Conversations in Cochlear Implantation: The Inner Ear Therapy of Today
Abstract
:1. Introduction
2. Hearing with an Implant
3. Current Surgical Approaches to Implantation into the Cochlea
4. Growing List of Indications for CIs
4.1. Single-Sided Deafness
4.2. Tinnitus
4.3. Hybrid Implants
4.4. Cochlear Nerve Pathology
4.5. Older Adults
5. Outcome Measures
Genetics and Outcomes
6. Barriers to Care
6.1. Navigating Implantation
6.2. Cost
7. Technology in Development
7.1. Optical Cochlear Implants
7.2. Electrode Coating and Drug Elution
7.3. Intraoperative Monitoring
8. Cultural Considerations
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fretz, R.J.; Fravel, R.P. Design and function: A physical and electrical description of the 3M House cochlear implant system. Ear Hear. 1985, 6, 14S–19S. [Google Scholar] [CrossRef] [PubMed]
- Kohut, R.I. Sensorineural Hearing Loss: Mechanisms Diagnosis Treatment. Arch. Otolaryngol. Neck Surg. 1987, 113, 440. [Google Scholar] [CrossRef]
- Tyler, R.S.; Lowder, M.W.; Otto, S.R.; Preece, J.P.; Gantz, B.J.; McCabe, B.F. Initial Iowa Results with the Multichannel Cochlear Implant from Melbourne. J. Speech Lang. Hear. Res. 1984, 27, 596–604. [Google Scholar] [CrossRef]
- Mayer, C.; Trezek, B.J. Literacy Outcomes in Deaf Students with Cochlear Implants: Current State of the Knowledge. J. Deaf Stud. Deaf Educ. 2018, 23, 1–16. [Google Scholar] [CrossRef]
- Sarant, J.Z.; Harris, D.C.; Bennet, L.A. Academic Outcomes for School-Aged Children with Severe–Profound Hearing Loss and Early Unilateral and Bilateral Cochlear Implants. J. Speech Lang. Hear. Res. 2015, 58, 1017–1032. [Google Scholar] [CrossRef]
- Tye-Murray, N.; Spencer, L.; Woodworth, G.G. Acquisition of Speech by Children Who Have Prolonged Cochlear Implant Experience. J. Speech Lang. Hear. Res. 1995, 38, 327–337. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Kang, W.S.; Park, H.J.; Lee, J.Y.; Park, J.W.; Kim, Y.; Seo, J.W.; Kwak, M.Y.; Kang, B.C.; Yang, C.J.; et al. Cochlear Implantation in Postlingually Deaf Adults is Time-sensitive Towards Positive Outcome: Prediction using Advanced Machine Learning Techniques. Sci. Rep. 2018, 8, 18004. [Google Scholar] [CrossRef] [Green Version]
- Sarant, J.; Harris, D.; Busby, P.; Maruff, P.; Schembri, A.; Dowell, R.; Briggs, R. The Effect of Cochlear Implants on Cognitive Function in Older Adults: Initial Baseline and 18-Month Follow Up Results for a Prospective International Longitudinal Study. Front. Neurosci. 2019, 13, 789. [Google Scholar] [CrossRef] [Green Version]
- de Sousa, A.F.; Couto, M.I.V.; de Carvalho, A.C.M. Quality of life and cochlear implant: Results in adults with postlingual hearing loss. Braz. J. Otorhinolaryngol. 2018, 84, 494–499. [Google Scholar] [CrossRef]
- de Joya, E.M.; Colbert, B.M.; Tang, P.-C.; Lam, B.L.; Yang, J.; Blanton, S.H.; Dykxhoorn, D.M.; Liu, X. Usher Syndrome in the Inner Ear: Etiologies and Advances in Gene Therapy. Int. J. Mol. Sci. 2021, 22, 3910. [Google Scholar] [CrossRef]
- Géléoc, G.G.S.; El-Amraoui, A. Disease mechanisms and gene therapy for Usher syndrome. Hear. Res. 2020, 394, 107932. [Google Scholar] [CrossRef] [PubMed]
- Mirian, C.; Ovesen, T. Intratympanic vs. Systemic Corticosteroids in First-line Treatment of Idiopathic Sudden Sensorineural Hearing Loss: A Systematic Review and Meta-analysis. JAMA Otolaryngol. -Head Neck Surg. 2020, 146, 421. [Google Scholar] [CrossRef] [PubMed]
- Omichi, R.; Shibata, S.B.; Morton, C.C.; Smith, R.J.H. Gene therapy for hearing loss. Hum. Mol. Genet. 2019, 28, R65–R79. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Wise, A.K.; Shepherd, R.K.; Richardson, R.T. New molecular therapies for the treatment of hearing loss. Pharmacol. Ther. 2019, 200, 190–209. [Google Scholar] [CrossRef] [PubMed]
