Investigation of the Molecular Mechanisms of the Eukaryotic Cytochrome-c Maturation System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Production of STC Mutants with System III
2.2. Production of STC Mutants with System I
2.3. Protein Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nicholls, D.G.; Ferguson, S.J. Bioenergetics, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2013; ISBN 9780123884251. [Google Scholar]
- Pettigrew, G.W.; Moore, G.R. Cytochromes c: Biological aspects. Int. J. Biochem. 1989, 21, 233. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, X. Cytochrome c-Mediated Apoptosis. Annu. Rev. Biochem. 2004, 73, 87–106. [Google Scholar] [CrossRef] [PubMed]
- Ow, Y.-L.P.; Green, D.R.; Hao, Z.; Mak, T.W. Cytochrome c: Functions beyond respiration. Nat. Rev. Mol. Cell Biol. 2008, 9, 532–542. [Google Scholar] [CrossRef] [PubMed]
- Paquete, C.M.; Rusconi, G.; Silva, A.V.; Soares, R.; Louro, R.O. A brief survey of the “cytochromome”. Adv Microb. Physiol. 2019, 75, 69–135. [Google Scholar]
- Fonseca, B.M.; Soares, R.M.; Paquete, C.M.; Louro, R.O. Bacterial Power: An Alternative Energy Source. Enzym. Solving Hum. Probl. 2021, 2021, 215–246. [Google Scholar] [CrossRef]
- Dickerson, R.E. Cytochrome c and the evolution of energy metabolism. Sci. Am. 1980, 242, 137–153. [Google Scholar] [CrossRef]
- Sanders, C.; Turkarslan, S.; Lee, D.-W.; Daldal, F. Cytochrome c biogenesis: The Ccm system. Trends Microbiol. 2010, 18, 266–274. [Google Scholar] [CrossRef] [Green Version]
- Kranz, R.G.; Richard-Fogal, C.; Taylor, J.-S.; Frawley, E.R. Cytochrome c biogenesis: Mechanisms for covalent modifications and trafficking of heme and for heme-iron redox control. Microbiol. Mol. Biol. Rev. 2009, 73, 510–528. [Google Scholar] [CrossRef] [Green Version]
- de Vitry, C. Cytochrome c maturation system on the negative side of bioenergetic membranes: CCB or System IV. FEBS J. 2011, 278, 4189–4197. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, S.J. New perspectives on assembling c-type cytochromes, particularly from sulphate reducing bacteria and mitochondria. Biochim. Biophys. Acta—Bioenerg. 2012, 1817, 1754–1758. [Google Scholar] [CrossRef] [Green Version]
- Mavridou, D.I.; Ferguson, S.J.; Stevens, J.M. Cytochrome c assembly. IUBMB Life 2013, 65, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Verissimo, A.F.; Daldal, F. Cytochrome c biogenesis System I: An intricate process catalyzed by a maturase supercomplex? Biochim. Biophys. Acta—Bioenerg. 2014, 1837, 989–998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verissimo, A.F.; Sanders, J.; Daldal, F.; Sanders, C. Biochemical and Biophysical Research Communications Engineering a prokaryotic apocytochrome c as an efficient substrate for Saccharomyces cerevisiae cytochrome c heme lyase. Biochem. Biophys. Res. Commun. 2012, 424, 130–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babbitt, S.E.; Hsu, J.; Mendez, D.L.; Kranz, R.G. Biosynthesis of Single Thioether c-Type Cytochromes Provides Insight into Mechanisms Intrinsic to Holocytochrome c Synthase (HCCS). Biochemistry 2017, 56, 3337–3346. [Google Scholar] [CrossRef] [PubMed]
- Babbitt, S.E.; Sutherland, M.C.; Francisco, B.S.; Mendez, D.L.; Kranz, R.G. Mitochondrial cytochrome c biogenesis: No longer an enigma. Trends Biochem. Sci. 2015, 40, 446–455. [Google Scholar] [CrossRef] [Green Version]
