Pheromone Guidance of Polarity Site Movement in Yeast
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeast Strains
2.2. Live Cell Microscopy
2.3. Polarity Site Tracking
2.4. Determination of Polarity Site Movement Direction
2.5. Scoring Polarity Site Encounters
2.6. Statistical Analysis
3. Results
3.1. Spatial Information Conferred by Gradients of a-factor Versus α-Factor
3.2. Mechanism of Gradient Decoding
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiang, Y.; Li, Y.; Zhang, Z.; Cui, K.; Wang, S.; Yuan, X.B.; Wu, C.P.; Poo, M.M.; Duan, S. Nerve growth cone guidance mediated by G protein-coupled receptors. Nat. Neurosci. 2002, 5, 843–848. [Google Scholar] [CrossRef] [PubMed]
- von Philipsborn, A.; Bastmeyer, M. Mechanisms of gradient detection: A comparison of axon pathfinding with eukaryotic cell migration. Int. Rev. Cytol. 2007, 263, 1–62. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, L.; Friedrich, B.M.; Gompper, G.; Kaupp, U.B. The computational sperm cell. Trends Cell Biol. 2014, 24, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Dohlman, H.G.; Thorner, J.W. Regulation of G protein-initiated signal transduction in yeast: Paradigms and principles. Annu. Rev. Biochem. 2001, 70, 703–754. [Google Scholar] [CrossRef] [PubMed]
- Chiou, J.G.; Balasubramanian, M.K.; Lew, D.J. Cell Polarity in Yeast. Annu. Rev. Cell Dev. Biol. 2017, 33, 77–101. [Google Scholar] [CrossRef]
- Martin, S.G. Molecular mechanisms of chemotropism and cell fusion in unicellular fungi. J. Cell Sci. 2019, 132, jcs230706. [Google Scholar] [CrossRef] [Green Version]
- Clark-Cotton, M.R.; Henderson, N.T.; Pablo, M.; Ghose, D.; Elston, T.C.; Lew, D.J. Exploratory polarization facilitates mating partner selection in Saccharomyces cerevisiae. Mol. Biol. Cell 2021, 32, 1048–1063. [Google Scholar] [CrossRef]
- Michaelis, S.; Barrowman, J. Biogenesis of the Saccharomyces cerevisiae pheromone a-factor, from yeast mating to human disease. Microbiol. Mol. Biol. Rev. 2012, 76, 626–651. [Google Scholar] [CrossRef] [Green Version]
- Betz, R.; MacKay, V.L.; Duntze, W. a-factor from Saccharomyces cerevisiae: Partial characterization of a mating hormone produced by cells of mating type a. J. Bacteriol. 1977, 132, 462–472. [Google Scholar] [CrossRef] [Green Version]
- Chan, R.K.; Otte, C.A. Physiological characterization of Saccharomyces cerevisiae mutants supersensitive to G1 arrest by a factor and alpha factor pheromones. Mol. Cell Biol. 1982, 2, 21–29. [Google Scholar] [CrossRef]
- Sprague, G.F., Jr.; Herskowitz, I. Control of yeast cell type by the mating type locus. I. Identification and control of expression of the a-specific gene BAR1. J. Mol. Biol. 1981, 153, 305–321. [Google Scholar] [CrossRef]
- Conlon, P.; Gelin-Licht, R.; Ganesan, A.; Zhang, J.; Levchenko, A. Single-cell dynamics and variability of MAPK activity in a yeast differentiation pathway. Proc. Natl. Acad. Sci. USA 2016, 113, E5896–E5905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobs, K.C.; Gorman, O.; Lew, D.J. Mechanism of commitment to a mating partner in Saccharomyces cerevisiae. bioRxiv 2022. [Google Scholar] [CrossRef]
- Moore, T.I.; Chou, C.S.; Nie, Q.; Jeon, N.L.; Yi, T.M. Robust spatial sensing of mating pheromone gradients by yeast cells. PLoS ONE 2008, 3, e3865. [Google Scholar] [CrossRef] [Green Version]