- Pendse, N.D.; Lamas, V.; Pawlyk, B.S.; Maeder, M.L.; Chen, Z.-Y.; Pierce, E.A.; Liu, Q. In Vivo Assessment of Potential Therapeutic Approaches for USH2A-Associated Diseases. Adv. Exp. Med. Biol. 2019, 1185, 91–96. [Google Scholar] [CrossRef]
- de Vrieze, E.; Martín, J.C.; Peijnenborg, J.; Martens, A.; Oostrik, J.; van den Heuvel, S.; Neveling, K.; Pennings, R.; Kremer, H.; van Wijk, E. AON-based degradation of c.151C>T mutant COCH transcripts associated with dominantly inherited hearing impairment DFNA9. Mol. Ther.-Nucleic Acids 2021, 24, 274–283. [Google Scholar] [CrossRef]
- Lentz, J.J.; Jodelka, F.M.; Hinrich, A.J.; McCaffrey, K.; Farris, H.E.; Spalitta, M.J.; Bazan, N.G.; Duelli, D.M.; Rigo, F.; Hastings, M.L. Rescue of hearing and vestibular function by antisense oligonucleotides in a mouse model of human deafness. Nat. Med. 2013, 19, 345–350. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Tao, Y.; Lamas, V.; Huang, M.; Yeh, W.-H.; Pan, B.; Hu, Y.-J.; Hu, J.H.; Thompson, D.B.; Shu, Y.; et al. Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature 2018, 553, 217–221. [Google Scholar] [CrossRef]
- Yeh, W.-H.; Shubina-Oleinik, O.; Levy, J.M.; Pan, B.; Newby, G.A.; Wornow, M.; Burt, R.; Chen, J.C.; Holt, J.R.; Liu, D.R. In vivo base editing restores sensory transduction and transiently improves auditory function in a mouse model of recessive deafness. Sci. Transl. Med. 2020, 12, eaay9101. [Google Scholar] [CrossRef]
- Ahmed, H.; Shubina-Oleinik, O.; Holt, J.R. Emerging Gene Therapies for Genetic Hearing Loss. J. Assoc. Res. Otolaryngol. 2017, 18, 649–670. [Google Scholar] [CrossRef]
- Hastings, M.L.; Jones, T.A. Antisense Oligonucleotides for the Treatment of Inner Ear Dysfunction. Neurotherapeutics 2019, 16, 348–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, N.; Lee, S.; Lieber-Kotz, M.; Yang, J.; Gao, X. Advances in genome editing for genetic hearing loss. Adv. Drug Deliv. Rev. 2021, 168, 118–133. [Google Scholar] [CrossRef] [PubMed]
- Noh, B.; Rim, J.H.; Gopalappa, R.; Lin, H.; Kim, K.M.; Kang, M.J.; Gee, H.Y.; Choi, J.Y.; Kim, H.H.; Jung, J. In vivo outer hair cell gene editing ameliorates progressive hearing loss in dominant-negative Kcnq4 murine model. Theranostics 2022, 12, 2465–2482. [Google Scholar] [CrossRef] [PubMed]
- Taiber, S.; Cohen, R.; Yizhar-Barnea, O.; Sprinzak, D.; Holt, J.R.; Avraham, K.B. Neonatal AAV gene therapy rescues hearing in a mouse model of SYNE4 deafness. EMBO Mol. Med. 2021, 13, e13259. [Google Scholar] [CrossRef]
- Wu, J.; Solanes, P.; Nist-Lund, C.; Spataro, S.; Shubina-Oleinik, O.; Marcovich, I.; Goldberg, H.; Schneider, B.L.; Holt, J.R. Single and Dual Vector Gene Therapy with AAV9-PHP.B Rescues Hearing in Tmc1 Mutant Mice. Mol. Ther. 2021, 29, 973–988. [Google Scholar] [CrossRef]
- Lentz, J.J.; Pan, B.; Ponnath, A.; Tran, C.M.; Nist-Lund, C.; Galvin, A.; Goldberg, H.; Robillard, K.N.; Jodelka, F.M.; Farris, H.E.; et al. Direct Delivery of Antisense Oligonucleotides to the Middle and Inner Ear Improves Hearing and Balance in Usher Mice. Mol. Ther. 2020, 28, 2662–2676. [Google Scholar] [CrossRef]
- Wang, L.; Kempton, J.B.; Jiang, H.; Jodelka, F.M.; Brigande, A.M.; Dumont, R.A.; Rigo, F.; Lentz, J.J.; Hastings, M.L.; Brigande, J.V. Fetal antisense oligonucleotide therapy for congenital deafness and vestibular dysfunction. Nucleic Acids Res. 2020, 48, 5065–5080. [Google Scholar] [CrossRef]
- Lee, B.; Kim, Y.R.; Kim, S.J.; Goh, S.H.; Kim, J.H.; Oh, S.K.; Baek, J.I.; Kim, U.K.; Lee, K.Y. Modified U1 snRNA and antisense oligonucleotides rescue splice mutations in SLC26A4 that cause hereditary hearing loss. Hum. Mutat. 2019, 40, 1172–1180. [Google Scholar] [CrossRef]