- Dumont, M.E.; Ernst, J.F.; Hampsey, D.M.; Sherman, F. Identification and sequence of the gene encoding cytochrome c heme lyase in the yeast Saccharomyces cerevisiae. EMBO J. 1987, 6, 235–241. [Google Scholar] [CrossRef]
- San Francisco, B.; Bretsnyder, E.C.; Kranz, R.G. Human mitochondrial holocytochrome c synthase’s heme binding, maturation determinants, and complex formation with cytochrome c. Proc. Natl. Acad. Sci. USA 2013, 110, E788–E797. [Google Scholar] [CrossRef] [Green Version]
- Sutherland, M.C.; Mendez, D.L.; Babbitt, S.E.; Tillman, D.E.; Melnikov, O.; Tran, N.L.; Prizant, N.T.; Collier, A.L.; Kranz, R.G. In vitro reconstitution reveals major differences between human and bacterial cytochrome c synthases. Elife 2021, 10, e64891. [Google Scholar] [CrossRef]
- Wimplinger, I.; Morleo, M.; Rosenberger, G.; Iaconis, D.; Orth, U.; Meinecke, P.; Lerer, I.; Ballabio, A.; Gal, A.; Franco, B.; et al. Mutations of the Mitochondrial Holocytochrome c–Type Synthase in X-Linked Dominant Microphthalmia with Linear Skin Defects Syndrome. Am. J. Hum. Genet. 2006, 79, 878–889. [Google Scholar] [CrossRef] [Green Version]
- Slavotinek, A. Genetics of anophthalmia and microphthalmia. Part 2: Syndromes associated with anophthalmia–microphthalmia. Hum. Genet. 2019, 138, 831–846. [Google Scholar] [CrossRef]
- Kiryu-Seo, S.; Gamo, K.; Tachibana, T.; Tanaka, K.; Kiyama, H. Unique anti-apoptotic activity of EAAC1 in injured motor neurons. EMBO J. 2006, 25, 3411–3421. [Google Scholar] [CrossRef] [PubMed]
- Alves, A.S.; Costa, N.L.; Tien, M.; Louro, R.O.; Paquete, C.M. Modulation of the reactivity of multiheme cytochromes by site-directed mutagenesis: Moving towards the optimization of microbial electrochemical technologies. J. Biol. Inorg. Chem. 2017, 22, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, B.M.; Saraiva, I.H.; Paquete, C.M.; Soares, C.M.; Pacheco, I.; Salgueiro, C.A.; Louro, R.O. The tetraheme cytochrome from Shewanella oneidensis MR-1 shows thermodynamic bias for functional specificity of the hemes. J. Biol. Inorg. Chem. 2009, 14, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Pollock, W.B.R.; Rosell, F.I.; Twitchett, M.B.; Dumont, M.E.; Mauk, A.G. Bacterial expression of a mitochondrial cytochrome c. Trimethylation of Lys72 in yeast iso-1-cytochrome c and the alkaline conformational transition. Biochemistry 1998, 37, 6124–6131. [Google Scholar] [CrossRef] [PubMed]
- Olteanu, A.; Patel, C.N.; Dedmon, M.M.; Kennedy, S.; Linhoff, M.W.; Minder, C.M.; Potts, P.R.; Deshmukh, M.; Pielak, G.J. Stability and apoptotic activity of recombinant human cytochrome c. Biochem. Biophys. Res. Commun. 2003, 312, 733–740. [Google Scholar] [CrossRef]
- Morar, A.S.; Kakouras, D.; Young, G.B.; Boyd, J.; Pielak, G.J. Expression of 15N-labeled eukaryotic cytochrome c in Escherichia coli. J. Biol. Inorg. Chem. 1999, 4, 220–222. [Google Scholar] [CrossRef]
- Patel, C.N.; Lind, M.C.; Pielak, G.J. Characterization of horse cytochrome c expressed in Escherichia coli. Protein Expr. Purif. 2001, 22, 220–224. [Google Scholar] [CrossRef]
- Bertani, G. Lysogeny at Mid-Twentieth Century: P1, P2, and Other Experimental Systems. J. Bacteriol. 2004, 186, 595–600. [Google Scholar] [CrossRef] [Green Version]
- Tartoff, K.D.; Hobbs, C.A. Improved Media for Growing Plasmid and Cosmid Clones. Improv. Media Grow. Plasmid Cosm. Clones. 1987, 9, 12. [Google Scholar]
