Effect of Japanese Cedar Pollen Sublingual Immunotherapy on Asthma Patients with Seasonal Allergic Rhinitis Caused by Japanese Cedar Pollen
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Symptoms Scores
2.3. Measurement of Respiratory Function and Exhaled Nitric Oxide
2.4. Quantification of Circulating Lymphocyte Frequency
2.5. Quantification of the Cytokine Concentration
2.6. Statistical Analysis
3. Results
3.1. Participants and Background
3.2. The Symptoms of SAR-JCP and Asthma
3.3. Changes in Each Parameter after SLIT during the Off-Season
3.4. Association between Changes in SAR-JCP and Asthma Symptoms after SLIT during the In-Season and Changes in Each Parameter after SLIT during the Off-Season
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Okubo, K.; Kurono, Y.; Ichimura, K.; Enomoto, T.; Okamoto, Y.; Kawauchi, H.; Suzaki, H.; Fujieda, S.; Masuyama, K. Japanese Society of A: Japanese guidelines for allergic rhinitis 2020. Allergol. Int. 2020, 69, 331–345. [Google Scholar] [CrossRef] [PubMed]
- Harada, N.; Harada, S.; Ito, J.; Atsuta, R.; Hori, S.; Takahashi, K. Mobile Health App for Japanese Adult Patients with Asthma: Clinical Observational Study. J. Med. Internet Res. 2020, 22, e19006. [Google Scholar] [CrossRef] [PubMed]
- Ohta, K.; Bousquet, P.J.; Aizawa, H.; Akiyama, K.; Adachi, M.; Ichinose, M.; Ebisawa, M.; Tamura, G.; Nagai, A.; Nishima, S.; et al. Prevalence and impact of rhinitis in asthma. SACRA, a cross-sectional nation-wide study in Japan. Allergy 2011, 66, 1287–1295. [Google Scholar] [CrossRef] [PubMed]
- Bousquet, J.; Reid, J.; van Weel, C.; Baena Cagnani, C.; Canonica, G.W.; Demoly, P.; Denburg, J.; Fokkens, W.J.; Grouse, L.; Mullol, K.; et al. Allergic rhinitis management pocket reference 2008. Allergy 2008, 63, 990–996. [Google Scholar] [CrossRef] [PubMed]
- Brozek, J.L.; Bousquet, J.; Agache, I.; Agarwal, A.; Bachert, C.; Bosnic-Anticevich, S.; Brignardello-Petersen, R.; Canonica, G.W.; Casale, T.; Chavannes, N.H.; et al. Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines—2016 revision. J. Allergy Clin. Immunol. 2017, 140, 950–958. [Google Scholar] [CrossRef] [Green Version]
- Pawankar, R.; Bunnag, C.; Khaltaev, N.; Bousquet, J. Allergic Rhinitis and Its Impact on Asthma in Asia Pacific and the ARIA Update 2008. World Allergy Organ. J. 2012, 5 (Suppl. S3), S212–S217. [Google Scholar] [CrossRef] [Green Version]
- Canova, C.; Heinrich, J.; Anto, J.M.; Leynaert, B.; Smith, M.; Kuenzli, N.; Zock, J.P.; Janson, C.; Cerveri, I.; de Marco, R.; et al. The influence of sensitisation to pollens and moulds on seasonal variations in asthma attacks. Eur. Respir. J. 2013, 42, 935–945. [Google Scholar] [CrossRef]
- Hojo, M.; Ohta, K.; Iikura, M.; Hirashima, J.; Sugiyama, H.; Takahashi, K. The impact of co-existing seasonal allergic rhinitis caused by Japanese Cedar Pollinosis (SAR-JCP) upon asthma control status. Allergol. Int. 2015, 64, 150–155. [Google Scholar] [CrossRef] [Green Version]