- György, B.; Meijer, E.J.; Ivanchenko, M.V.; Tenneson, K.; Emond, F.; Hanlon, K.S.; Indzhykulian, A.A.; Volak, A.; Karavitaki, K.D.; Tamvakologos, P.I.; et al. Gene Transfer with AAV9-PHP.B Rescues Hearing in a Mouse Model of Usher Syndrome 3A and Transduces Hair Cells in a Non-human Primate. Mol. Ther.-Methods Clin. Dev. 2019, 13, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Ponnath, A.; Depreux, F.F.; Jodelka, F.M.; Rigo, F.; Farris, H.E.; Hastings, M.L.; Lentz, J.J. Rescue of Outer Hair Cells with Antisense Oligonucleotides in Usher Mice Is Dependent on Age of Treatment. J. Assoc. Res. Otolaryngol. 2018, 19, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Isgrig, K.; Shteamer, J.W.; Belyantseva, I.A.; Drummond, M.C.; Fitzgerald, T.S.; Vijayakumar, S.; Jones, S.M.; Griffith, A.J.; Friedman, T.B.; Cunningham, L.L.; et al. Gene Therapy Restores Balance and Auditory Functions in a Mouse Model of Usher Syndrome. Mol. Ther. 2017, 25, 780–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, B.; Askew, C.; Galvin, A.; Heman-Ackah, S.; Asai, Y.; Indzhykulian, A.A.; Jodelka, F.M.; Hastings, M.L.; Lentz, J.J.; Vandenberghe, L.H.; et al. Gene therapy restores auditory and vestibular function in a mouse model of Usher syndrome type 1c. Nat. Biotechnol. 2017, 35, 264–272. [Google Scholar] [CrossRef]
- Shibata, S.B.; Ranum, P.T.; Moteki, H.; Pan, B.; Goodwin, A.T.; Goodman, S.S.; Abbas, P.J.; Holt, J.R.; Smith, R.J.; Shibata, S.B.; et al. RNA Interference Prevents Autosomal-Dominant Hearing Loss. Am. J. Hum. Genet. 2016, 98, 1101–1113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, T.; Mukherjea, D.; Sheehan, K.; Jajoo, S.; Rybak, L.P.; Ramkumar, V. Short interfering RNA against STAT1 attenuates cisplatin-induced ototoxicity in the rat by suppressing inflammation. Cell Death Dis. 2011, 2, e180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukherjea, D.; Jajoo, S.; Whitworth, C.; Bunch, J.R.; Turner, J.G.; Rybak, L.P.; Ramkumar, V. Short Interfering RNA against Transient Receptor Potential Vanilloid 1 Attenuates Cisplatin-Induced Hearing Loss in the Rat. J. Neurosci. 2008, 28, 13056–13065. [Google Scholar] [CrossRef] [Green Version]
- Maeda, Y.; Fukushima, K.; Nishizaki, K.; Smith, R.J. In vitro and in vivo suppression of GJB2 expression by RNA interference. Hum. Mol. Genet. 2005, 14, 1641–1650. [Google Scholar] [CrossRef] [Green Version]
- Shubina-Oleinik, O.; Nist-Lund, C.; French, C.; Rockowitz, S.; Shearer, A.E.; Holt, J.R. Dual-vector gene therapy restores cochlear amplification and auditory sensitivity in a mouse model of DFNB16 hearing loss. Sci. Adv. 2021, 7, eabi7629. [Google Scholar] [CrossRef]
- Nist-Lund, C.A.; Pan, B.; Patterson, A.; Asai, Y.; Chen, T.; Zhou, W.; Zhu, H.; Romero, S.; Resnik, J.; Polley, D.B.; et al. Improved TMC1 gene therapy restores hearing and balance in mice with genetic inner ear disorders. Nat. Commun. 2019, 10, 236. [Google Scholar] [CrossRef]
- Al-Moyed, H.; Cepeda, A.P.; Jung, S.; Moser, T.; Kügler, S.; Reisinger, E. A dual-AAV approach restores fast exocytosis and partially rescues auditory function in deaf otoferlin knock-out mice. EMBO Mol. Med. 2019, 11, e9396. [Google Scholar] [CrossRef]
- Dhanasingh, A.; Jolly, C. An overview of cochlear implant electrode array designs. Hear. Res. 2017, 356, 93–103. [Google Scholar] [CrossRef]
