How Similar Are Proteins and Origami?
Abstract
:1. Introduction
2. Folding Processes
2.1. Folding Principles
2.1.1. Folding Process of Proteins
2.1.2. Folding Process of Origami Models
2.2. Folding Constraints
2.2.1. Protein Folding Constraints
2.2.2. Origami Folding Constraints
2.3. Properties of the Folded Mediums
2.4. Folding Energy
3. Protein Structures and Origami Models
4. Mechanical Properties
4.1. Tensegrity
4.1.1. Tensegrity in Proteins
4.1.2. Tensegrity in Origami
4.2. Auxeticity
4.2.1. Auxeticity in Proteins
4.2.2. Auxeticity in Origami
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Demaine, E.D.; O’Rourke, J. Geometric Folding Algorithms. Linkages, Origami, Polyhedra; Cambrige University Press: New York, NY, USA, 2007. [Google Scholar]
- Miskin, M.Z.; Dorsey, K.J.; Bircan, B.; Han, Y.; Muller, D.A.; McEuen, P.L.; Cohen, I. Graphene-based bimorphs for micron-sized, autonomous origami machines. Proc. Natl. Acad. Sci. USA 2018, 115, 466–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zadpoor, A.A. Meta-biomaterials. Biomater. Sci. 2020, 8, 18–38. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, H.; Wood, R.J. Origami-inspired miniature manipulator for teleoperated microsurgery. Nat. Mach. Intell. 2020, 2, 437–446. [Google Scholar] [CrossRef]
- Reis, P.M.; López Jiménez, F.; Marthelot, J. Transforming architectures inspired by origami. Proc. Natl. Acad. Sci. USA 2015, 112, 12234–12235. [Google Scholar] [CrossRef] [Green Version]
- Hunter, P. Nature’s origami: Understanding folding helps to analyze the self-structuring of molecules, organs and surfaces. EMBO Rep. 2015, 16, 1435–1438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calladine, C.R. Deployable structures: What can we learn from biological structures? In IUTAM-IASS Symposium on Deployable Structures: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2000; pp. 63–76. [Google Scholar]
- Treml, B.; Gillman, A.; Buskohl, P.; Vaia, R. Origami mechanologic. Proc. Natl. Acad. Sci. USA 2018, 115, 6916–6921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faber, J.A.; Arrieta, A.F.; Studart, A.R. Bioinspired spring origami. Science 2018, 359, 1386–1391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.; Siewny, M.G.; Edwards, D.T.; Sanders, A.W.; Perkins, T.T. Hidden dynamics in the unfolding of individual bacteriorhodopsin proteins. Science 2017, 355, 945–950. [Google Scholar] [CrossRef] [Green Version]
- Timothy, R.L.; Jayanth, R.B.; Amos, M. The origami of life. J. Phys. Condens. Matter 2006, 18, 847–888. [Google Scholar] [CrossRef]
- Wang, S.-T.; Gray, M.A.; Xuan, S.; Lin, Y.; Byrnes, J.; Nguyen, A.I.; Todorova, N.; Stevens, M.N.; Bertozzi, C.R.; Zuckermann, R.N.; et al. DNA origami protection and molecular interfacing through engineered sequence-defined peptoids. Proc. Natl. Acad. Sci. USA 2020, 117, 6339–6348. [Google Scholar] [CrossRef] [Green Version]
- Žerovnik, E.; Staniforth, R.A.; Turk, D. Amyloid fibril formation by human stefins: Structure, mechanism & putative functions. Biochimie 2010, 92, 1597–1607. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.L.; Gandhi, S. Crucial role of protein oligomerization in the pathogenesis of Alzheimer’s and Parkinson’s diseases. FEBS J. 2018, 285, 3631–3644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mackenzie, G.; Will, R. Creutzfeldt-Jakob disease: Recent developments. F1000Research 2017, 6, 2053. [Google Scholar] [CrossRef] [PubMed]
- Maor, G.; Rencus-Lazar, S.; Filocamo, M.; Steller, H.; Segal, D.; Horowitz, M. Unfolded protein response in gaucher disease: From human to drosophila. Orphanet J. Rare Dis. 2013, 8, 140. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, A.; Morales-Scheihing, D.; Butler, P.C.; Soto, C. Type 2 diabetes as a protein misfolding disease. Trends Mol. Med. 2015, 21, 439–449. [Google Scholar] [CrossRef] [Green Version]
