR-246 (blue triangles). The measurements
were repeated 4 times, and similar results were observed. *** = p < 0.0001, ** = p < 0.005.

The low dose of APR-246 had an effect on the sensitivity of MIA-PaCa-2 + pLXSN
cells to NAX060 as the IC50 decreased two-fold from 800 to 400 nM (Figure 7, Panel A),
but it had a more significant effect on the sensitivity of MIA-PaCa-2 + WT-TP53 cells to
NAX060 as the IC50 decreased 110-fold from 220 to 2 nM (Figure 7B).
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Figure 7. APR-246 is more effective in enhancing the effects of NAX060 and NAX075 in MIA-
PaCa-2 cell when WT-TP53 is present. Panel (A) MIA-PaCa-2 + pLXSN cells treated with different
concentrations of NAX060 (red squares) or with different concentrations of NAX060 and a low dose of
APR-246 (blue triangles). Panel (B) MIA-PaCa-2 + WT-TP53 cells treated with different concentrations
of NAX060 (red squares) or with different concentrations of NAX060 and a low dose of APR-246 (blue
triangles). Panel (C) MIA-PaCa-2 + pLXSN cells treated with different concentration of NAX075 (red
squares) or with different concentrations of NAX075 and a low dose of APR-246 (blue triangles). Panel
(D) MI-PaCa-2 + WT-TP53 cells treated with different concentrations of NAX075 (red squares) or with
different concentrations of NAX075 and a low dose of APR-246 (blue triangles). The measurements
were repeated 4 times, and similar results were observed. *** = p < 0.0001.

APR-246 reduced >2.5-fold the IC50 of NAX077 in the MIA-PaCa-2 + pLXSN but only
1.7-fold in MIA-PaCa-2 + WT-TP53 (Figure 8A,B).

Similarly, APR-246 had a stronger effect on the sensitivity of MIA-PaCa-2 + pLXSN
than of MIA-PaCa-2 + WT-TP53 cells to NAX111, as the IC50 for this compound decreased
three-fold in the former cells and only 1.3-fold in the latter cells (Figure 8C,D).

In summary, the addition of a low dose of APR-246 could increase the cytotoxic effects
of certain NAX compounds on MIA-PaCa-2 cells. The most significant effect—over 100-fold
increase in sensitivity to NAX—was observed with MIA-PaCa-2 + WT-TP53 with NAX060.

Surprisingly, APR-246 has stronger effects on MIA-PaCa-2 + pLXSN than of MIA-
PaCa-2 + WT-TP53 when combined with NAX077 and NAX111.
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Figure 8. APR-246 has minimal effects on enhancing the effects of NAX077 and NAX111 in the presence
and absence of WT-TP53. Panel (A) MIA-PaCa-2 + pLXSN cells treated with different concentrations
of NAX075 (red squares) or with different concentrations of NAX075 and a low dose of APR-246 (blue
triangles). Panel (B) MIA-PaCa-2 + WT-TP53 cells treated with different concentrations of NAX075
(red squares) or with different concentrations of NAX075 and a low dose of APR-246 (blue triangles).
Panel (C) MIA-PaCa-2 + pLXSN cells treated with different concentration of NAX111 (red squares)
or with different concentrations of NAX111 and a low dose of APR-246 (blue triangles). Panel (D)
MI-PaCa-2 + WT-TP53 cells treated with different concentrations of NAX111 (red squares) or with
different concentrations of NAX111 and a low dose of APR-246 (blue triangles). The measurements were
repeated 4 times, and similar results were observed. *** = p < 0.0001, ** = p < 0.005, and * = p < 0.05.

3.3. Abilities of Low Doses of BBR or NAX060 to Increase the Cytotoxicity of APR-246 and
Decrease Clonogenicity of MIA-PaCa-2 Cells Containing and Lacking WT-TP53

In subsequent experiments, we tested a promising combination: APR-246, and NAX060,
and APR-246 with BBR as the benchmark, in terms of their abilities to influence the
clonogenicity of the MIA-PaCa-2 cells containing and lacking WT-TP53. This time, we used
different concentrations of APR-246 and low doses of BBR or NAX060 (Figure 9).

APR-246 inhibited the clonogenicity of MIA-PaCa-2 + pLXSN and MIA-PaCa-2 + WT-
TP53 cells in a dose-dependent fashion. Furthermore, the addition of a low dose of berberine
resulted in increased suppression of growth (Figure 9A). The effects of APR-246 were greater
when the MIA-PaCa-2 + WT-TP53 cells were treated with higher concentrations of APR-246
and BBR than in MIA-PaCa-2 + pLXSN cells. Higher APR-246 concentrations had stronger
effects on MIA-PaCa-2 + WT-TP53 than control cells which lacked WT TP53.