- Jin, M.; Errede, B.; Behar, M.; Mather, W.; Nayak, S.; Hasty, J.; Dohlman, H.G.; Elston, T.C. Yeast dynamically modify their environment to achieve better mating efficiency. Sci. Signal. 2011, 4, ra54. [Google Scholar] [CrossRef] [Green Version]
- Marcus, S.; Xue, C.B.; Naider, F.; Becker, J.M. Degradation of a-factor by a Saccharomyces cerevisiae alpha-mating-type-specific endopeptidase: Evidence for a role in recovery of cells from G1 arrest. Mol. Cell Biol. 1991, 11, 1030–1039. [Google Scholar] [CrossRef]
- Huberman, L.B.; Murray, A.W. Genetically engineered transvestites reveal novel mating genes in budding yeast. Genetics 2013, 195, 1277–1290. [Google Scholar] [CrossRef] [Green Version]
- Anders, A.; Colin, R.; Banderas, A.; Sourjik, V. Asymmetric mating behavior of isogamous budding yeast. Sci. Adv. 2021, 7, eabf8404. [Google Scholar] [CrossRef]
- Seike, T.; Maekawa, H.; Nakamura, T.; Shimoda, C. The asymmetric chemical structures of two mating pheromones reflect their differential roles in mating of fission yeast. J. Cell Sci. 2019, 132, jcs230722. [Google Scholar] [CrossRef] [Green Version]
- Henderson, N.T.; Pablo, M.; Ghose, D.; Clark-Cotton, M.R.; Zyla, T.R.; Nolen, J.; Elston, T.C.; Lew, D.J. Ratiometric GPCR signaling enables directional sensing in yeast. PLoS Biol. 2019, 17, e3000484. [Google Scholar] [CrossRef] [Green Version]
- Ghose, D.; Jacobs, K.; Ramirez, S.; Elston, T.; Lew, D. Chemotactic movement of a polarity site enables yeast cells to find their mates. Proc. Natl. Acad. Sci. USA 2021, 118, e2025445118. [Google Scholar] [CrossRef] [PubMed]
- Ghose, D.; Lew, D. Mechanistic insights into actin-driven polarity site movement in yeast. Mol. Biol. Cell 2020, 31, 1085–1102. [Google Scholar] [CrossRef] [PubMed]
- McClure, A.W.; Minakova, M.; Dyer, J.M.; Zyla, T.R.; Elston, T.C.; Lew, D.J. Role of Polarized G Protein Signaling in Tracking Pheromone Gradients. Dev. Cell 2015, 35, 471–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schenkman, L.R.; Caruso, C.; Pagé, N.; Pringle, J.R. The role of cell cycle-regulated expression in the localization of spatial landmark proteins in yeast. J. Cell Biol. 2002, 156, 829–841. [Google Scholar] [CrossRef] [PubMed]
- Baudin, A.; Ozier-Kalogeropoulos, O.; Denouel, A.; Lacroute, F.; Cullin, C. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 1993, 21, 3329–3330. [Google Scholar] [CrossRef] [Green Version]
- Longtine, M.S.; McKenzie, A., 3rd; Demarini, D.J.; Shah, N.G.; Wach, A.; Brachat, A.; Philippsen, P.; Pringle, J.R. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 1998, 14, 953–961. [Google Scholar] [CrossRef]
- Brachmann, C.B.; Davies, A.; Cost, G.J.; Caputo, E.; Li, J.; Hieter, P.; Boeke, J.D. Designer deletion strains derived from Saccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 1998, 14, 115–132. [Google Scholar] [CrossRef]
- Chee, M.K.; Haase, S.B. New and Redesigned pRS Plasmid Shuttle Vectors for Genetic Manipulation of Saccharomycescerevisiae. G3 2012, 2, 515–526. [Google Scholar] [CrossRef] [Green Version]
- Pryciak, P.M.; Huntress, F.A. Membrane recruitment of the kinase cascade scaffold protein Ste5 by the Gbetagamma complex underlies activation of the yeast pheromone response pathway. Genes Dev. 1998, 12, 2684–2697. [Google Scholar] [CrossRef] [Green Version]