- Marogna, M.; Spadolini, I.; Massolo, A.; Canonica, G.W.; Passalacqua, G. The contribution of sublingual immunotherapy to the achievement of control in birch-related mild persistent asthma: A real-life randomised trial. Allergol. Immunopathol. 2013, 41, 216–224. [Google Scholar] [CrossRef]
- Marogna, M.; Braidi, C.; Bruno, M.E.; Colombo, C.; Colombo, F.; Massolo, A.; Palumbo, L.; Compalati, E. Clinical, functional, and immunologic effects of sublingual immunotherapy in birch pollinosis: A 3-year randomized controlled study. J. Allergy Clin. Immunol. 2005, 115, 1184–1188. [Google Scholar] [CrossRef]
- Liu, X.; Ng, C.L.; Wang, Y. The efficacy of sublingual immunotherapy for allergic diseases in Asia. Allergol. Int. 2018, 67, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Kikkawa, S.; Nakagome, K.; Kobayashi, T.; Soma, T.; Kamijo, A.; Nagata, M. Sublingual Immunotherapy for Japanese Cedar Pollinosis Attenuates Asthma Exacerbation. Allergy Asthma Immunol. Res. 2019, 11, 438–440. [Google Scholar]
- Ohta, K.; Ichinose, M.; Nagase, H.; Yamaguchi, M.; Sugiura, H.; Tohda, Y.; Yamauchi, K.; Adachi, M.; Akiyama, K. Japanese Society of A: Japanese Guideline for Adult Asthma 2014. Allergol Int 2014, 63, 293–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hojo, M.; Ohta, K.; Iikura, M.; Mizutani, T.; Hirashima, J.; Sugiyama, H. Clinical usefulness of a guideline-based screening tool for the diagnosis of allergic rhinitis in asthmatics: The Self Assessment of Allergic Rhinitis and Asthma questionnaire. Respirology 2013, 18, 1016–1021. [Google Scholar] [CrossRef] [PubMed]
- Ishimori, A.; Harada, N.; Chiba, A.; Harada, S.; Matsuno, K.; Makino, F.; Ito, J.; Ohta, S.; Ono, J.; Atsuta, R.; et al. Circulating activated innate lymphoid cells and mucosal-associated invariant T cells are associated with airflow limitation in patients with asthma. Allergol. Int. 2017, 66, 302–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuhlbrigge, A.L.; Adams, R.J. The effect of treatment of allergic rhinitis on asthma morbidity, including emergency department visits. Curr. Opin. Allergy Clin. Immunol. 2003, 3, 29–32. [Google Scholar] [CrossRef]
- Stelmach, R.; do Patrocinio, T.N.M.; Ribeiro, M.; Cukier, A. Effect of treating allergic rhinitis with corticosteroids in patients with mild-to-moderate persistent asthma. Chest 2005, 128, 3140–3147. [Google Scholar] [CrossRef] [Green Version]
- Watson, W.T.; Becker, A.B.; E Simons, F. Treatment of allergic rhinitis with intranasal corticosteroids in patients with mild asthma: Effect on lower airway responsiveness. J. Allergy Clin. Immunol. 1993, 91, 97–101. [Google Scholar] [CrossRef]
- Krouse, J.H.; Brown, R.W.; Fineman, S.M.; Han, J.K.; Heller, A.J.; Joe, S.; Krouse, H.J.; Pillsbury, H.C., 3rd; Ryan, M.W.; Veling, M.C. Asthma and the unified airway. Otolaryngol. Head Neck Surg. 2007, 136 (Suppl. S5), S75–S106. [Google Scholar] [CrossRef]