Likewise, a low dose of NAX060 suppressed clonogenicity in both MIA-PaCa-2 + pLXSN
and MIA-PaCa-2 + WT-TP53 cells (Figure 9B). As observed previously (Figure 3A,B and
Figure 7A,B), NAX060 suppressed growth to a greater extent than BBR, and a higher
level of growth inhibition was observed in MIA-PaCa-2 + WT-TP53 than in MIA-PaCa-2 +
WT-TP53 cells.

A summary of the effects of combination of APR-246, BBR an NAX compounds in
both MIA-PaCa-2 + pLXSN and MIA-PaCa-2 + WT-TP53 cells is presented in Figure 10.
Included in this figure as well are the structures of BBR and the NAX compounds.
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Figure 9. Both berberine and NAX60 can increase the effects of APR-246 on clonogenicity of MIA-
PaCa-2 cells in the presence and absence of WT-TP53. The effects of ABR-246 on colony formation in
the presence of low doses of BBR (Panel (A)) or NAX060 (Panel (B)) were examined. MIA-PaCa-2 +
pLXSN in the absence of BBR or NAX060 (red bars), MIA-PaCa-2 + WT-TP53 in the absence of BBR
or NAX060 (blue bars), MIA-PaCa-2 + pLXSN in the presence of APR-246 and 100 nM BBR (green
bars), MIA-PaCa-2 + WT-TP53 in the presence of APR-246 of 100 nM NAX060 (Panel (B)) (yellow
bars). The clonogenicities for each cell type and each treatment condition were repeated 3 times, and
similar results were observed. ** = p < 0.005, * = p < 0.05, NS, not statistically significant.

3.4. Interactions between Berberine (BBR), Chemically Modified BBRs (NAX Compounds) and
APR-246 in PANC-28 + pLXSN and PANC-28 + WT-TP53 Cells

Next, we determined whether the effects of BBR and NAX compounds on the growth
of PDAC cells could be enhanced by the low concentration (12.5 nM) of mutant TP53
reactivator APR-246 also in PANC-28 cells containing or lacking WT TP53.

Addition of APR-246 had a mild effect on the sensitivity of PANC + pLXSN as the IC50
on the combination of BBR and APR-246 decreased only 1.1-fold, from 1600 to 1500 nM
(Figure 11A). In contrast, when PANC-28 + WT-TP53 cells were treated with APR-246,
the IC50 for BBR decreased 55.6-fold from 1000 to 18 nM (Figure 11B). These results are
summarized in Table 2.

Table 2. Effects of WT-TP53 on the sensitivity of PANC-28 PDAC cells to APR-246 1.

Berberine or
NAX

Compound

PANC-28
+ pLXSN

(-APR-
246)

PANC-28 +
pLXSN

(+12.5 nM
APR-246)

p Value
and Statistical
Significance

Symbol

Fold
Change

+/−APR-
246

PANC-28 +
WT-TP53

(-APR-246)

PANC-28 +
WT-TP53

(-APR-246)

p Value
and Statistical
Significance

Symbol

Fold
Change

+/−
APR-246

Berberine 1600 nM 1500 nM p = 0.119, NS 1.1 × ↓ 1000 nM 18 nM p < 0.0001, *** 55.6 × ↓
NAX012 2000 nM 500 nM p < 0.0001, *** 4 × ↓ 800 nM 5.5 nM p < 0.0001, *** 145 × ↓
NAX014 1200 nM 700 nM p = 0.0002, ** 1.7 × ↓ 500 nM 2 nM p < 0.0001, *** 250 × ↓
NAX035 700 nM 700 nM p = 1, NS 1 × 50 nM 4 nM p < 0.0001, *** 12.5 × ↓
NAX038 2000 nM 1000 nM p < 0.0001, *** 2 × ↓ 120 nM 2.2 nM p < 0.0001, *** 54.5 × ↓
NAX042 1500 nM 1000 nM p < 0.0001, *** 1.5 × ↓ 32 nM 7 nM p < 0.0001, *** 4.6 × ↓
NAX053 600 nM 600 nM p = 1, NS 1 × 65 nM 4 nM p < 0.0001, *** 16.3 × ↓
NAX054 >2000 nM >2000 nM p = 1, NS 1 × >2000 nM >2000 nM p = 1, NS 1 ×
NAX060 450 nM 200 nM p < 0.0001, *** 2.3 × ↓ 120 nM 9 nM p < 0.0001, *** 13.3 × ↓
NAX075 1200 nM 1200 nM p = 1, NS 1 × 1000 nM 45 nM p < 0.0001, *** 22.2 × ↓
NAX077 1700 nM 1700 nM p = 1, NS 1 × 1500 nM 1.5 nM p < 0.0001, *** 1000 × ↓
NAX111 1000 nM 1000 nM p = 1, NS 1 × 150 nM 6 nM p < 0.0001, *** 25 × ↓