- Würfel, W.; Lanfermann, H.; Lenarz, T.; Majdani, O. Cochlear length determination using Cone Beam Computed Tomography in a clinical setting. Hear. Res. 2014, 316, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, M.T.; Jiam, N.T.; Limb, C.J. Assessment and improvement of sound quality in cochlear implant users. Laryngoscope Investig. Otolaryngol. 2017, 2, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Jiam, N.T.; Gilbert, M.; Cooke, D.; Jiradejvong, P.; Barrett, K.; Caldwell, M.; Limb, C.J. Association Between Flat-Panel Computed Tomographic Imaging–Guided Place-Pitch Mapping and Speech and Pitch Perception in Cochlear Implant Users. JAMA Otolaryngol.-Head Neck Surg. 2019, 145, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Landsberger, D.M.; Svrakic, M.; Roland, J.T., Jr.; Svirsky, M. The Relationship Between Insertion Angles, Default Frequency Allocations, and Spiral Ganglion Place Pitch in Cochlear Implants. Ear Hear. 2015, 36, e207–e213. [Google Scholar] [CrossRef] [Green Version]
- Gilbers, S.; Fuller, C.; Gilbers, D.; Broersma, M.; Goudbeek, M.; Free, R.; Başkent, D. Normal-Hearing Listeners’ and Cochlear Implant Users’ Perception of Pitch Cues in Emotional Speech. i-Percept. 2015, 6, 0301006615599139. [Google Scholar] [CrossRef] [Green Version]
- Kiefer, J.; Von Ilberg, C.; Hubner-Egner, J.; Rupprecht, V.; Knecht, R. Optimized speech understanding with the continuous interleaved sampling speech coding strategy in patients with cochlear implants: Effect of variations in stimulation rate and number of channels. Ann. Otol. Rhinol. Laryngol. 2000, 109, 1009–1020. [Google Scholar] [CrossRef]
- Shannon, R.V. Speech and Music Have Different Requirements for Spectral Resolution. Int. Rev. Neurobiol. 2005, 70, 121–134. [Google Scholar] [CrossRef]
- Zeng, F.-G.; Rebscher, S.; Harrison, W.V.; Sun, X.; Feng, H. Cochlear Implants: System Design, Integration, and Evaluation. IEEE Rev. Biomed. Eng. 2008, 1, 115–142. [Google Scholar] [CrossRef] [Green Version]
- Limb, C.J.; Roy, A.T. Technological, biological, and acoustical constraints to music perception in cochlear implant users. Hear. Res. 2014, 308, 13–26. [Google Scholar] [CrossRef]
- Heng, J.; Cantarero, G.; Elhilali, M.; Limb, C.J. Impaired perception of temporal fine structure and musical timbre in cochlear implant users. Hear. Res. 2011, 280, 192–200. [Google Scholar] [CrossRef] [Green Version]
- Roy, A.T.; Jiradejvong, P.; Carver, C.; Limb, C.J. Assessment of Sound Quality Perception in Cochlear Implant Users During Music Listening. Otol. Neurotol. 2012, 33, 319–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiam, N.T.; Caldwell, M.T.; Limb, C.J. What Does Music Sound Like for a Cochlear Implant User? Otol. Neurotol. 2017, 38, e240–e247. [Google Scholar] [CrossRef] [PubMed]
- Gfeller, K.; Driscoll, V.D.; Looi, V. Music Appreciation and Training for Cochlear Implant Recipients: A Review. Semin. Hear. 2012, 33, 307–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Migirov, L.; Kronenberg, J.; Henkin, Y. Self-Reported Listening Habits and Enjoyment of Music among Adult Cochlear Implant Recipients. Ann. Otol. Rhinol. Laryngol. 2009, 118, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Chari, D.A.; Barrett, K.C.; Patel, A.D.; Colgrove, T.R.; Jiradejvong, P.; Jacobs, L.Y.; Limb, C.J. Impact of Auditory-Motor Musical Training on Melodic Pattern Recognition in Cochlear Implant Users. Otol. Neurotol. 2020, 41, e422–e431. [Google Scholar] [CrossRef]
- Gilbert, M.L.; Deroche, M.L.D.; Jiradejvong, P.; Barrett, K.C.; Limb, C.J. Cochlear Implant Compression Optimization for Musical Sound Quality in MED-EL Users. Ear Hear. 2021, 43, 862–873. [Google Scholar] [CrossRef]
- Jiam, N.T.; Gilbert, M.; Mo, J.; Jiradejvong, P.; Limb, C.J. Computed Tomography–Based Measurements of the Cochlear Duct: Implications for Cochlear Implant Pitch Tuning. Ear Hear. 2021, 42, 732–743. [Google Scholar] [CrossRef]
- Jiam, N.T.; Limb, C. Music perception and training for pediatric cochlear implant users. Expert Rev. Med. Devices 2020, 17, 1193–1206. [Google Scholar] [CrossRef]
- Limb, C.J. Cochlear implant-mediated perception of music. Curr. Opin. Otolaryngol. Head Neck Surg. 2006, 14, 337–340. [Google Scholar] [CrossRef]
