Ketamine Improves Desensitization of µ-Opioid Receptors Induced by Repeated Treatment with Fentanyl but Not with Morphine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Construction of Plasmids and Generation of Stable Cell Lines
2.3. Cell Culture
2.4. CellKey™ Assay
2.5. cADDis cAMP Assay
2.6. PathHunter® eXpress β-Arrestin Assay
2.7. Statistical Analysis
3. Results
3.1. Effects of Ketamine on Decrease in MOR Activity Induced by Repeated Opioid Administration Using the CellKey™ Assay
3.1.1. Repeated Administration of Fentanyl or Morphine Decreased MOR Activity
3.1.2. Treatment with Ketamine before the Second Administration of Fentanyl Recovered the Decrease in MOR Activity
3.1.3. Mechanisms of Ketamine Pretreatment on the Decrease in MOR Activity Caused by the Second Fentanyl Administration
3.2. Effects of Ketamine on the Decrease in Intracellular cAMP Induced by the Second Opioid Administration with the cADDis cAMP Assay
3.2.1. Repeated Administration of Fentanyl or Morphine Suppressed the Decrease in Intracellular cAMP
3.2.2. Pretreatment with Ketamine before the Second Administration of Fentanyl Recouped the Rescue of Intracellular cAMP Induced by the Second Fentanyl Administration
3.2.3. Mechanisms of Ketamine on the Rescue of Intracellular cAMP Caused by Repeated Fentanyl Administration
3.3. Effects of Ketamine on Recruitment of β-Arrestin to MOR Induced by Repeated Administration of Opioids Using the PathHunter® eXpress β-Arrestin Assay
3.3.1. Effect of Treatment with Ketamine on the Enhanced β-Arrestin Recruitment to MOR Induced by Repeated Administration of Fentanyl
3.3.2. Mechanisms of Ketamine on the Enhancement of β-Arrestin Recruitment to MOR Induced by Repeated Administration of Fentanyl
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Cancer Pain Relief: With a Guide to Opioid Availability; World Health Organization: Geneva, Switzerland, 1996; ISBN 978-92-4-154482-5. [Google Scholar]
- Chou, R.; Gordon, D.B.; de Leon-Casasola, O.A.; Rosenberg, J.M.; Bickler, S.; Brennan, T.; Carter, T.; Cassidy, C.L.; Chittenden, E.H.; Degenhardt, E.; et al. Management of Postoperative Pain: A Clinical Practice Guideline from the American Pain Society, the American Society of Regional Anesthesia and Pain Medicine, and the American Society of Anesthesiologists’ Committee on Regional Anesthesia, Executive Committee, and Administrative Council. J. Pain 2016, 17, 131–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devlin, J.W.; Skrobik, Y.; Gélinas, C.; Needham, D.M.; Slooter, A.J.C.; Pandharipande, P.P.; Watson, P.L.; Weinhouse, G.L.; Nunnally, M.E.; Rochwerg, B.; et al. Clinical Practice Guidelines for the Prevention and Management of Pain, Agitation/Sedation, Delirium, Immobility, and Sleep Disruption in Adult Patients in the ICU. Crit. Care Med. 2018, 46, e825–e873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colvin, L.A.; Bull, F.; Hales, T.G. Perioperative Opioid Analgesia-When Is Enough Too Much? A Review of Opioid-Induced Tolerance and Hyperalgesia. Lancet 2019, 393, 1558–1568. [Google Scholar] [CrossRef] [Green Version]