- Zhou, A.X.; Tabas, I. The UPR in atherosclerosis. In Seminars in Immunopathology; Springer: Berlin/Heidelberg, Germany, 2013; Volume 35, pp. 321–332. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Kaufman, R.J. The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat. Rev. Cancer 2014, 14, 581–597. [Google Scholar] [CrossRef]
- Brüning, A.; Jückstock, J. Misfolded proteins: From little villains to little helpers in the fight against cancer. Front. Oncol. 2015, 5, 47. [Google Scholar] [CrossRef] [Green Version]
- Drobnak, I.; Ljubetič, A.; Gradišar, H.; Pisanski, T.; Jerala, R. Designed protein origami. In Protein-Based Engineered Nanostructures, Advances in Experimental Medicine and Biology; Cortajarena, A.L., Grove, T.Z., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 7–27. [Google Scholar] [CrossRef]
- Levinthal, C. How to fold graciously. Mossbauer Spectrosc. Biol. Syst. Proc. 1969, 67, 22–26. [Google Scholar]
- Callaway, E. ‘It will change everything’: Deepmind’s AI makes gigantic leap in solving protein structures. Nature 2020, 588, 203–204. [Google Scholar] [CrossRef]
- Jackson, S.E. How do small single-domain proteins fold? Fold Des. 1998, 3, R81–R91. [Google Scholar] [CrossRef] [Green Version]
- Uversky, A.V.; Uversky, V.N. Amino acid code for potein folding, misfolding, and non-folding. In Amino Acids, Peptides and Proteins; The Royal Society of Chemistry: London, UK, 2015; Volume 39, pp. 192–236. [Google Scholar] [CrossRef]
- Lang, R.J. A computational algorithm for origami design. In Proceedings of the Twelfth Annual Symposium on Computational Geometry, Philadelphia, PA, USA, 24–26 May 1996; pp. 98–105. [Google Scholar] [CrossRef]
- Tachi, T. Freeform Origami. 2019. Available online: www.tsg.ne.jp/TT/software/ (accessed on 10 January 2019).
- Weikl, T.R. Transition states in protein folding kinetics: Modeling Φ-values of small β-sheet proteins. Biophys. J. 2008, 94, 929–937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richardson, J.S. The anatomy and taxonomy of protein structure. Adv. Protein Chem. 1981, 34, 167–339. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Peng, R.; You, Z. Origami of thick panels. Science 2015, 349, 396–400. [Google Scholar] [CrossRef] [Green Version]
- Ramachandran, G.N.; Ramakrishnan, C.; Sasisekharan, V. Stereochemistry of polypeptide chain configurations. J. Mol. Biol. 1963, 7, 95–99. [Google Scholar] [CrossRef]
- Lang, R.J. Origami Design Secrets; A K Peters/CRC Press: New York, NY, USA, 2011. [Google Scholar]
- Huffman, D.A. Curvature and creases: A primer on paper. IEEE Trans. Comput. 1976, 25, 1010–1019. [Google Scholar] [CrossRef]
- Anonymous. Folding to function. Nat. Struct. Mol. Biol. 2009, 16, 573. [Google Scholar] [CrossRef] [PubMed]
- Marulier, C.; Dumont, P.J.; Orgéas, L.; Rolland du Roscoat, S.; Caillerie, D. 3D analysis of paper microstructures at the scale of fibres and bonds. Cellulose 2015, 22, 1517–1539. [Google Scholar] [CrossRef]
- Song, L.; Hobaugh, M.R.; Shustak, C.; Cheley, S.; Bayley, H.; Gouaux, J.E. Structure of staphylococcal α-hemolysin, a heptameric transmembrane pore. Science 1996, 274, 1859–1865. [Google Scholar] [CrossRef]
- Whitford, P.C.; Onuchic, J.N. What protein folding teaches us about biological function and molecular machines. Curr. Opin. Struct. Biol. 2015, 30, 57–62. [Google Scholar] [CrossRef]
- Zhai, Z.; Wang, Y.; Jiang, H. Origami-inspired, on-demand deployable and collapsible mechanical metamaterials with tunable stiffness. Proc. Natl. Acad. Sci. USA 2018, 115, 2032–2037. [Google Scholar] [CrossRef] [Green Version]