- Magnusson, L. Comparison of the fine structure processing (FSP) strategy and the CIS strategy used in the MED-EL cochlear implant system: Speech intelligibility and music sound quality. Int. J. Audiol. 2011, 50, 279–287. [Google Scholar] [CrossRef]
- Roy, A.T.; Penninger, R.T.; Pearl, M.S.; Wuerfel, W.; Jiradejvong, P.; Carver, C.; Buechner, A.; Limb, C.J. Deeper Cochlear Implant Electrode Insertion Angle Improves Detection of Musical Sound Quality Deterioration Related to Bass Frequency Removal. Otol. Neurotol. 2016, 37, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Munjal, T.; Roy, A.T.; Carver, C.; Jiradejvong, P.; Limb, C.J. Use of the Phantom Electrode strategy to improve bass frequency perception for music listening in cochlear implant users. Cochlear Implant. Int. 2015, 16, S121–S128. [Google Scholar] [CrossRef] [PubMed]
- Ishiyama, A.; Doherty, J.; Ishiyama, G.; Quesnel, A.M.; Lopez, I.; Linthicum, F.H. Post Hybrid Cochlear Implant Hearing Loss and Endolymphatic Hydrops. Otol. Neurotol. 2016, 37, 1516–1521. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Lu, T.; Zhang, C.; Hansen, M.R.; Li, S. Electrical stimulation induces synaptic changes in the peripheral auditory system. J. Comp. Neurol. 2020, 528, 893–905. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, S.; Monksfield, P.; Kel, G.; Connolly, T.; Souter, M.; Chang, A.; Marovic, P.; O’Leary, J.; Richardson, R.; Eastwood, H. Relations between cochlear histopathology and hearing loss in experimental cochlear implantation. Hear. Res. 2013, 298, 27–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheperle, R.A.; Tejani, V.D.; Omtvedt, J.K.; Brown, C.J.; Abbas, P.J.; Hansen, M.R.; Gantz, B.J.; Oleson, J.J.; Ozanne, M.V. Delayed changes in auditory status in cochlear implant users with preserved acoustic hearing. Hear. Res. 2017, 350, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Tarabichi, O.; Jensen, M.; Hansen, M.R. Advances in hearing preservation in cochlear implant surgery. Curr. Opin. Otolaryngol. Head Neck Surg. 2021, 29, 385–390. [Google Scholar] [CrossRef]
- Usami, S.-I.; Moteki, H.; Tsukada, K.; Miyagawa, M.; Nishio, S.-Y.; Takumi, Y.; Iwasaki, S.; Kumakawa, K.; Naito, Y.; Takahashi, H.; et al. Hearing preservation and clinical outcome of 32 consecutive electric acoustic stimulation (EAS) surgeries. Acta Oto-Laryngol. 2014, 134, 717–727. [Google Scholar] [CrossRef] [Green Version]
- Friedland, D.R.; Runge-Samuelson, C. Soft Cochlear Implantation: Rationale for the Surgical Approach. Trends Amplif. 2009, 13, 124–138. [Google Scholar] [CrossRef] [Green Version]
- Lehnhardt, E. Intracochlear placement of cochlear implant electrodes in soft surgery technique. HNO 1993, 41, 356–359. [Google Scholar]
- Wang, Z.; Li, J.; Wu, Y.; Zhu, R.; Wang, B.; Zhao, K. Optimal path generation in scala tympani and path planning for robotic cochlear implant of perimodiolar electrode. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2020, 234, 578–589. [Google Scholar] [CrossRef] [PubMed]
- Yasin, R.; Dedmon, M.; Dillon, N.; Simaan, N. Investigating variability in cochlear implant electrode array alignment and the potential of visualization guidance. Int. J. Med. Robot. Comput. Assist. Surg. 2019, 15, e2009. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wei, W.; Ding, J.; Roland, J.T., Jr.; Manolidis, S.; Simaan, N. Inroads Toward Robot-Assisted Cochlear Implant Surgery Using Steerable Electrode Arrays. Otol. Neurotol. 2010, 31, 1199–1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dexamethasone-Eluting Cochlear Implant Electrode (CIDEX). Available online: https://clinicaltrials.gov/ct2/Show/NCT04450290 (accessed on 6 March 2022).