- Goodhew, C.F.; Brown, K.R.; Pettigrew, G.W. Haem staining in gels, a useful tool in the study of bacterial c-type cytochromes. Biochim. Biophys. Acta—Bioenerg. 1986, 852, 288–294. [Google Scholar] [CrossRef]
- Arslan, E.; Schulz, H.; Zufferey, R.; Künzler, P.; Thöny-Meyer, L. Overproduction of the Bradyrhizobium japonicum c-type cytochrome subunits of the cbb3 oxidase in Escherichia coli. Biochem. Biophys. Res. Commun. 1998, 251, 744–747. [Google Scholar] [CrossRef] [PubMed]
- Thony-Meyer, L.; Fischer, F.; Kunzler, P.; Ritz, D.; Hennecke, H. Escherichia coli genes required for cytochrome c maturation. J. Bacteriol. 1995, 177, 4321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korb, H.; Neupert, W. Biogenesis of Cytochrome c in Neurospora crassa. Synthesis of Apocytochrome c, Transfer to Mitochondria and Conversion to Holocytochrome c. Eur. J. Biochem. 1978, 91, 609–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babbitt, S.E.; Francisco, B.S.; Mendez, D.L.; Lukat-Rodgers, G.S.; Rodgers, K.R.; Bretsnyder, E.C.; Kranz, R.G. Mechanisms of mitochondrial holocytochrome c synthase and the key roles played by cysteines and histidine of the heme attachment site, Cys-XX-Cys-His. J. Biol. Chem. 2014, 289, 28795–28807. [Google Scholar] [CrossRef] [Green Version]
- Mendez, D.L.; Lowder, E.P.; Tillman, D.E.; Sutherland, M.C.; Collier, A.L.; Rau, M.J.; Fitzpatrick, J.A.J.; Kranz, R.G. Cryo-EM of CcsBA reveals the basis for cytochrome c biogenesis and heme transport. Nat. Chem. Biol. 2022, 18, 101–108. [Google Scholar] [CrossRef]
- Babbitt, S.E.; Hsu, J.; Kranz, R.G. Molecular Basis Behind Inability of Mitochondrial Holocytochrome c Synthase to Mature Bacterial Cytochromes. J. Biol. Chem. 2016, 291, 17523–17534. [Google Scholar] [CrossRef] [Green Version]
- Sutherland, M.C.; Tran, N.L.; Tillman, D.E.; Jarodsky, J.M.; Yuan, J.; Kranz, R.G. Structure-Function Analysis of the Bifunctional CcsBA Heme Exporter and Cytochrome c Synthetase. MBio 2018, 9, e02134-18. [Google Scholar] [CrossRef] [Green Version]
Mutant | Apo Protein | 1 Heme | 2 Hemes | 3 Hemes | 4 Hemes |
---|---|---|---|---|---|
STC-H1 | 10.5 | 11.1 | 11.7 | 12.3 | 12.9 |
STC-H12 | 10.4 | 11.0 | 11.6 | 12.2 | 12.9 |
STC-H2 | 10.4 | 11.0 | 11.6 | 12.3 | 12.9 |
STC-H14 | 10.4 | 11.0 | 11.7 | 12.3 | 12.9 |
STC-H4 | 10.4 | 11.1 | 11.7 | 12.3 | 12.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, A.V.; Firmino, M.O.; Costa, N.L.; Louro, R.O.; Paquete, C.M. Investigation of the Molecular Mechanisms of the Eukaryotic Cytochrome-c Maturation System. Biomolecules 2022, 12, 549. https://doi.org/10.3390/biom12040549
Silva AV, Firmino MO, Costa NL, Louro RO, Paquete CM. Investigation of the Molecular Mechanisms of the Eukaryotic Cytochrome-c Maturation System. Biomolecules. 2022; 12(4):549. https://doi.org/10.3390/biom12040549
Chicago/Turabian StyleSilva, Ana V., Maria O. Firmino, Nazua L. Costa, Ricardo O. Louro, and Catarina M. Paquete. 2022. "Investigation of the Molecular Mechanisms of the Eukaryotic Cytochrome-c Maturation System" Biomolecules 12, no. 4: 549. https://doi.org/10.3390/biom12040549
APA StyleSilva, A. V., Firmino, M. O., Costa, N. L., Louro, R. O., & Paquete, C. M. (2022). Investigation of the Molecular Mechanisms of the Eukaryotic Cytochrome-c Maturation System. Biomolecules, 12(4), 549. https://doi.org/10.3390/biom12040549