- Leeson, D.T.; Gai, F.; Rodriguez, H.M.; Gregoret, L.M.; Dyer, R.B. Protein folding and unfolding on a complex energy landscape. Proc. Natl. Acad. Sci. USA 2000, 97, 2527–2532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schug, A.; Onuchic, J.N. From protein folding to protein function and biomolecular binding by energy landscape theory. Curr. Opin. Pharmacol. 2010, 10, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Stern, M.; Pinson, M.B.; Murugan, A. The complexity of folding self-folding origami. Phys. Rev. X 2017, 7, 041070. [Google Scholar] [CrossRef] [Green Version]
- Al-Mulla, T.; Buehler, M.J. Origami: Folding creases through bending. Nat. Mater. 2015, 14, 366–368. [Google Scholar] [CrossRef]
- Silverberg, J.L.; Na, J.H.; Evans, A.A.; Liu, B.; Hull, T.C.; Santangelo, C.D.; Lang, R.J.; Hayward, R.C.; Cohen, I. Origami structures with a critical transition to bistability arising from hidden degrees of freedom. Nat. Mater. 2015, 14, 389–393. [Google Scholar] [CrossRef]
- Demaine, E.D.; Langerman, S.; O’Rourke, J. Geometric restrictions on polygonal protein chain production. Algorithmica 2006, 44, 167–181. [Google Scholar] [CrossRef]
- Azulay, H.; Leshem, M.; Qvit, N. An approach to comparing protein structures and origami models—Part 2. Multi-domain proteins. Biochim. Biophys. Acta (BBA) Biomembr. 2020, 1862, 183411–183419. [Google Scholar] [CrossRef]
- Azulay, H.; Lutaty, A.; Qvit, N. Approach for comparing protein structures and origami models. Biochim. Biophys. Acta (BBA) Biomembr. 2020, 1862, 183132–183138. [Google Scholar] [CrossRef]
- Edwards, S.A.; Wagner, J.; Gräter, F. Dynamic prestress in a globular protein. PLoS Comput. Biol. 2012, 8, e10025091-11. [Google Scholar] [CrossRef] [Green Version]
- Tachi, T. Design of innitesimally and finitely flexible origami based on reciprocal figures. J. Geom. Graph. 2012, 16, 223–234. [Google Scholar]
- Lang, R.J.; Bateman, A. Every spider web has a simple flat twist tessellation. In Fifth International Meeting of Origami Science, Mathematics, and Education; CRC Press: Boca Raton, FL, USA, 2010; pp. 455–474. [Google Scholar]
- Ingber, D.E.; Tensegrity, I. Cell structure and hierarchical systems biology. J. Cell Sci. 2003, 116, 1157–1173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanotti, G.; Guerra, C. Is tensegrity a unifying concept of protein folds? FEBS Lett. 2003, 534, 7–10. [Google Scholar] [CrossRef]
- Bywater, R.P. A tensegrity model for hydrogen bond networks in proteins. Heliyon 2017, 3, e00307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rohmer, J.L.; Peraza Hernandez, E.A.; Skelton, R.E.; Hartl, D.J.; Lagoudas, D.C. An experimental and numerical study of shape memory alloy-based tensegrity/origami structures. In International Mechanical Engineering Congress and Exposition; American Society of Mechanical Engineers: New York, NY, USA, 2015; Volume 57526, p. V009T12A064. [Google Scholar] [CrossRef]
- Wang, W.; Black, S.S.; Edwards, M.D.; Miller, S.; Morrison, E.L.; Bartlett, W.; Dong, C.; Naismith, J.H.; Booth, I.R. The structure of an open form of an E. Coli mechanosensitive channel at 3.45 Å resolution. Science 2008, 321, 1179–1183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, C.; Krishnaraju, D.; Konjevod, G.; Yu, H.; Jiang, H. Origami based mechanical metamaterials. Sci. Rep. 2014, 4, 5979–5984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rafsanjani, A.; Pasini, D. Bistable auxetic mechanical metamaterials inspired by ancient geometric motifs. Extrem. Mech. Lett. 2016, 9, 291–296. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Mahadevan, L. Rigidity percolation and geometric information in floppy origami. Proc. Natl. Acad. Sci. USA 2019, 116, 8119–8124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernelius, J.; Howell, L.L. Poisson’s Ratio of Tessellation Origami. Journal of Undergraduate Research, BYU. Available online: http://jur.byu.edu/?p=17877 (accessed on 22 January 2018).