- De Seta, D.; Daoudi, H.; Torres, R.; Ferrary, E.; Sterkers, O.; Nguyen, Y. Robotics, automation, active electrode arrays, and new devices for cochlear implantation: A contemporary review. Hear. Res. 2022, 414, 108425. [Google Scholar] [CrossRef] [PubMed]
- Jiam, N.T.; Jiradejvong, P.; Pearl, M.S.; Limb, C.J. The Effect of Round Window vs. Cochleostomy Surgical Approaches on Cochlear Implant Electrode Position: A Flat-Panel Computed Tomography Study. JAMA Otolaryngol.-Head Neck Surg. 2016, 142, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Kronenberg, J.; Migirov, L.; Baumgartner, W.D. The Suprameatal Approach in Cochlear Implant Surgery: Our Experience with 80 Patients. ORL J. Otorhinolaryngol. Relat. Spec. 2002, 64, 403–405. [Google Scholar] [CrossRef] [PubMed]
- Luers, J.C.; Hüttenbrink, K.; Beutner, D. Surgical anatomy of the round window-Implications for cochlear implantation. Clin. Otolaryngol. 2018, 43, 417–424. [Google Scholar] [CrossRef]
- Carlson, M.L.; O’Connell, B.P.; Lohse, C.M.; Driscoll, C.L.; Sweeney, A.D. Survey of the American Neurotology Society on Cochlear Implantation: Part 2, Surgical and Device-Related Practice Patterns. Otol. Neurotol. 2018, 39, e20–e27. [Google Scholar] [CrossRef]
- Wanna, G.B.; Noble, J.H.; Carlson, M.L.; Gifford, R.; Dietrich, M.S.; Haynes, D.S.; Dawant, B.M.; Labadie, R.F. Impact of electrode design and surgical approach on scalar location and cochlear implant outcomes. Laryngoscope 2014, 124 (Suppl. 6), S1–S7. [Google Scholar] [CrossRef]
- Breinbauer, H.A.; Praetorius, M. Variability of an Ideal Insertion Vector for Cochlear Implantation. Otol. Neurotol. 2015, 36, 610–617. [Google Scholar] [CrossRef]
- Adunka, O.F.; Dillon, M.T.; Adunka, M.C.; King, E.R.; Pillsbury, H.C.; Buchman, C.A. Cochleostomy Versus Round Window Insertions: Influence on functional outcomes in electric-acoustic stimulation of the auditory system. Otol. Neurotol. 2014, 35, 613–618. [Google Scholar] [CrossRef] [PubMed]
- Hassepass, F.; Aschendorff, A.; Bulla, S.; Arndt, S.; Maier, W.; Laszig, R.; Beck, R. Radiologic Results and Hearing Preservation With a Straight Narrow Electrode via Round Window Versus Cochleostomy Approach at Initial Activation. Otol. Neurotol. 2015, 36, 993–1000. [Google Scholar] [CrossRef]
- Adunka, O.; Unkelbach, M.H.; MacK, M.; Hambek, M.; Gstoettner, W.; Kiefer, J. Cochlear implantation via the round window membrane minimizes trauma to cochlear structures: A histologically controlled insertion study. Acta Oto-Laryngol. 2004, 124, 807–812. [Google Scholar] [CrossRef] [PubMed]
- Jwair, S.; Boerboom, R.A.; Versnel, H.; Stokroos, R.J.; Thomeer, H.G.X.M. Evaluating cochlear insertion trauma and hearing preservation after cochlear implantation (CIPRES): A study protocol for a randomized single-blind controlled trial. Trials 2021, 22, 895. [Google Scholar] [CrossRef] [PubMed]
- Moran, M.; Dowell, R.C.; Iseli, C.; Briggs, R.J.S. Hearing Preservation Outcomes for 139 Cochlear Implant Recipients Using a Thin Straight Electrode Array. Otol. Neurotol. 2017, 38, 678–684. [Google Scholar] [CrossRef] [PubMed]
- Labadie, R.F.; Schefano, A.D.; Holder, J.T.; Dwyer, R.T.; Rivas, A.; O’Malley, M.R.; Noble, J.H.; Dawant, B.M. Use of intraoperative CT scanning for quality control assessment of cochlear implant electrode array. Acta Oto-Laryngol. 2020, 140, 206–211. [Google Scholar] [CrossRef]
- Jia, H.; Torres, R.; Nguyen, Y.; De Seta, D.; Ferrary, E.; Wu, H.; Sterkers, O.; Bernardeschi, D.; Mosnier, I. Intraoperative Conebeam CT for Assessment of Intracochlear Positioning of Electrode Arrays in Adult Recipients of Cochlear Implants. Am. J. Neuroradiol. 2018, 39, 768–774. [Google Scholar] [CrossRef] [Green Version]
- Labadie, R.F.; Noble, J.H.; Hedley-Williams, A.J.; Sunderhaus, L.W.; Dawant, B.M.; Gifford, R. Results of Postoperative, CT-based, Electrode Deactivation on Hearing in Prelingually Deafened Adult Cochlear Implant Recipients. Otol. Neurotol. 2016, 37, 137–145. [Google Scholar] [CrossRef] [Green Version]
- Widmann, G.; Dejaco, D.; Luger, A.; Schmutzhard, J. Pre- and post-operative imaging of cochlear implants: A pictorial review. Insights Imaging 2020, 11, 93. [Google Scholar] [CrossRef]
- Choi, J.E.; Ma, S.M.; Park, H.; Cho, Y.-S.; Hong, S.H.; Moon, I.J. A comparison between wireless CROS/BiCROS and soft-band BAHA for patients with unilateral hearing loss. PLoS ONE 2019, 14, e0212503. [Google Scholar] [CrossRef] [Green Version]
- MED-EL Cochlear Implant System; PMA: P000025/S104. U.S. FDA. 2019. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMA/pma.cfm?start_search=1&PMANumber=P000025&SupplementNumber=S104 (accessed on 6 March 2022).