- Marogna, M.; Spadolini, I.; Massolo, A.; Berra, D.; Zanon, P.; Chiodini, E.; Canonica, G.W.; Passalacqua, G. Long-term comparison of sublingual immunotherapy vs inhaled budesonide in patients with mild persistent asthma due to grass pollen. Ann. Allergy Asthma Immunol. 2009, 102, 69–75. [Google Scholar] [CrossRef]
- Grossman, J. One airway, one disease. Chest 1997, 111 (Suppl. S2), 11S–16S. [Google Scholar] [CrossRef] [PubMed]
- Braunstahl, J.G.; Hellings, P.W. Allergic rhinitis and asthma: The link further unraveled. Curr. Opin. Pulm. Med. 2003, 9, 46–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braunstahl, G.J.; Kleinjan, A.; Overbeek, S.E.; Prins, J.B.; Hoogsteden, H.C.; Fokkens, W.J. Segmental bronchial provocation induces nasal inflammation in allergic rhinitis patients. Am. J. Respir. Crit. Care Med. 2000, 161, 2051–2057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braunstahl, G.J.; Overbeek, S.E.; Fokkens, W.J.; Kleinjan, A.; McEuen, A.R.; Walls, A.F.; Hoogsteden, H.C.; Prins, J.B. Segmental broncho provocation in allergic rhinitis patients affects mast cell and basophil numbers in nasal and bronchial mucosa. Am. J. Respir. Crit. Care Med. 2001, 164, 858–865. [Google Scholar] [CrossRef] [Green Version]
- Braunstahl, G.J.; Overbeek, S.E.; Kleinjan, A.; Prins, J.B.; Hoogsteden, H.C.; Fokkens, W.J. Nasal allergen provocation induces adhesion molecule expression and tissue eosinophilia in upper and lower airways. J. Allergy Clin. Immunol. 2001, 107, 469–476. [Google Scholar] [CrossRef]
- Taramarcaz, P.; Gibson, P.G. Intranasal corticosteroids for asthma control in people with coexisting asthma and rhinitis. Cochrane Database Syst. Rev. 2003, CD003570. [Google Scholar] [CrossRef]
- Beigh, A.H.; Rasool, R.; Kawoosa, F.; Manzoor, S.; Rashid, R.; Andrabi, K.I.; Shah, Z.A.; Qureshi, T. Improved pulmonary function test (PFT) after 1 one year of Sublingual Immunotherapy (SLIT) in unison with pharmacotherapy in mild allergic asthmatics. Immunol. Lett. 2021, 230, 36–41. [Google Scholar] [CrossRef]
- Hoshino, M.; Akitsu, K.; Kubota, K. Effect of Sublingual Immunotherapy on Airway Inflammation and Airway Wall Thickness in Allergic Asthma. J. Allergy Clin. Immunol. Pract. 2019, 7, 2804–2811. [Google Scholar] [CrossRef]
- Alvaro-Lozano, M.; Akdis, C.A.; Akdis, M.; Alviani, C.; Angier, E.; Arasi, S.; Arzt-Gradwohl, L.; Barber, D.; Bazire, R.; Cavkaytar, O.; et al. EAACI Allergen Immunotherapy User’s Guide. Pediatr. Allergy Immunol. 2020, 31 (Suppl. S25), 1–101. [Google Scholar] [CrossRef]
- Kucuksezer, U.C.; Ozdemir, C.; Akdis, M.; Akdis, C.A. Mechanisms of immune tolerance to allergens in children. Korean J. Pediatr. 2013, 56, 505–513. [Google Scholar] [CrossRef] [Green Version]