Topic | Sub-Theme | Similarities |
---|---|---|
Folding principles of proteins and origami models | Principles (Section 2) | Protein and origami folding are processes that involve sequential folding and assembly of folded subunits, through a series of steps to create a structure. Protein folding: Various structures can be folded from a single chain of amino acids and then assembled with other folded subunits. Origami folding: Many origami models can be formed from a single sheet of paper. In modular origami, folded models are assembled into complex origami models. |
Protein and origami misfolding cause undesired results. Protein misfolding: Misfolded proteins are responsible for various diseases (e.g., Alzheimer’s disease). Origami misfolding: Undesired origami models are trashed. | ||
Folding processes (Section 2.1) | Protein and origami folding require a specific process. Protein folding: The folding process of proteins is driven by the sequence of atoms in the amino acid chain and chemical forces. Origami folding: The process is based on a crease pattern and driven by physical forces. | |
Folding constraints (Section 2.2) | Dihedral angles between atoms and between folded origami panels restrict the folding. Protein folding: Dihedral angles between atoms control the amino acid chain folding. Origami folding: Rigid-folding origami is obtained by imposing specific mathematical relations between crease angles and dihedral angles of the folded panels. | |
Folded mediums (Section 2.3) | Proteins and paper origami are both constructed from polymerized fibers. Protein folding: Proteins are constructed with secondary structures, such as β-sheets, which are comprised of several β-strands that are connected by hydrogen bonds. In other proteins, interactions between different side chain groups, typically involve Van der Waals contacts. Origami folding: Paper is constructed from polymerized fibers whose orientation and number determine the paper properties. Comment: Although origami models are mainly made of paper, it is also possible to create paperless origami models. | |
Structure and shape of proteins and origami models (Section 3) | Proteins & Origami: Some protein structures and origami models are analogues. For example, β-barrel and Kresling origami model. | |
Mechanical properties | Tensegrity (Section 4.1) | Tensegrity systems appear in proteins and in origami. Protein structures: Cells and proteins are molecular tensegrity systems (e.g., the amino acid chains are the beams, and the hydrogen bonds are the struts and cables). Origami models: (1) Certain tensegrity models (e.g., non-crossing), such as spider webs can be translated to tessellation origami models. (2) Particular origami models can be translated to tensegrity structures (e.g., polyhedrons). |
Auxeticity (Section 4.2) | There are proteins and origami models that open/close synchronically. Protein structures: Some proteins are auxetic (e.g., the N-terminal domain in the CorA protein). Origami models: Many origami models are auxetic (e.g., tessellation-based origami models and the Flasher model). |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azulay, H.; Lutaty, A.; Qvit, N. How Similar Are Proteins and Origami? Biomolecules 2022, 12, 622. https://doi.org/10.3390/biom12050622
Azulay H, Lutaty A, Qvit N. How Similar Are Proteins and Origami? Biomolecules. 2022; 12(5):622. https://doi.org/10.3390/biom12050622
Chicago/Turabian StyleAzulay, Hay, Aviv Lutaty, and Nir Qvit. 2022. "How Similar Are Proteins and Origami?" Biomolecules 12, no. 5: 622. https://doi.org/10.3390/biom12050622
APA StyleAzulay, H., Lutaty, A., & Qvit, N. (2022). How Similar Are Proteins and Origami? Biomolecules, 12(5), 622. https://doi.org/10.3390/biom12050622