- Buss, E.; Dillon, M.T.; Rooth, M.A.; King, E.R.; Deres, E.J.; Buchman, C.A.; Pillsbury, H.C.; Brown, K.D. Effects of Cochlear Implantation on Binaural Hearing in Adults with Unilateral Hearing Loss. Trends Hear. 2018, 22, 2331216518771173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dillon, M.T.; Buss, E.; Anderson, M.L.; King, E.R.; Deres, E.J.; Buchman, C.A.; Brown, K.D.; Pillsbury, H.C. Cochlear Implantation in Cases of Unilateral Hearing Loss: Initial Localization Abilities. Ear Hear. 2017, 38, 611–619. [Google Scholar] [CrossRef] [PubMed]
- Tavora-Vieira, D.; De Ceulaer, G.; Govaerts, P.J.; Rajan, G.P. Cochlear Implantation Improves Localization Ability in Patients With Unilateral Deafness. Ear Hear. 2015, 36, e93–e98. [Google Scholar] [CrossRef] [PubMed]
- Holden, L.K.; Finley, C.C.; Firszt, J.B.; Holden, T.A.; Brenner, C.; Potts, L.; Gotter, B.D.; Vanderhoof, S.S.; Mispagel, K.; Heydebrand, G.; et al. Factors Affecting Open-Set Word Recognition in Adults with Cochlear Implants. Ear Hear. 2013, 34, 342–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nassiri, A.M.; Wallerius, K.P.; Saoji, A.A.; Neff, B.A.; Driscoll, C.L.W.; Carlson, M.L. Impact of Duration of Deafness on Speech Perception in Single-sided Deafness Cochlear Implantation in Adults. Otol. Neurotol. 2022, 43, e45–e49. [Google Scholar] [CrossRef] [PubMed]
- Holder, J.T.; O’Connell, B.; Hedley-Williams, A.; Wanna, G. Cochlear implantation for single-sided deafness and tinnitus suppression. Am. J. Otolaryngol. 2017, 38, 226–229. [Google Scholar] [CrossRef]
- Poncet-Wallet, C.; Mamelle, E.; Godey, B.; Truy, E.; Guevara, N.; Ardoint, M.; Gnansia, D.; Hoen, M.; Saaï, S.; Mosnier, I.; et al. Prospective Multicentric Follow-up Study of Cochlear Implantation in Adults with Single-Sided Deafness: Tinnitus and Audiological Outcomes. Otol. Neurotol. 2020, 41, 458–466. [Google Scholar] [CrossRef]
- Sullivan, C.B.; Al-Qurayshi, Z.; Zhu, V.; Liu, A.; Dunn, C.; Gantz, B.J.; Hansen, M.R. Long-term audiologic outcomes after cochlear implantation for single-sided deafness. Laryngoscope 2020, 130, 1805–1811. [Google Scholar] [CrossRef]
- Chiossoine-Kerdel, J.A.; Baguley, D.M.; Stoddart, R.L.; Moffat, D.A. An investigation of the audiologic handicap associated with unilateral sudden sensorineural hearing loss. Am. J. Otol. 2000, 21, 645–651. [Google Scholar]
- Peter, N.; Liyanage, N.; Pfiffner, F.; Huber, A.; Kleinjung, T. The Influence of Cochlear Implantation on Tinnitus in Patients with Single-Sided Deafness: A Systematic Review. Otolaryngol. -Head Neck Surg. 2019, 161, 576–588. [Google Scholar] [CrossRef]
- Quaranta, N.; Wagstaff, S.; Baguley, D.M. Tinnitus and cochlear implantation. Int. J. Audiol. 2004, 43, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Van de Heyning, P.; Vermeire, K.; Diebl, M.; Nopp, P.; Anderson, I.; De Ridder, D. Incapacitating Unilateral Tinnitus in Single-Sided Deafness Treated by Cochlear Implantation. Ann. Otol. Rhinol. Laryngol. 2008, 117, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Ramakers, G.G.J.; Van Zon, A.; Stegeman, I.; Grolman, W. The effect of cochlear implantation on tinnitus in patients with bilateral hearing loss: A systematic review. Laryngoscope 2015, 125, 2584–2592. [Google Scholar] [CrossRef] [PubMed]
- Poels, L.; Zarowski, A.; Leblans, M.; Vanspauwen, R.; van Dinther, J.; Offeciers, E. Prognostic Value of Trial Round Window Stimulation for Selection of Candidates for Cochlear Implantation as Treatment for Tinnitus. J. Clin. Med. 2021, 10, 3793. [Google Scholar] [CrossRef] [PubMed]
- Punte, A.K.; Vermeire, K.; Hofkens, A.; De Bodt, M.; De Ridder, D.; Van de Heyning, P. Cochlear implantation as a durable tinnitus treatment in single-sided deafness. Cochlea- Implant. Int. 2011, 12, S26–S29. [Google Scholar] [CrossRef] [PubMed]
- Ramos, A.; Polo, R.; Masgoret, E.; Artiles, O.; Lisner, I.; Zaballos, M.L.; Moreno, C.; Osorio, A. Cochlear implant in patients with sudden unilateral sensorineural hearing loss and associated tinnitus. Acta Otorrinolaringol. Esp. 2012, 63, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Newman, C.W.; Jacobson, G.P.; Spitzer, J.B. Development of the Tinnitus Handicap Inventory. Arch. Otolaryngol.-Head Neck Surg. 1996, 122, 143–148. [Google Scholar] [CrossRef]
- Knipper, M.; Mazurek, B.; van Dijk, P.; Schulze, H. Too Blind to See the Elephant? Why Neuroscientists Ought to Be Interested in Tinnitus. J. Assoc. Res. Otolaryngol. 2021, 22, 609–621. [Google Scholar] [CrossRef]
- Implantation of an Auditory Brainstem Implant for the Treatment of Incapacitating Unilateral Tinnitus. NCT02630589. Available online: ClinicalTrials.gov (accessed on 6 March 2022).