- Kucuksezer, U.C.; Ozdemir, C.; Akdis, M.; Akdis, C.A. Precision/Personalized Medicine in Allergic Diseases and Asthma. Arch. Immunol. Ther. Exp. 2018, 66, 431–442. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, C.; Kucuksezer, U.C.; Akdis, M.; Akdis, C.A. Mechanisms of Aeroallergen Immunotherapy: Subcutaneous Immunotherapy and Sublingual Immunotherapy. Immunol. Allergy Clin. N. Am. 2016, 36, 71–86. [Google Scholar] [CrossRef] [PubMed]
- Lao-Araya, M.; Steveling, E.; Scadding, G.W.; Durham, S.R.; Shamji, M.H. Seasonal increases in peripheral innate lymphoid type 2 cells are inhibited by subcutaneous grass pollen immunotherapy. J. Allergy Clin. Immunol. 2014, 134, 1193–1195.e4. [Google Scholar] [CrossRef]
- Boonpiyathad, T.; Sokolowska, M.; Morita, H.; Ruckert, B.; Kast, J.I.; Wawrzyniak, M.; Sangasapaviliya, A.; Pradubpongsa, P.; Fuengthong, R.; Thantiworasit, P.; et al. Der p 1-specific regulatory T-cell response during house dust mite allergen immunotherapy. Allergy 2019, 74, 976–985. [Google Scholar] [CrossRef] [PubMed]
- Durham, S.R.; Ying, S.; Varney, V.A.; Jacobson, M.R.; Sudderick, R.M.; Mackay, I.S.; Kay, A.B.; Hamid, Q.A. Grass pollen immunotherapy inhibits allergen-induced infiltration of CD4+ T lymphocytes and eosinophils in the nasal mucosa and increases the number of cells expressing messenger RNA for interferon-gamma. J. Allergy Clin. Immunol. 1996, 97, 1356–1365. [Google Scholar] [CrossRef]
- Li, H.; Xu, E.; He, M. Cytokine Responses to Specific Immunotherapy in House Dust Mite-Induced Allergic Rhinitis Patients. Inflammation 2015, 38, 2216–2223. [Google Scholar] [CrossRef] [PubMed]
- Makino, F.; Ito, J.; Abe, Y.; Harada, N.; Kamachi, F.; Yagita, H.; Takahashi, K.; Okumura, K.; Akiba, H. Blockade of CD70-CD27 interaction inhibits induction of allergic lung inflammation in mice. Am. J. Respir. Cell Mol. Biol. 2012, 47, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Wambre, E.; DeLong, J.H.; James, E.A.; LaFond, R.E.; Robinson, D.; Kwok, W.W. Differentiation stage determines pathologic and protective allergen-specific CD4+ T-cell outcomes during specific immunotherapy. J. Allergy Clin. Immunol. 2012, 129, 544–551.e7. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.Y.; Li, X.; Li, W.T.; Huang, J.C.; Wang, Z.Y.; Huang, Z.Z.; Chang, L.H.; Zhang, G.H. Vgamma1(+) gammadeltaT Cells Are Correlated With Increasing Expression of Eosinophil Cationic Protein and Metalloproteinase-7 in Chronic Rhinosinusitis With Nasal Polyps Inducing the Formation of Edema. Allergy Asthma Immunol. Res. 2017, 9, 142–151. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.E.; Qin, C.C.; Yang, C.M.; Huang, T.X. GammadeltaT17/gammadeltaTreg cell subsets: A new paradigm for asthma treatment. J. Asthma 2021, 1–11. [Google Scholar] [CrossRef]