1 Determined as described in [78,82–84]. *** = p < 0.0001, ** = p < 0.005, and NS = not statistically significant.
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3.4. Interactions between Berberine (BBR), Chemically Modified BBRs (NAX Compounds) and 

APR-246 in PANC-28 + pLXSN and PANC-28 + WT-TP53 Cells 

Figure 10. Chemical structures of BBR and NAX compounds and the potential effects of
the mutant TP53 reactivator APR-246 to increase their toxicity of MIA-PaCa-2 + pLXSN and
MIA-PaCa-2 + WT-TP53 cells. Abilities of APR-246 to interact with BBR and NAX compounds
and to cause increased growth inhibition in MIA-PaCa-2 cells either in the presence of GOF m-TP53 or
GOF-mTP53 + introduced WT-TP53. Mut-TP53, mutant TP53. (A) = Berberine, (B) = NAX012,
(C) = NAX014, (D) = NAX035, (E) = NAX038, (F) = NAX042, (G) = NAX053, (H) = NAX054,
(I) = NAX060, (J) = NAX075, (K) = NAX077, (L) = NAX111.

Then, we tested the same panel of compounds as in the case of MIA-PaCa-2 cells
on PANC-28 cells. The addition of APR-246 had no or only moderate effects on the
sensitivity of PANC-28 + pLXSN to NAX compounds (Figures 11–16). The best results
for PANC-28 + pLXSN cells were obtained in the combination with NAX012: APR-246
lowered the IC50 for this compound four-fold (Figure 11C).
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Berberine 1600 nM 1500 nM p = 0.119, NS 1.1 ×  1000 nM 18 nM p < 0.0001, *** 55.6 ×  

NAX012 2000 nM 500 nM p < 0.0001, *** 4 ×  800 nM 5.5 nM p < 0.0001, *** 145 ×  

NAX014 1200 nM 700 nM p = 0.0002, ** 1.7 ×  500 nM 2 nM p < 0.0001, *** 250 ×  

NAX035 700 nM 700 nM p = 1, NS 1 × 50 nM 4 nM p < 0.0001, *** 12.5 ×  

NAX038 2000 nM 1000 nM p < 0.0001, *** 2 ×  120 nM 2.2 nM p < 0.0001, *** 54.5 ×  

NAX042 1500 nM 1000 nM p < 0.0001, *** 1.5 ×  32 nM 7 nM p < 0.0001, *** 4.6 ×  

Figure 11. APR-246 enhances the effects of berberine when WT-TP53 is present in PANC-28 cells,
while APR-246 enhances the effects of NAX012 in PANC-28 cells in the presence of WT-TP53 greater
than in the absence of WT-TP53. Panel (A) PANC-28 + pLXSN cells treated with different concen-
trations of BBR (red squares) or PANC-28 + pLXSN cells treated with different concentrations of
BBR and a low dose of APR-246 (blue triangles). Panel (B) PANC-28 + WT-TP53 cells treated with
different concentration of BBR (red squares) or with different concentrations of BBR and a low dose
of APR-246 (blue triangles). Panel (C) PANC-28 + pLXSN cells treated with different concentrations
of NAX012 (red squares) or with different concentrations of NAX012 and a low dose of APR-246
(blue triangles). Panel (D) PANC-28 + WT-TP53 cells treated with different concentration of NAX012
(red squares) or with different concentrations of NAX012 and a low dose of APR-246 (blue triangles).
These experiments were repeated 3 times and similar results were observed. *** = p < 0.0001, and NS,
not statistically significant.