- Hartwell, L.H. Synchronization of haploid yeast cell cycles, a prelude to conjugation. Exp. Cell Res. 1973, 76, 111–117. [Google Scholar] [CrossRef]
- Rogers, D.; Bussey, H. Fidelity of conjugation in Saccharomyces cerevisiae. Mol. Gen. Genet. 1978, 162, 173–182. [Google Scholar] [CrossRef] [PubMed]
- McClure, A.W.; Jacobs, K.C.; Zyla, T.R.; Lew, D.J. Mating in wild yeast: Delayed interest in sex after spore germination. Mol. Biol. Cell 2018, 29, 3119–3127. [Google Scholar] [CrossRef] [PubMed]
- Valtz, N.; Peter, M.; Herskowitz, I. FAR1 is required for oriented polarization of yeast cells in response to mating pheromones. J. Cell Biol. 1995, 131, 863–873. [Google Scholar] [CrossRef] [PubMed]
- Nern, A.; Arkowitz, R.A. A GTP-exchange factor required for cell orientation. Nature 1998, 391, 195–198. [Google Scholar] [CrossRef] [PubMed]
- Nern, A.; Arkowitz, R.A. A Cdc24p-Far1p-Gbetagamma protein complex required for yeast orientation during mating. J. Cell Biol. 1999, 144, 1187–1202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butty, A.C.; Pryciak, P.M.; Huang, L.S.; Herskowitz, I.; Peter, M. The role of Far1p in linking the heterotrimeric G protein to polarity establishment proteins during yeast mating. Science 1998, 282, 1511–1516. [Google Scholar] [CrossRef] [PubMed]
- Nern, A.; Arkowitz, R.A. G proteins mediate changes in cell shape by stabilizing the axis of polarity. Mol. Cell 2000, 5, 853–864. [Google Scholar] [CrossRef]
- Dyer, J.M.; Savage, N.S.; Jin, M.; Zyla, T.R.; Elston, T.C.; Lew, D.J. Tracking shallow chemical gradients by actin-driven wandering of the polarization site. Curr. Biol. 2013, 23, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Jackson, C.L.; Konopka, J.B.; Hartwell, L.H.S. cerevisiae alpha pheromone receptors activate a novel signal transduction pathway for mating partner discrimination. Cell 1991, 67, 389–402. [Google Scholar] [CrossRef]
- Schrick, K.; Garvik, B.; Hartwell, L.H. Mating in Saccharomyces cerevisiae: The role of the pheromone signal transduction pathway in the chemotropic response to pheromone. Genetics 1997, 147, 19–32. [Google Scholar] [CrossRef]
- Caron, M.G.; Barak, L.S. A Brief History of the β-Arrestins. Methods Mol. Biol. 2019, 1957, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Kaminskyj, S.; Caldwell, S.; Loewen, M.C. A role for a complex between activated G protein-coupled receptors in yeast cellular mating. Proc. Natl. Acad. Sci. USA 2007, 104, 5395–5400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rappaport, N.; Barkai, N. Disentangling signaling gradients generated by equivalent sources. J. Biol. Phys. 2012, 38, 267–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segall, J.E. Polarization of yeast cells in spatial gradients of alpha mating factor. Proc. Natl. Acad. Sci. USA 1993, 90, 8332–8336. [Google Scholar] [CrossRef] [Green Version]
- Paliwal, S.; Iglesias, P.A.; Campbell, K.; Hilioti, Z.; Groisman, A.; Levchenko, A. MAPK-mediated bimodal gene expression and adaptive gradient sensing in yeast. Nature 2007, 446, 46–51. [Google Scholar] [CrossRef]