- Jonckheere, A.C.; Bullens, D.M.A.; Seys, S.F. Innate lymphoid cells in asthma: Pathophysiological insights from murine models to human asthma phenotypes. Curr. Opin. Allergy Clin. Immunol. 2019, 19, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Lee, H.J.; Chang, Y.J.; Pichavant, M.; Shore, S.A.; Fitzgerald, K.A.; Iwakura, Y.; Israel, E.; Bolger, K.; Faul, J.; et al. Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nat. Med. 2014, 20, 54–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
n = 20 | Number (%) or Mean ± SD |
---|---|
Male, n (%) | 10 (50.0%) |
Female, n (%) | 10 (50.0%) |
Age (y), mean (±SD) | 50.9 ± 13.0 |
Age at asthma onset (y), mean (±SD) | 37.1 ± 18.6 |
Duration of asthma (y), mean (±SD) | 13.8 ± 13.8 |
BMI (kg/m2), mean (±SD) | 24.1 ± 3.9 |
Smoking history | |
Never-smoker, n (%) | 17 (85.0%) |
Ex-smoker, n (%) | 3 (15.0%) |
AERD, n (%) | 0 (0%) |
Atopic dermatitis, n (%) | 5 (25.0%) |
Atopic conjunctivitis, n (%) | 2 (10.0%) |
Chronic sinusitis, n (%) | 2 (10.0%) |
Childhood asthma, n (%) | 4 (20.0%) |
Hypertension, n (%) | 3 (15.0%) |
Hyperlipidemia, n (%) | 2 (10.0%) |
JGL treatment step | |
Step 1, n (%) | 2 (10.0%) |
Step 2, n (%) | 4 (20.0%) |
Step 3, n (%) | 12 (60.0%) |
Step 4, n (%) | 2 (10.0%) |
Daily dose of ICS (FP equivalent dose, µg) | 547.5 ± 302.0 |
Short-course oral corticosteroid therapy, n (%) | 1 (5.0%) |
Omalizumab therapy, n (%) | 1 (5.0%) |
Mepolizumab therapy, n (%) | 1 (5.0%) |
Antigen-specific IgE antibodies positive | |
JCP, n (%) | 20 (100.0%) |
Grass pollen except for JCP, n (%) | 18 (90.0%) |
Dust mites, n (%) | 11 (55.0%) |
Mold, n (%) | 1 (5.0%) |
Animal dander, n (%) | 4 (20.0%) |
Pre-SLIT (n = 20) | Post-SLIT (n = 20) | p-Value | |
---|---|---|---|
VAS score points (rhinitis symptoms), n = 17 | 0.7 ± 1.3 | 1.9 ± 2.8 | 0.109 |
SACRA questionnaire about rhinitis symptom, n = 17 | |||
Runny nose | 5 (29.4%) | 3 (17.6%) | 0.688 |
Sneezing | 2 (11.8%) | 2 (11.8%) | 1.000 |
Nasal congestion | 3 (17.6%) | 3 (17.6%) | 1.000 |
Pruritus nasal | 4 (23.5%) | 2 (11.8%) | 0.656 |
Ocular symptoms | 4 (23.5%) | 6 (35.3%) | 0.708 |
ACT score points | 22.9 ± 3.6 | 23.9 ± 1.9 | 0.344 |
VAS score points (asthma symptoms), n = 17 | 1.0 ± 1.9 | 0.8 ± 1.1 | 0.930 |
SACRA questionnaire about asthma symptom, n = 17 | |||
Well controlled/partly controlled/uncontrolled, n (%) | 14 (82.4%)/3 (17.6%)/0 (0%) | 13 (76.5%)/4 (23.5%)/0 (0%) | 1.000 |
FeNO (ppb) | 25.5 ± 16.5 | 30.3 ± 25.9 | 0.347 |
VC (L) | 3.7 ± 0.8 | 3.7 ± 0.9 | 0.541 |
FVC (L) | 3.6 ± 0.9 | 3.6 ± 0.9 | 0.205 |
FEV1 (L) | 2.9 ± 0.7 | 2.8 ± 0.7 | 0.209 |
FEV1% (%) | 79.6 ± 9.4 | 79.3 ± 9.0 | 0.720 |
R5 (cmH2O/L/s) | 2.8 ± 0.8 | 2.4 ± 0.8 | 0.009 * |
R20 (cmH2O/L/s) | 2.5 ± 0.7 | 2.1 ± 0.8 | 0.002 * |
X5 (cmH2O/L/s) | −0.4 ± 0.3 | -0.3 ± 0.2 | 0.049 * |
Fres (Hz) | 7.8 ± 2.8 | 7.0 ± 1.8 | 0.039 * |
ALX (cmH2O/L/s × Hz) | 1.6 ± 1.6 | 1.1 ± 0.8 | 0.019 * |
Peripheral neutrophils (%) | 58.6 ± 9.8 | 58.5 ± 8.2 | 0.927 |
Peripheral neutrophils (cells/μL) | 3506.0 ± 1037.0 | 3576.0 ± 1172.0 | 0.619 |