Biomolecules 2022, 12, 276 15 of 26 
 

NAX053 600 nM 600 nM p = 1, NS 1 × 65 nM 4 nM p < 0.0001, *** 16.3 ×  

NAX054 >2000 nM >2000 nM p = 1, NS 1 × >2000 nM >2000 nM p = 1, NS 1 × 

NAX060 450 nM 200 nM p < 0.0001, *** 2.3 ×  120 nM 9 nM p < 0.0001, *** 13.3 ×  

NAX075 1200 nM 1200 nM p = 1, NS 1 × 1000 nM 45 nM p < 0.0001, *** 22.2 ×  

NAX077 1700 nM 1700 nM p = 1, NS 1 × 1500 nM 1.5 nM p < 0.0001, *** 1000 ×  

NAX111 1000 nM 1000 nM p = 1, NS 1 × 150 nM 6 nM p < 0.0001, *** 25 ×  
1 Determined as described in [78,82–84]. *** = p <0.0001, ** = p <0.005, p =<0. 05, and NS = not 

statistically significant. 

Then, we tested the same panel of compounds as in the case of MIA-PaCa-2 cells on 

PANC-28 cells. The addition of APR-246 had no or only moderate effects on the sensitivity 

of PANC-28 + pLXSN to NAX compounds (Figures 11–16). The best results for PANC-28 

+ pLXSN cells were obtained in the combination with NAX012: APR-246 lowered the IC50 

for this compound four-fold (Figure 11C). 

 

Figure 12. APR-246 enhances the effects of NAX014 greater when WT-TP53 is present in PANC-28 

cells, while APR-246 enhances the effects of NAX035 in PANC-28 cells in the presence of WT-TP53 

but not in the absence of WT-TP53. Panel (A) PANC-28 + pLXSN cells treated with different 

concentrations of NAX014 (red squares) or with different concentrations of NAX014 and a low dose 

of APR-246 (blue triangles). Panel (B) PANC-28 + WT-TP53 cells treated with different 

concentrations of NAX014 (red squares) or with different concentrations of NAX014 and a low dose 

of APR-246 (blue triangles). Panel (C) PANC-28 + pLXSN cells treated with different concentrations 

of NAX035 (red squares) or with different concentrations of NAX035 and a low dose of APR-246 

(blue triangles). Panel (D) PANC-28 + WT-TP53 cells treated with different concentrations of 

NAX035 (red squares) or with different concentrations of NAX035 and a low dose of APR-246 (blue 

triangles). The measurements were repeated 3 times, and similar results were observed. *** = p < 

0.0001, ** = p < 0.005, NS, not statistically significant. 

Figure 12. APR-246 enhances the effects of NAX014 greater when WT-TP53 is present in PANC-28
cells, while APR-246 enhances the effects of NAX035 in PANC-28 cells in the presence of WT-TP53 but
not in the absence of WT-TP53. Panel (A) PANC-28 + pLXSN cells treated with different concentrations
of NAX014 (red squares) or with different concentrations of NAX014 and a low dose of APR-246 (blue
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triangles). Panel (B) PANC-28 + WT-TP53 cells treated with different concentrations of NAX014 (red
squares) or with different concentrations of NAX014 and a low dose of APR-246 (blue triangles).
Panel (C) PANC-28 + pLXSN cells treated with different concentrations of NAX035 (red squares)
or with different concentrations of NAX035 and a low dose of APR-246 (blue triangles). Panel (D)
PANC-28 + WT-TP53 cells treated with different concentrations of NAX035 (red squares) or with
different concentrations of NAX035 and a low dose of APR-246 (blue triangles). The measurements
were repeated 3 times, and similar results were observed. *** = p < 0.0001, ** = p < 0.005, NS, not
statistically significant.
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Figure 13. APR-246 enhances the effects of NAX038 and NAX043 greater when WT-TP53 is present
in PANC-28 cells than when WT-TP53 is absent. Panel (A) PANC-28 + pLXSN cells treated with
different concentrations of NAX038 (red squares) or with different concentrations of NAX038 and
a low dose of APR-246 (blue triangles). Panel (B) PANC-28 + WT-TP53 cells treated with different
concentrations of NAX038 (red squares) or with different concentrations of NAX038 and a low dose
of APR-246 (blue triangles). Panel (C) PANC-28 + pLXSN cells treated with different concentration of
NAX042 (red squares) or with different concentrations of NAX042 and a low dose of APR-246 (blue
triangles). Panel (D) PANC-28 + WT-TP53 cells treated with different concentrations of NAX042 (red
squares) or with different concentrations of NAX042 and a low dose of APR-246 (blue triangles). The
measurements were repeated 3 times, and similar results were observed. *** = p < 0.0001.
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not in the absence of WT-TP53, while APR-246 does not increase the effects of NAX054 in the presence
or absence of WT-TP53. Panel (A) PANC-28 + pLXSN cells treated with different concentrations of
NAX053 (red squares) or with different concentrations of NAX053 and a low dose of APR-246 (blue
triangles). Panel (B) PANC-28 + WT-TP53 cells treated with different concentrations of NAX053 (red
squares) or with different concentrations of NAX053 and a low dose of APR-246 (blue triangles). Panel
(C) + PANC-28 + pLXSN cells treated with different concentration of NAX054 (red squares) or with
different concentrations of NAX054 and a low dose of APR-246 (blue triangles). Panel (D) PANC-28
+ WT-TP53 cells treated with different concentrations of NAX054 (red squares) or with different
concentrations of NAX054 and a low dose of APR-246 (blue triangles). The measurements were
repeated 3 times, and similar results were observed. *** = p < 0.0001, NS, not statistically significant.
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Figure 15. APR-246 enhances the effects of NAX060 on PANC-28 cells more in the presence of WT-
TP53 than in the absence of WT-TP53, while APR-246 enhances the effects of NAX075 in the presence of
WT-TP53 but not in the absence of WT-TP53. Panel (A) PANC-28 + pLXSN cells treated with different
concentrations of NAX060 (red squares) or with different concentrations of NAX060 and a low dose of
APR-246 (blue triangles). Panel (B) PANC-28 + WT-TP53 cells treated with different concentrations of
NAX060 (red squares) or with different concentrations of NAX060 and a low dose of APR-246 (blue
triangles). Panel (C) PANC-28 + pLXSN cells treated with different concentration of NAX075 (red
squares) or with different concentrations of NAX075 and a low dose of APR-246 (blue triangles). Panel
(D) PANC-28 + WT-TP53 cells treated with different concentrations of NAX075 (red squares) or with
different concentrations of NAX075 and a low dose of APR-246 (blue triangles). The measurements
were repeated, and similar results were observed. *** = p < 0.0001, NS, not statistically significant.