- Martyn, J.A.J.; Mao, J.; Bittner, E.A. Opioid Tolerance in Critical Illness. N. Engl. J. Med. 2019, 380, 365–378. [Google Scholar] [CrossRef] [PubMed]
- Shanthanna, H.; Ladha, K.S.; Kehlet, H.; Joshi, G.P. Perioperative Opioid Administration. Anesthesiology 2021, 134, 645–659. [Google Scholar] [CrossRef]
- Eidson, L.N.; Murphy, A.Z. Inflammatory Mediators of Opioid Tolerance: Implications for Dependency and Addiction. Peptides 2019, 115, 51–58. [Google Scholar] [CrossRef]
- Allouche, S.; Noble, F.; Marie, N. Opioid Receptor Desensitization: Mechanisms and Its Link to Tolerance. Front. Pharmacol. 2014, 5, 280. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Ma, R.; Jin, Y.; Fang, J.; Du, J.; Shao, X.; Liang, Y.; Fang, J. Molecular Mechanisms of Opioid Tolerance: From Opioid Receptors to Inflammatory Mediators (Review). Exp. Ther. Med. 2021, 22, 1004. [Google Scholar] [CrossRef]
- Schmid, C.L.; Kennedy, N.M.; Ross, N.C.; Lovell, K.M.; Yue, Z.; Morgenweck, J.; Cameron, M.D.; Bannister, T.D.; Bohn, L.M. Bias Factor and Therapeutic Window Correlate to Predict Safer Opioid Analgesics. Cell 2017, 171, 1165–1175.e13. [Google Scholar] [CrossRef] [Green Version]
- Günther, T.; Dasgupta, P.; Mann, A.; Miess, E.; Kliewer, A.; Fritzwanker, S.; Steinborn, R.; Schulz, S. Targeting Multiple Opioid Receptors—Improved Analgesics with Reduced Side Effects? Br. J. Pharmacol. 2018, 175, 2857–2868. [Google Scholar] [CrossRef]
- Wootten, D.; Christopoulos, A.; Marti-Solano, M.; Babu, M.M.; Sexton, P.M. Mechanisms of Signalling and Biased Agonism in G Protein-Coupled Receptors. Nat. Rev. Mol. Cell Biol. 2018, 19, 638–653. [Google Scholar] [CrossRef] [PubMed]
- Watari, K.; Nakaya, M.; Kurose, H. Multiple Functions of G Protein-Coupled Receptor Kinases. J. Mol. Signal. 2014, 9, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roman-Vendrell, C.; Yu, Y.J.; Yudowski, G.A. Fast Modulation of μ-Opioid Receptor (MOR) Recycling Is Mediated by Receptor Agonists. J. Biol. Chem. 2012, 287, 14782–14791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raehal, K.M.; Schmid, C.L.; Groer, C.E.; Bohn, L.M. Functional Selectivity at the μ-Opioid Receptor: Implications for Understanding Opioid Analgesia and Tolerance. Pharmacol. Rev. 2011, 63, 1001–1019. [Google Scholar] [CrossRef] [Green Version]
- Kliewer, A.; Gillis, A.; Hill, R.; Schmiedel, F.; Bailey, C.; Kelly, E.; Henderson, G.; Christie, M.J.; Schulz, S. Morphine-Induced Respiratory Depression Is Independent of β-Arrestin2 Signalling. Br. J. Pharmacol. 2020, 177, 2923–2931. [Google Scholar] [CrossRef]
- Gillis, A.; Kliewer, A.; Kelly, E.; Henderson, G.; Christie, M.J.; Schulz, S.; Canals, M. Critical Assessment of G Protein-Biased Agonism at the μ-Opioid Receptor. Trends Pharmacol. Sci. 2020, 41, 947–959. [Google Scholar] [CrossRef]
- Zhang, J.; Barak, L.S.; Winkler, K.E.; Caron, M.G.; Ferguson, S.S. A Central Role for Beta-Arrestins and Clathrin-Coated Vesicle-Mediated Endocytosis in Beta2-Adrenergic Receptor Resensitization. Differential Regulation of Receptor Resensitization in Two Distinct Cell Types. J. Biol. Chem. 1997, 272, 27005–27014. [Google Scholar] [CrossRef] [Green Version]