Peripheral eosinophils (%) | 3.2 ± 2.0 | 3.5 ± 2.5 | 0.658 |
Peripheral eosinophils (cells/μL) | 220.1 ± 171.2 | 210.1 ± 164.2 | 0.787 |
Peripheral basophils (%) | 0.7 ± 0.6 | 0.7 ± 0.5 | 0.918 |
Peripheral basophils (cells/μL) | 37.4 ± 31.3 | 38.4 ± 27.1 | 0.784 |
Peripheral lymphocytes (%) | 31.7 ± 8.7 | 31.9 ± 7.6 | 0.863 |
Peripheral lymphocytes (cells/μL) | 1839.0 ± 507.6 | 1914.0 ± 652.5 | 0.286 |
Peripheral monocytes (%) | 5.3 ± 0.6 | 5.5 ± 1.3 | 0.877 |
Peripheral monocytes (cells/μL) | 317.5 ± 80.9 | 325.0 ± 93.8 | 0.596 |
Total IgE (IU/mL), n = 19 | 313.3 ± 569.2 | 254.1 ± 276.6 | 0.761 |
IgG4 (mg/dL), n = 18 | 98.6 ± 174.9 | 89.9 ± 114.4 | 0.074 |
TARC (pg/mL), n = 6 | 301.3 ± 222.6 | 270.0 ± 145.3 | 0.813 |
IL-1β (pg/mL), n = 19 | 3.3 ± 5.4 | 2.6 ± 2.8 | 0.129 |
IL-1Rα (pg/mL), n = 18 | 327.8 ± 514.1 | 249.7 ± 284.9 | 0.159 |
IL-4 (pg/mL) | 2.8 ± 1.2 | 2.6 ± 1.1 | 0.782 |
IL-7 (pg/mL), n = 15 | 11.4 ± 6.5 | 12.2 ± 6.2 | 0.484 |
IL-8 (pg/mL), n = 16 | 11.5 ± 4.8 | 11.1 ± 5.2 | 0.930 |
IL-9 (pg/mL), n = 19 | 81.8 ± 70.7 | 104.6 ± 73.0 | 0.575 |
IL-13 (pg/mL), n = 8 | 6.7 ± 2.6 | 6.0 ± 1.6 | 0.482 |
IL-17 (pg/mL), n = 19 | 30.3 ± 15.9 | 26.2 ± 13.7 | 0.112 |
Eotaxin-1 (pg/mL) | 92.7 ± 46.8 | 88.8 ± 42.7 | 0.648 |
Basic FGF (pg/mL), n = 18 | 30.2 ± 10.9 | 33.5 ± 11.5 | 0.404 |
G-CSF (pg/mL), n = 19 | 45.9 ± 20.9 | 49.5 ± 19.0 | 0.275 |
IFN-γ (pg/mL), n = 19 | 57.8 ± 79.5 | 38.6 ± 49.9 | 0.007 * |
IP-10 (pg/mL) | 614.1 ± 259.9 | 575.0 ± 203.5 | 0.425 |
MCP-1 (pg/mL), n = 12 | 28.9 ± 40.3 | 26.0 ± 19.7 | 0.176 |
MIP-1α (pg/mL), n = 19 | 3.1 ± 1.8 | 2.7 ± 1.6 | 0.166 |
PDGF-BB (pg/mL) | 1805.0 ± 994.8 | 1617.0 ± 898.3 | 0.409 |
MIP-1β (pg/mL) | 145.8 ± 66.3 | 169.1 ± 61.5 | 0.154 |
RANTES (pg/mL) | 6714.0 ± 1025.0 | 6998.0 ± 981.8 | 0.294 |
TNF-α (pg/mL), n = 19 | 103.9 ± 85.4 | 100.8 ± 39.0 | 0.832 |
Th1 cells (% of Th cells, %) | 19.4 ± 6.1 | 19.8 ± 8.6 | 0.697 |
Th2 cells (% of Th cells, %) | 6.1 ± 2.7 | 6.3 ± 2.9 | 0.672 |
Th17 cells (% of Th cells, %) | 6.0 ± 1.4 | 5.6 ± 1.8 | 0.232 |
Treg cells (% of Th cells, %) | 7.4 ± 3.5 | 6.1 ± 3.8 | 0.001 * |
ILC1 (% of ILC cells, %) | 61.7 ± 15.1 | 56.7 ± 18.6 | 0.222 |
ILC2 (% of ILC cells, %) | 25.0 ± 12.9 | 22.0 ± 12.4 | 0.169 |
ILC3 (% of ILC cells, %) | 12.2 ± 9.7 | 20.8 ± 15.7 | 0.030 * |
NK cells (% of lymphoid cells, %) | 14.7 ± 7.5 | 15.5 ± 7.6 | 0.522 |
γδ T cells (% of lymphoid cells, %) | 2.4 ± 1.6 | 2.5 ± 1.6 | 0.978 |
NKT (% of lymphoid cells, %) | 0.029 ± 0.030 | 0.028 ± 0.036 | 0.546 |
MAIT cells (% of CD3+cells, %) | 3.4 ± 2.3 | 3.0 ± 1.6 | 0.312 |
CD27+CD4+ T cells (% of CD3+CD4+ T cells, %) | 90.5 ± 6.4 | 90.8 ± 6.7 | 0.730 |
CD27-CD4+ T cells (% of CD3+CD4+ T cells, %) | 9.5 ± 6.4 | 9.2 ± 6.7 | 0.736 |
ΔACT | ΔVAS (Asthma Symptoms) | ΔVAS (Rhinitis Symptoms) | ||||
---|---|---|---|---|---|---|
r | p-Value | r | p-Value | r | p-Value | |