In turn, in the case of PANC-28 + WT-TP53 cells, the low dose of APR-246 was more
effective in reducing the IC50 for almost all the tested NAX compounds (Figures 11–16). The
only exception was NAX054, whose IC50 remained unchanged by APR-246 (Figure 14D).
This is, however, in agreement with our previous studies showing that NAX054 did not
have any significant effects on PANC-28 cells [81].

The most impressive influence of the low dose of APR-246 was observed in the case of
NAX077 as the IC50 for this compound in PANC-28 + WT-TP53 cells decreased 1000-fold
from 1500 to 1.5 nM (Figure 16B). All data are summarized in Table 2.

3.5. Abilities of Low Doses of BBR or NAX060 to Increase the Cytotoxicity of APR-246 and
Decrease Clonogenicity of PANC-28 Cells Containing and Lacking WT-TP53

We compared the effectiveness of low doses of NAX060 and BBR to influence the
clonogenicity of the PANC-28 cells containing and lacking WT-TP53 in the presence of
increasing concentrations of APR-246 (Figure 17).
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Figure 16. APR-246 enhances the effects of NAX077 and NAX11 on PANC-28 cells in the presence
of WT-TP53 but not in the absence of WT-TP53. Panel (A) PANC-28 + pLXSN cells treated with
different concentrations of NAX075 (red squares) or with different concentrations of NAX075 and
a low dose of APR-246 (blue triangles). Panel (B) PANC-28 + WT-TP53 cells treated with different
concentrations of NAX075 (red squares) or with different concentrations of NAX075 and a low dose
of APR-246 (blue triangles). Panel (C) PANC-28 + pLXSN cells treated with different concentration of
NAX111 (red squares) or with different concentrations of NAX111 and a low dose of APR-246 (blue
triangles). Panel (D) PANC-28 + WT-TP53 cells treated with different concentrations of NAX111 (red
squares) or with different concentrations of NAX111 and a low dose of APR-246 (blue triangles). The
measurements were repeated 3 times, and similar results were observed. *** = p < 0.0001, and NS, not
statistically significant.

Biomolecules 2022, 12, 276 19 of 26 
 

 

Figure 17. Both berberine and NAX60 can increase the effects of APR-246 on clonogenicity of PANC-

28 cells in the presence WT-TP53, but in the absences of WT-TP53 they have less effects on 

clonogenicity. The effects of ABR-246 on clonogenicity in the presence of low doses of BBR (Panel 

(A)) or NAX060 (Panel (B)) were examined. PANC-28 + pLXSN in the absence of BBR or NAX060 

(red bars), PANC-28 + WT-TP53 in the absence of BBR or NAX060 (blue bars), PANC-28 + pLXSN 

in the presence of APR-246 and 100 nM BBR (green bars), MIA-PaCa-2 + WT-TP53 in the presence 

of APR-246 and100 nM NAX060 (Panel (B)) (yellow bars). The colony formation abilities were 

repeated 3 times for each cell type and each treatment condition and similar results were observed. 