- Kelm, K.B.; Huyer, G.; Huang, J.C.; Michaelis, S. The internalization of yeast Ste6p follows an ordered series of events involving phosphorylation, ubiquitination, recognition and endocytosis. Traffic 2004, 5, 165–180. [Google Scholar] [CrossRef]
- Jones, S.K., Jr.; Bennett, R.J. Fungal mating pheromones: Choreographing the dating game. Fungal Genet. Biol. 2011, 48, 668–676. [Google Scholar] [CrossRef] [Green Version]
- Fischer, M.S.; Glass, N.L. Communicate and Fuse: How Filamentous Fungi Establish and Maintain an Interconnected Mycelial Network. Front. Microbiol. 2019, 10, 619. [Google Scholar] [CrossRef]
- Dudin, O.; Bendezú, F.O.; Groux, R.; Laroche, T.; Seitz, A.; Martin, S.G. A formin-nucleated actin aster concentrates cell wall hydrolases for cell fusion in fission yeast. J. Cell Biol. 2015, 208, 897–911. [Google Scholar] [CrossRef] [Green Version]
- Muriel, O.; Michon, L.; Kukulski, W.; Martin, S.G. Ultrastructural plasma membrane asymmetries in tension and curvature promote yeast cell fusion. J. Cell Biol. 2021, 220, e202103142. [Google Scholar] [CrossRef]
- Brown, A.J.; Casselton, L.A. Mating in mushrooms: Increasing the chances but prolonging the affair. Trends Genet. 2001, 17, 393–400. [Google Scholar] [CrossRef]
- Billiard, S.; López-Villavicencio, M.; Devier, B.; Hood, M.E.; Fairhead, C.; Giraud, T. Having sex, yes, but with whom? Inferences from fungi on the evolution of anisogamy and mating types. Biol. Rev. 2011, 86, 421–442. [Google Scholar] [CrossRef] [PubMed]
- Casselton, L.A. Mate recognition in fungi. Heredity 2002, 88, 142–147. [Google Scholar] [CrossRef] [PubMed]
Yeast Strain | Relevant Genotype | Source |
---|---|---|
DLY20626 | MATa SPA2-mCherry:hygR ste5:PGAL1-STE5-CTM:PADH1-GAL4BD-hER-VP16:LEU2 rsr1::HIS3 WHI5-GFP:HIS5 | Ghose et al., 2021 |
DLY20627 | MATα SPA2-mCherry:hygR ste5:PGAL1-STE5-CTM:PADH1-GAL4BD-hER-VP16:LEU2 rsr1::HIS3 | Ghose et al., 2021 |
DLY22532 | MATa SPA2-mCherry:hygR ste5:PGAL1-STE5-CTM:PADH1-GAL4BD-hER-VP16:LEU2 rsr1::HIS3 WHI5-GFP:HIS5 cdc24-m1:TRP1 | Ghose et al., 2021 |
DLY22533 | MATα SPA2-mCherry:hygR ste5:PGAL1-STE5-CTM:PADH1-GAL4BD-hER-VP16:LEU2 rsr1::HIS3 cdc24-m1:TRP1 | Ghose et al., 2021 |
DLY23978 | MATa SPA2-mCherry:hygR ste5:PGAL1-STE5-CTM:PADH1-GAL4BD-hER-VP16:LEU2 rsr1::HIS3 WHI5-GFP:HIS5 ste2::kanR | This study |
DLY23979 | MATα SPA2-mCherry:hygR ste5:PGAL1-STE5-CTM:PADH1-GAL4BD-hER-VP16:LEU2 rsr1::HIS3 ste3::kanR | This study |
DLY24101 | MATa SPA2-GFP:HIS3 ste5:PGAL1-STE5-CTM:PADH1-GAL4BD-hER-VP16:LEU2 rsr1::HIS3 gpa1::kanR | This study |
DLY24104 | MATα SPA2-mCherry:hygR ste5:PGAL1-STE5-CTM:PADH1-GAL4BD-hER-VP16:LEU2 rsr1::HIS3 gpa1::kanR | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacobs, K.C.; Lew, D.J. Pheromone Guidance of Polarity Site Movement in Yeast. Biomolecules 2022, 12, 502. https://doi.org/10.3390/biom12040502
Jacobs KC, Lew DJ. Pheromone Guidance of Polarity Site Movement in Yeast. Biomolecules. 2022; 12(4):502. https://doi.org/10.3390/biom12040502
Chicago/Turabian StyleJacobs, Katherine C., and Daniel J. Lew. 2022. "Pheromone Guidance of Polarity Site Movement in Yeast" Biomolecules 12, no. 4: 502. https://doi.org/10.3390/biom12040502
APA StyleJacobs, K. C., & Lew, D. J. (2022). Pheromone Guidance of Polarity Site Movement in Yeast. Biomolecules, 12(4), 502. https://doi.org/10.3390/biom12040502