ΔACT | −0.785 | <0.001 * | −0.295 | 0.207 | ||
ΔVAS (asthma symptoms) | −0.785 | <0.001 * | 0.075 | 0.753 | ||
ΔVAS (rhinitis symptoms) | −0.295 | 0.207 | 0.075 | 0.753 | ||
ΔFeNO (ppb) | 0.113 | 0.636 | −0.062 | 0.794 | −0.081 | 0.735 |
ΔVC (L) | −0.201 | 0.396 | 0.316 | 0.174 | −0.229 | 0.331 |
ΔFVC (L) | −0.088 | 0.713 | 0.048 | 0.841 | −0.149 | 0.530 |
ΔFEV1 (L) | 0.050 | 0.835 | −0.232 | 0.324 | 0.033 | 0.890 |
ΔFEV1% (%) | 0.205 | 0.385 | -0.391 | 0.088 | 0.246 | 0.295 |
ΔR5 (cmH2O/L/s) | −0.286 | 0.221 | 0.057 | 0.812 | −0.127 | 0.593 |
ΔR20 (cmH2O/L/s) | −0.067 | 0.781 | −0.101 | 0.673 | −0.126 | 0.597 |
ΔX5 (cmH2O/L/s) | −0.058 | 0.809 | 0.018 | 0.940 | −0.108 | 0.650 |
ΔFres (Hz) | 0.035 | 0.884 | 0.019 | 0.936 | −0.037 | 0.878 |
ΔALX (cmH2O/L/s × Hz) | 0.040 | 0.867 | −0.160 | 0.501 | 0.178 | 0.453 |
ΔPeripheral neutrophils (%) | 0.110 | 0.643 | −0.276 | 0.239 | 0.078 | 0.744 |
ΔPeripheral neutrophils (cells/μL) | −0.070 | 0.771 | 0.013 | 0.958 | 0.157 | 0.509 |
ΔPeripheral eosinophils (%) | 0.153 | 0.519 | −0.238 | 0.312 | 0.033 | 0.891 |
ΔPeripheral eosinophils (cells/μL) | 0.148 | 0.533 | −0.048 | 0.840 | −0.285 | 0.223 |
ΔPeripheral bosophils (%) | 0.075 | 0.755 | 0.150 | 0.527 | 0.048 | 0.840 |
ΔPeripheral basophils (cells/μL) | 0.082 | 0.730 | 0.019 | 0.936 | −0.263 | 0.263 |
ΔPeripheral lymphocytes (%) | −0.157 | 0.510 | 0.235 | 0.318 | 0.134 | 0.573 |
ΔPeripheral lymphocytes (cells/μL) | −0.187 | 0.429 | 0.380 | 0.098 | 0.143 | 0.547 |
ΔPeripheral monocytes (%) | −0.167 | 0.482 | 0.235 | 0.318 | −0.079 | 0.739 |
ΔPeripheral monoocytes (cells/μL) | −0.222 | 0.347 | 0.328 | 0.157 | −0.022 | 0.926 |
ΔTotal IgE (IU/mL), n = 19 | −0.245 | 0.313 | 0.240 | 0.322 | −0.317 | 0.186 |
ΔIgG4 (mg/dL), n = 18 | 0.059 | 0.815 | −0.044 | 0.863 | −0.320 | 0.195 |
ΔTARC (pg/mL), n = 6 | −0.273 | 0.617 | −0.203 | 0.700 | −0.371 | 0.497 |
ΔIL-1β (pg/mL), n = 19 | 0.072 | 0.768 | 0.128 | 0.601 | −0.358 | 0.132 |
ΔIL-1Rα (pg/mL), n = 18 | 0.011 | 0.964 | 0.215 | 0.392 | −0.415 | 0.087 |
ΔIL-4 (pg/mL) | −0.275 | 0.241 | 0.357 | 0.122 | 0.121 | 0.611 |
ΔIL-7 (pg/mL), n = 15 | −0.171 | 0.539 | −0.016 | 0.956 | 0.109 | 0.697 |
ΔIL-8 (pg/mL), n = 16 | −0.334 | 0.204 | 0.229 | 0.389 | −0.210 | 0.431 |
ΔIL-13 (pg/mL), n = 8 | −0.238 | 0.582 | 0.878 | 0.008 * | −0.771 | 0.033 * |
ΔIL-17 (pg/mL), n = 19 | −0.313 | 0.191 | 0.438 | 0.061 | −0.202 | 0.407 |
ΔEotaxin (pg/mL) | −0.166 | 0.484 | 0.223 | 0.344 | 0.074 | 0.758 |
ΔBasic-FGF (pg/mL), n = 18 | −0.276 | 0.268 | −0.203 | 0.419 | 0.083 | 0.744 |
ΔG-CSF (pg/mL), n = 19 | −0.297 | 0.216 | 0.198 | 0.416 | −0.177 | 0.468 |
ΔIFN-γ (pg/mL), n = 19 | −0.107 | 0.664 | 0.260 | 0.282 | −0.631 | 0.004 * |
ΔIP-10 (pg/mL) | 0.086 | 0.718 | 0.029 | 0.904 | −0.019 | 0.937 |
ΔMCP-1 (pg/mL), n = 12 | −0.338 | 0.280 | 0.226 | 0.477 | −0.187 | 0.558 |
ΔMIP-1α (pg/mL), n = 19 | −0.282 | 0.242 | 0.309 | 0.198 | −0.367 | 0.122 |