*** = p < 0.0001, ** p < 0.005, * p < 0.05 and NS = not statistically significant. 

APR-246 inhibited the colony formation of PANC-28 + WT-TP53 cells in a dose-

dependent fashion. In contrast, APR-246 had less effects on PANC-28 + pLXSN cells. 

Furthermore, the addition of a low dose of BBR resulted in increased suppression of 

growth in PANC-28 + pLXSN cells (Figure 17A). However, the addition of increasing 

concentrations of APR-246 did not result in a significant decrease in clonogenicity in 

PANC-28 + pLXSN cells. The effects of APR-246 were greater when the PANC-28 + WT-

TP53 cells were treated with higher concentrations of APR-246 and BBR than in PANC-28 

+ pLXSN cells. 

In contrast, NAX060 had some effects on PANC-28 + pLXSN cells that were greater 

at higher doses of APR-246. Likewise, a low dose of NAX060 suppressed clonogenicity in 

both PANC-28 + pLXSN and PANC-28 + WT-TP53 cells (Figure 17B). As observed 

previously (Figure 15C), NAX060 suppressed growth to a greater extent than BBR (Figure 

17A), and a higher level of growth inhibition was observed in PANC-28 + WT-TP53 cells 

than in PANC-28 + pLXSN cells. 

In summary, PANC-28 + pLXSN cells were more resistant to certain NAX 

compounds (e.g., NAX035, NAX053, NAX060) than to others. PANC-28 + WT-TP53 cells 

were more sensitive to NAX compounds such as NAX035, NAX038, NAX042, NAX053, 

NAX060, NAX077, and NAX111 than to others. APR-246 could sensitize PANC-28 + 

pLXSN cells to certain NAX compounds such as NAX014 and NAX060. However, the 

effects of APR-246 when combined with BBR and many NAX compounds such as 

NAX012, NAX014, NAX035, NAX038, NAX042, NAX053, NAX060, NAX075, NAX077 

and NAX111 were much more significant in PANC-28 + WT-TP53 cells. 

4. Discussion 

APR-246 is a drug that has been clinically evaluated in patients with certain types of 

cancer. Berberine (BBR) is a nutraceutical that has been examined for many types of health 

problems including cancer. Modified BBRs have been developed that have enhanced 

effects in certain pre-clinical cancer models. Some studies have indicated that some effects 

Figure 17. Both berberine and NAX60 can increase the effects of APR-246 on clonogenicity of
PANC-28 cells in the presence WT-TP53, but in the absences of WT-TP53 they have less effects on
clonogenicity. The effects of ABR-246 on clonogenicity in the presence of low doses of BBR (Panel
(A)) or NAX060 (Panel (B)) were examined. PANC-28 + pLXSN in the absence of BBR or NAX060
(red bars), PANC-28 + WT-TP53 in the absence of BBR or NAX060 (blue bars), PANC-28 + pLXSN
in the presence of APR-246 and 100 nM BBR (green bars), MIA-PaCa-2 + WT-TP53 in the presence
of APR-246 and100 nM NAX060 (Panel (B)) (yellow bars). The colony formation abilities were
repeated 3 times for each cell type and each treatment condition and similar results were observed.
*** = p < 0.0001, ** p < 0.005, * p < 0.05 and NS = not statistically significant.
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APR-246 inhibited the colony formation of PANC-28 + WT-TP53 cells in a dose-
dependent fashion. In contrast, APR-246 had less effects on PANC-28 + pLXSN cells.

Furthermore, the addition of a low dose of BBR resulted in increased suppres-
sion of growth in PANC-28 + pLXSN cells (Figure 17A). However, the addition of
increasing concentrations of APR-246 did not result in a significant decrease in clono-
genicity in PANC-28 + pLXSN cells. The effects of APR-246 were greater when the
PANC-28 + WT-TP53 cells were treated with higher concentrations of APR-246 and BBR
than in PANC-28 + pLXSN cells.

In contrast, NAX060 had some effects on PANC-28 + pLXSN cells that were greater at
higher doses of APR-246. Likewise, a low dose of NAX060 suppressed clonogenicity in both
PANC-28 + pLXSN and PANC-28 + WT-TP53 cells (Figure 17B). As observed previously
(Figure 15C), NAX060 suppressed growth to a greater extent than BBR (Figure 17A), and
a higher level of growth inhibition was observed in PANC-28 + WT-TP53 cells than in
PANC-28 + pLXSN cells.