- Krasel, C.; Bünemann, M.; Lorenz, K.; Lohse, M.J. Beta-Arrestin Binding to the Beta2-Adrenergic Receptor Requires Both Receptor Phosphorylation and Receptor Activation. J. Biol. Chem. 2005, 280, 9528–9535. [Google Scholar] [CrossRef] [Green Version]
- Zanos, P.; Moaddel, R.; Morris, P.J.; Riggs, L.M.; Highland, J.N.; Georgiou, P.; Pereira, E.F.R.; Albuquerque, E.X.; Thomas, C.J.; Zarate, C.A.; et al. Ketamine and Ketamine Metabolite Pharmacology: Insights into Therapeutic Mechanisms. Pharmacol. Rev. 2018, 70, 621–660. [Google Scholar] [CrossRef] [Green Version]
- Culp, C.; Kim, H.K.; Abdi, S. Ketamine Use for Cancer and Chronic Pain Management. Front. Pharmacol. 2020, 11, 599721. [Google Scholar] [CrossRef]
- Brinck, E.C.; Tiippana, E.; Heesen, M.; Bell, R.F.; Straube, S.; Moore, R.A.; Kontinen, V. Perioperative Intravenous Ketamine for Acute Postoperative Pain in Adults. Cochrane Database Syst. Rev. 2018, 12, CD012033. [Google Scholar] [CrossRef]
- Schwenk, E.S.; Viscusi, E.R.; Buvanendran, A.; Hurley, R.W.; Wasan, A.D.; Narouze, S.; Bhatia, A.; Davis, F.N.; Hooten, W.M.; Cohen, S.P. Consensus Guidelines on the Use of Intravenous Ketamine Infusions for Acute Pain Management from the American Society of Regional Anesthesia and Pain Medicine, the American Academy of Pain Medicine, and the American Society of Anesthesiologists. Reg. Anesth. Pain Med. 2018, 43, 456–466. [Google Scholar] [CrossRef]
- Gupta, A.; Devi, L.A.; Gomes, I. Potentiation of μ-Opioid Receptor-Mediated Signaling by Ketamine. J. Neurochem. 2011, 119, 294–302. [Google Scholar] [CrossRef]
- Manabe, S.; Miyano, K.; Fujii, Y.; Ohshima, K.; Yoshida, Y.; Nonaka, M.; Uzu, M.; Matsuoka, Y.; Sato, T.; Uezono, Y.; et al. Possible Biased Analgesic of Hydromorphone through the G Protein-over β-Arrestin-Mediated Pathway: CAMP, CellKeyTM, and Receptor Internalization Analyses. J. Pharmacol. Sci. 2019, 140, 171–177. [Google Scholar] [CrossRef]
- Miyano, K.; Manabe, S.; Komatsu, A.; Fujii, Y.; Mizobuchi, Y.; Uezono, E.; Ohshima, K.; Nonaka, M.; Kuroda, Y.; Narita, M.; et al. The G Protein Signal-Biased Compound TRV130; Structures, Its Site of Action and Clinical Studies. Curr. Top. Med. Chem. 2020, 20, 2822–2829. [Google Scholar] [CrossRef]
- Kuroda, Y.; Nonaka, M.; Kamikubo, Y.; Ogawa, H.; Murayama, T.; Kurebayashi, N.; Sakairi, H.; Miyano, K.; Komatsu, A.; Dodo, T.; et al. Inhibition of Endothelin A Receptor by a Novel, Selective Receptor Antagonist Enhances Morphine-Induced Analgesia: Possible Functional Interaction of Dimerized Endothelin A and μ-Opioid Receptors. Biomed. Pharmacother. 2021, 141, 111800. [Google Scholar] [CrossRef]
- Karasawa, Y.; Miyano, K.; Fujii, H.; Mizuguchi, T.; Kuroda, Y.; Nonaka, M.; Komatsu, A.; Ohshima, K.; Yamaguchi, M.; Yamaguchi, K.; et al. In Vitro Analyses of Spinach-Derived Opioid Peptides, Rubiscolins: Receptor Selectivity and Intracellular Activities through G Protein- and β-Arrestin-Mediated Pathways. Molecules 2021, 26, 6079. [Google Scholar] [CrossRef]