ΔPDGF-BB (pg/mL) | −0.134 | 0.574 | 0.387 | 0.092 | −0.063 | 0.791 |
ΔMIP-1β (pg/mL) | −0.355 | 0.124 | −0.102 | 0.668 | 0.465 | 0.039 * |
ΔRANTES (pg/mL) | −0.302 | 0.195 | 0.419 | 0.066 | 0.003 | 0.990 |
ΔTNF-α (pg/mL), n = 19 | 0.140 | 0.567 | −0.296 | 0.219 | −0.289 | 0.230 |
ΔTh1 cells (% of Th cells, %) | −0.387 | 0.092 | 0.074 | 0.758 | 0.294 | 0.209 |
ΔTh2 cells (% of Th cells, %) | −0.257 | 0.274 | −0.030 | 0.899 | 0.186 | 0.434 |
ΔTh17 cells (% of Th cells, %) | −0.247 | 0.294 | 0.135 | 0.572 | −0.221 | 0.350 |
ΔTreg cells (% of Th cells, %) | −0.153 | 0.521 | 0.185 | 0.435 | −0.045 | 0.850 |
ΔILC1 (% of ILC cells, %) | −0.372 | 0.107 | 0.480 | 0.032 * | −0.073 | 0.759 |
ΔILC2 (% of ILC cells, %) | −0.074 | 0.756 | −0.157 | 0.508 | 0.293 | 0.209 |
ΔILC3 (% of ILC cells, %) | 0.400 | 0.080 | −0.464 | 0.039 * | −0.201 | 0.395 |
ΔNK cells (% of lymphoid cells, %) | −0.375 | 0.104 | 0.316 | 0.174 | 0.182 | 0.441 |
Δγδ T cells (% of lymphoid cells, %) | −0.658 | 0.002 * | 0.588 | 0.006 * | 0.269 | 0.251 |
ΔNKT (% of lymphoid cells, %), | 0.177 | 0.456 | 0.128 | 0.590 | 0.075 | 0.754 |
ΔMAIT cells (% of CD3+cells, %) | −0.010 | 0.967 | −0.162 | 0.496 | 0.203 | 0.391 |
ΔCD27+CD4+ T cells (% of CD3+CD4+ T cells, %) | 0.616 | 0.004 * | −0.336 | 0.148 | −0.309 | 0.185 |
ΔCD27-CD4+ T cells (% of CD3+CD4+ T cells, %) | −0.618 | 0.004 * | 0.340 | 0.142 | 0.317 | 0.174 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ueda, S.; Ito, J.; Harada, N.; Harada, S.; Sasano, H.; Sandhu, Y.; Tanabe, Y.; Abe, S.; Shiota, S.; Kodama, Y.; et al. Effect of Japanese Cedar Pollen Sublingual Immunotherapy on Asthma Patients with Seasonal Allergic Rhinitis Caused by Japanese Cedar Pollen. Biomolecules 2022, 12, 518. https://doi.org/10.3390/biom12040518
Ueda S, Ito J, Harada N, Harada S, Sasano H, Sandhu Y, Tanabe Y, Abe S, Shiota S, Kodama Y, et al. Effect of Japanese Cedar Pollen Sublingual Immunotherapy on Asthma Patients with Seasonal Allergic Rhinitis Caused by Japanese Cedar Pollen. Biomolecules. 2022; 12(4):518. https://doi.org/10.3390/biom12040518
Chicago/Turabian StyleUeda, Shoko, Jun Ito, Norihiro Harada, Sonoko Harada, Hitoshi Sasano, Yuuki Sandhu, Yuki Tanabe, Sumiko Abe, Satomi Shiota, Yuzo Kodama, and et al. 2022. "Effect of Japanese Cedar Pollen Sublingual Immunotherapy on Asthma Patients with Seasonal Allergic Rhinitis Caused by Japanese Cedar Pollen" Biomolecules 12, no. 4: 518. https://doi.org/10.3390/biom12040518
APA StyleUeda, S., Ito, J., Harada, N., Harada, S., Sasano, H., Sandhu, Y., Tanabe, Y., Abe, S., Shiota, S., Kodama, Y., Nagaoka, T., Makino, F., Chiba, A., Akiba, H., Atsuta, R., Miyake, S., & Takahashi, K. (2022). Effect of Japanese Cedar Pollen Sublingual Immunotherapy on Asthma Patients with Seasonal Allergic Rhinitis Caused by Japanese Cedar Pollen. Biomolecules, 12(4), 518. https://doi.org/10.3390/biom12040518