In summary, PANC-28 + pLXSN cells were more resistant to certain NAX compounds
(e.g., NAX035, NAX053, NAX060) than to others. PANC-28 + WT-TP53 cells were more
sensitive to NAX compounds such as NAX035, NAX038, NAX042, NAX053, NAX060,
NAX077, and NAX111 than to others. APR-246 could sensitize PANC-28 + pLXSN cells to
certain NAX compounds such as NAX014 and NAX060. However, the effects of APR-246
when combined with BBR and many NAX compounds such as NAX012, NAX014, NAX035,
NAX038, NAX042, NAX053, NAX060, NAX075, NAX077 and NAX111 were much more
significant in PANC-28 + WT-TP53 cells.

4. Discussion

APR-246 is a drug that has been clinically evaluated in patients with certain types of
cancer. Berberine (BBR) is a nutraceutical that has been examined for many types of health
problems including cancer. Modified BBRs have been developed that have enhanced effects
in certain pre-clinical cancer models. Some studies have indicated that some effects of BBR
are TP53 dependent [69]. The possible effects of combining the mutant TP53 reactivator
APR-246 and NAX compounds on PDAC cells containing and lacking WT TP53 activity
have not been previously described.

The MIA-PaCa-2 cell line contains GOF mutant TP53. The addition of WT-TP53
increased the sensitivity of MIA-PaCa-2 cells to a low dose of APR-246. BBR showed some
cytotoxic effects on MIA-PaCa-2 + pLXSN and MIA-PaCa-2 + WT-TP53. The addition of a
low dose of APR-246 did not significantly change the effect of BBR. Similar results were
observed with NAX012. A summary of these results is presented in Figure 18.

In contrast, the combination of APR-246 and some of the other NAX compounds
(e.g., NAX014, NAX035, NAX042, NAX053, NAX060, NAX075) significantly reduced the
viability of MIA-PaCa-2 cells in the presence of WT-TP53.

We have previously observed that certain NAX compounds, namely NAX035, NAX038,
NAX042, NAX053, NAX060, and NAX111, are more toxic toward MIA-PaCa-2 cells + pLXSN
than BBR [77,78,83]. In contrast, MIA-PaCa-2 cells are less sensitive to NAX012, NAX014,
NAX075 and NAX077 than to BBR, and not sensitive to NAX054. Likewise, the addition of
WT-TP53 to TP53 null PANC-28 cells to the combination of APR-246 and BBR and most
NAX compounds.

The differences in chemical modifications of the BBR backbone structures of the
various NAX are presented in Figures 10 and 18. The chemical modifications of the NAX
compounds have (un)substituted (hetero) aromatic moieties bonded to position 13 of the
parent alkaloid BBR skeleton through a hydrocarbon (C) linker of variable lengths. The
structures of the NAX compounds are presented in Figures 10 and 18 and [78,83].

NAX012 and NAX042 have additional phenyl moieties with hydrocarbon (C) linkers
of different lengths. NAX012 has a 3 C linker and has been prepared as iodide salt. NAX042
has a 4 C linker and has been prepared as chloride salt. NAX042 was more effective in
suppressing proliferation of MIA-PaCa-2 cells than NAX012.
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NAX012 and NAX014 suppressed proliferation of MIA-PaCa-2 cells moderately; how-
ever, the addition of WT-TP53 resulted in increased sensitivity to the combination of
NAX014 and APR-246 substantively, while in the case of NAX012 it has no effect. Clearly,
the number of C in the linkers present in the NAX012 or NAX014 compounds and the
presence of a chlorine atom on the added monophenyl present in NAX014 can affect their
ability to inhibit PDAC growth.
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Figure 18. Chemical structures of BBR and NAX compounds and the potential effects of the mutant
TP53 reactivator APR-246 to increase their toxicity of PANC-28 + pLXSN and PANC-28 + WT-TP53
cells. Abilities of APR-246 to interact with BBR and NAX compounds and cause increased growth
inhibition in PANC-28 cells either in the presence of non-expressed (TP53 null) or the same
cells with introduced WT-TP53. (A) = Berberine, (B) = NAX012, (C) = NAX014, (D) = NAX035,
(E) = NAX038, (F) = NAX042, (G) = NAX053, (H) = NAX054, (I) = NAX060, (J) = NAX075,
(K) = NAX077, (L) = NAX111.
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NAX035 and NAX053 have two phenyl moieties (benzhydryl) with C linkers of differ-
ent lengths. NAX035 has a 2 C linker while NAX035 has a 3 C linker. Both compounds were
effective in suppressing the proliferation of MIA-PaCa-2 cells. The addition of a low dose
of APR-246 exhibited similar sensitizing effects on treatment of MIA-PaCa-2 + WT-TP53
cells to both NAX035 and NAX053.