- Williams, J.T.; Ingram, S.L.; Henderson, G.; Chavkin, C.; von Zastrow, M.; Schulz, S.; Koch, T.; Evans, C.J.; Christie, M.J. Regulation of μ-Opioid Receptors: Desensitization, Phosphorylation, Internalization, and Tolerance. Pharmacol. Rev. 2013, 65, 223–254. [Google Scholar] [CrossRef] [Green Version]
- Williams, N.R.; Schatzberg, A.F. NMDA Antagonist Treatment of Depression. Curr. Opin. Neurobiol. 2016, 36, 112–117. [Google Scholar] [CrossRef]
- Murrough, J.W.; Abdallah, C.G.; Mathew, S.J. Targeting Glutamate Signalling in Depression: Progress and Prospects. Nat. Rev. Drug Discov. 2017, 16, 472–486. [Google Scholar] [CrossRef]
- Minami, K.; Uezono, Y.; Sakurai, T.; Horishita, T.; Shiraishi, M.; Ueta, Y. Effects of Anesthetics on the Function of Orexin-1 Receptors Expressed in Xenopus Oocytes. Pharmacology 2007, 79, 236–242. [Google Scholar] [CrossRef]
- Sarton, E.; Teppema, L.J.; Olievier, C.; Nieuwenhuijs, D.; Matthes, H.W.; Kieffer, B.L.; Dahan, A. The Involvement of the Mu-Opioid Receptor in Ketamine-Induced Respiratory Depression and Antinociception. Anesth. Analg. 2001, 93, 1495–1500. [Google Scholar] [CrossRef]
- Hirota, K.; Okawa, H.; Appadu, B.L.; Grandy, D.K.; Devi, L.A.; Lambert, D.G. Stereoselective Interaction of Ketamine with Recombinant Mu, Kappa, and Delta Opioid Receptors Expressed in Chinese Hamster Ovary Cells. Anesthesiology 1999, 90, 174–182. [Google Scholar] [CrossRef]
- Seibold, A.; January, B.G.; Friedman, J.; Hipkin, R.W.; Clark, R.B. Desensitization of Beta2-Adrenergic Receptors with Mutations of the Proposed G Protein-Coupled Receptor Kinase Phosphorylation Sites. J. Biol. Chem. 1998, 273, 7637–7642. [Google Scholar] [CrossRef] [Green Version]
- Nash, C.A.; Nelson, C.P.; Mistry, R.; Moeller-Olsen, C.; Christofidou, E.; Challiss, R.A.J.; Willets, J.M. Differential Regulation of Β2-Adrenoceptor and Adenosine A2B Receptor Signalling by GRK and Arrestin Proteins in Arterial Smooth Muscle. Cell Signal. 2018, 51, 86–98. [Google Scholar] [CrossRef] [Green Version]
- Kelly, E.; Bailey, C.P.; Henderson, G. Agonist-Selective Mechanisms of GPCR Desensitization. Br. J. Pharmacol. 2008, 153 (Suppl. 1), S379–S388. [Google Scholar] [CrossRef] [Green Version]
- Ando, Y.; Hojo, M.; Kanaide, M.; Takada, M.; Sudo, Y.; Shiraishi, S.; Sumikawa, K.; Uezono, Y. S(+)-Ketamine Suppresses Desensitization of γ-Aminobutyric Acid Type B Receptor-Mediated Signaling by Inhibition of the Interaction of γ-Aminobutyric Acid Type B Receptors with G Protein-Coupled Receptor Kinase 4 or 5. Anesthesiology 2011, 114, 401–411. [Google Scholar] [CrossRef] [Green Version]
- Seyedabadi, M.; Gharghabi, M.; Gurevich, E.V.; Gurevich, V.V. Receptor-Arrestin Interactions: The GPCR Perspective. Biomolecules 2021, 11, 218. [Google Scholar] [CrossRef]
- Cahill, T.J.; Thomsen, A.R.B.; Tarrasch, J.T.; Plouffe, B.; Nguyen, A.H.; Yang, F.; Huang, L.-Y.; Kahsai, A.W.; Bassoni, D.L.; Gavino, B.J.; et al. Distinct Conformations of GPCR-β-Arrestin Complexes Mediate Desensitization, Signaling, and Endocytosis. Proc. Natl. Acad. Sci. USA 2017, 114, 2562–2567. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, R.V.; Fomsgaard, J.S.; Siegel, H.; Martusevicius, R.; Nikolajsen, L.; Dahl, J.B.; Mathiesen, O. Intraoperative Ketamine Reduces Immediate Postoperative Opioid Consumption after Spinal Fusion Surgery in Chronic Pain Patients with Opioid Dependency: A Randomized, Blinded Trial. Pain 2017, 158, 463–470. [Google Scholar] [CrossRef]
- Bell, R.F.; Eccleston, C.; Kalso, E.A. Ketamine as an Adjuvant to Opioids for Cancer Pain. Cochrane Database Syst. Rev. 2017, 6, CD003351. [Google Scholar] [CrossRef]
- Moore, K.T.; Adams, H.D.; Natarajan, J.; Ariyawansa, J.; Richards, H.M. Bioequivalence and Safety of a Novel Fentanyl Transdermal Matrix System Compared with a Transdermal Reservoir System. J. Opioid Manag. 2011, 7, 99–107. [Google Scholar] [CrossRef]
- Khojasteh, A.; Evans, W.; Reynolds, R.D.; Thomas, G.; Savarese, J.J. Controlled-Release Oral Morphine Sulfate in the Treatment of Cancer Pain with Pharmacokinetic Correlation. J. Clin. Oncol. 1987, 5, 956–961. [Google Scholar] [CrossRef]
- Domino, E.F.; Zsigmond, E.K.; Domino, L.E.; Domino, K.E.; Kothary, S.P.; Domino, S.E. Plasma Levels of Ketamine and Two of Its Metabolites in Surgical Patients Using a Gas Chromatographic Mass Fragmentographic Assay. Anesth. Analg. 1982, 61, 87–92. [Google Scholar] [CrossRef]
- Idvall, J.; Ahlgren, I.; Aronsen, K.R.; Stenberg, P. Ketamine Infusions: Pharmacokinetics and Clinical Effects. Br. J. Anaesth. 1979, 51, 1167–1173. [Google Scholar] [CrossRef]
- Lee, E.N.; Lee, J.H. The Effects of Low-Dose Ketamine on Acute Pain in an Emergency Setting: A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0165461. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mizobuchi, Y.; Miyano, K.; Manabe, S.; Uezono, E.; Komatsu, A.; Kuroda, Y.; Nonaka, M.; Matsuoka, Y.; Sato, T.; Uezono, Y.; et al. Ketamine Improves Desensitization of µ-Opioid Receptors Induced by Repeated Treatment with Fentanyl but Not with Morphine. Biomolecules 2022, 12, 426. https://doi.org/10.3390/biom12030426
Mizobuchi Y, Miyano K, Manabe S, Uezono E, Komatsu A, Kuroda Y, Nonaka M, Matsuoka Y, Sato T, Uezono Y, et al. Ketamine Improves Desensitization of µ-Opioid Receptors Induced by Repeated Treatment with Fentanyl but Not with Morphine. Biomolecules. 2022; 12(3):426. https://doi.org/10.3390/biom12030426
Chicago/Turabian StyleMizobuchi, Yusuke, Kanako Miyano, Sei Manabe, Eiko Uezono, Akane Komatsu, Yui Kuroda, Miki Nonaka, Yoshikazu Matsuoka, Tetsufumi Sato, Yasuhito Uezono, and et al. 2022. "Ketamine Improves Desensitization of µ-Opioid Receptors Induced by Repeated Treatment with Fentanyl but Not with Morphine" Biomolecules 12, no. 3: 426. https://doi.org/10.3390/biom12030426
APA StyleMizobuchi, Y., Miyano, K., Manabe, S., Uezono, E., Komatsu, A., Kuroda, Y., Nonaka, M., Matsuoka, Y., Sato, T., Uezono, Y., & Morimatsu, H. (2022). Ketamine Improves Desensitization of µ-Opioid Receptors Induced by Repeated Treatment with Fentanyl but Not with Morphine. Biomolecules, 12(3), 426. https://doi.org/10.3390/biom12030426