NAX075 and NAX077 have additional one heterocycle (pyridine) with C linkers of
different lengths. NAX075 has a 3 C linker, while NAX077 has a 4 C linker. These com-
pounds are similar in structure. They had minimal effects on suppressing the proliferation
on MIA-PaCa-2 + pLXSN cells. The addition of a low dose of APR-246 had more substantial
effects on NAX075 than NAX077 treatment of MIA-PaCa-2 + WT-TP53 cells.

NAX038 and NAX054 have multiple electron-releasing substituents on the intro-
duced monophenyl moiety. NAX038 was effective in suppressing the proliferation of
MIA-PaCa-2 + pLXSN and MIA-PaCa-2 + WT-TP53 cells. In contrast, NAX054 with three
methoxy (OCH3) groups on the added phenyl moiety did not suppress proliferation of
either MIA-PaCa-2 + pLXSN or MIA-PaCa-2 + WT-TP53 cells. The addition of a low dose
of APR-246 had modest on the effects of NAX038 on either MIA-PaCa-2 + pLXSN or MIA-
PaCa-2 + WT-TP53 cells. A low dose of APR-246 was modest on the effects on NAX054 in
MIA-PaCa-2 + WT-TP53 cells.

NAX014, NAX060 and NAX111 have multiple electron-withdrawing substituents on
the introduced monophenyl moiety. NAX060 and NAX111 had similar effects on MIA-
PaCa-2 cells. However, introduction of WT-TP53 increased the effects of addition of a low
concentration of APR-246 when added with NAX060, but not NAX111.

In terms of clonogenicity, the effects of APR-246 were increased when WT-TP53 was
present in MIA-PaCa-2 + WT-TP53 cells. The effects of BBR by itself were not different in
the absence of APR-246. However, the effects of NAX060 were different in the absence of
APR-246 in the presence and absence of WT-TP53. As observed by MTT analysis, NAX060
was more potent than BBR in suppressing growth.

These modifications of the BBR core structure had different effects on suppression of
MIA-PaCa-2 growth and sensitivity in combination with APR-246. It is possible that the
different modifications of the BBR core structure in the NAX compounds affect the ability
of the molecules to interact with the promoter regions of key genes involved in regulation
of cell growth, induction of apoptosis and other important biochemical processes.

The effects of the combination of APR-246, BBR and NAX compounds were also
examined in PANC-28 cells containing and lacking WT-TP53. PANC-28 cells lack detectable
TP53 [74]. The APR-246 mutant TP53 reactivator had little effect on PANC-28 cells. In
contrast to the results observed with MIA-PaCa-2 cells, introduction of WT-TP53 in PANC-
28 cells increased their sensitivity to BBR, NAX012, NAX014, NAX035, NAX038, NAX042,
NAX053, NAX060, NAX060, NAX075, NAX077 and NAX111 but not NAX054 in terms of
IC50 analysis in MTT growth assays.

APR-246 did not have significant effects on colony formation of PANC-28 + pLXSN.
However, the addition of WT-TP53 sensitized the PANC-28 + WT-TP53 to APR-246. The
colony formation of PANC-28 + pLXSN cells was sensitive to BBR and NAX060. The
addition of WT-TP53 sensitized the PANC-28 + WT-TP53 cells more to the combination of
APR-246 and NAX060 than to BBR.

In terms of clonogenicity, NAX060 was more effective in suppressing colony formation
than BBR. This agrees with what we observed by MTT growth assays. The addition of
WT-TP53 increased the sensitivity of PANC-28 cells to APR-246.

Our studies point to the value of knowing what type of TP53 mutation(s) present in
cancer patients that may be treated with APR-246 and next-generation-related compounds.
These compounds may not have a significant effect on cells that have deleted or silenced
TP53 expression. While this observation may be obvious, there are other TP53-related
molecules such as TP63 and TP73, which could be stabilized by the APR-246 compound in
PANC-28 + pLXSN cells. However, we observed that treatment of PANC-28 + pLXSN was
not sensitive to the combination of BBR and APR-246. In contrast, PANC-28 + WT-TP53
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were highly sensitive to the combination of APR-246 and BBR. Our studies indicate that
APR-246 can interact with certain modified BBRs to increase their cytotoxicity on PDAC
cells. These interactions are often increased in the presence of WT TP53.
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