- Cima, R.F.F.; Mazurek, B.; Haider, H.; Kikidis, D.; Lapira, A.; Noreña, A.; Hoare, D.J. A multidisciplinary European guideline for tinnitus: Diagnostics, assessment, and treatment. HNO 2019, 67, 10–42. [Google Scholar] [CrossRef] [Green Version]
- Woodson, E.A.; Reiss, L.A.; Turner, C.W.; Gfeller, K.; Gantz, B.J. The Hybrid Cochlear Implant: A Review. Adv. Otorhinolaryngol. 2010, 67, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Gantz, B.J.; Turner, C.W. Combining acoustic and electrical hearing. Laryngoscope 2003, 113, 1726–1730. [Google Scholar] [CrossRef] [PubMed]
- Nucleus Hybrid L24 Cochlear Implant System, PMA: P130016, U.S. FDA. 2014. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMA/pma.cfm?Id=P130016 (accessed on 6 March 2022).
- Gantz, B.J.; Turner, C. Combining acoustic and electrical speech processing: Iowa/Nucleus hybrid implant. Acta Oto-Laryngol. 2004, 124, 344–347. [Google Scholar] [CrossRef] [PubMed]
- Zwolan, T.A.; Basura, G. Determining Cochlear Implant Candidacy in Adults: Limitations, Expansions, and Opportunities for Improvement. Semin. Hear. 2021, 42, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Pillsbury, H.C., 3rd; Dillon, M.T.; Buchman, C.A.; Staecker, H.; Prentiss, S.M.; Ruckenstein, M.J.; Bigelow, D.C.; Telischi, F.F.; Martinez, D.M.; Runge, C.L.; et al. Multicenter US Clinical Trial with an Electric-Acoustic Stimulation (EAS) System in Adults: Final Outcomes. Otol. Neurotol. 2018, 39, 299–305. [Google Scholar] [CrossRef] [Green Version]
- Roland, J.T., Jr.; Gantz, B.J.; Waltzman, S.B.; Parkinson, A.J. The Multicenter Clinical Trial Group United States multicenter clinical trial of the cochlear nucleus hybrid implant system. Laryngoscope 2016, 126, 175–181. [Google Scholar] [CrossRef] [Green Version]
- Dunn, C.C.; Oleson, J.; Parkinson, A.; Hansen, M.R.; Gantz, B.J. Nucleus Hybrid S12: Multicenter Clinical Trial Results. Laryngoscope 2020, 130, E548–E558. [Google Scholar] [CrossRef]
- Gantz, B.J.; Turner, C.; Gfeller, K.E.; Lowder, M.W. Preservation of Hearing in Cochlear Implant Surgery: Advantages of Combined Electrical and Acoustical Speech Processing. Laryngoscope 2005, 115 (Suppl. 1), 796–802. [Google Scholar] [CrossRef] [Green Version]
- Gfeller, K.E.; Olszewski, C.; Turner, C.; Gantz, B.; Oleson, J. Music Perception with Cochlear Implants and Residual Hearing. Audiol. Neurotol. 2006, 11, 12–15. [Google Scholar] [CrossRef]
- Helbig, S.; Van de Heyning, P.; Kiefer, J.; Baumann, U.; Kleine-Punte, A.; Brockmeier, H.; Anderson, I.; Gstoettner, W. Combined electric acoustic stimulation with the PULSARCI100implant system using the FLEXEASelectrode array. Acta Oto-Laryngol. 2011, 131, 585–595. [Google Scholar] [CrossRef]
- Gantz, B.J.; Dunn, C.C.; Oleson, J.; Hansen, M.R. Acoustic plus electric speech processing: Long-term results. Laryngoscope 2017, 128, 473–481. [Google Scholar] [CrossRef]
- Jensen, M.J.; Isaac, H.; Hernandez, H.; Oleson, J.; Dunn, C.; Gantz, B.J.; Hansen, M.R. Timing of Acoustic Hearing Changes After Cochlear Implantation. Laryngoscope 2022, in press. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, M.B.; Sagi, E.; Jackson, M.; Shapiro, W.H.; Roland, J.T., Jr.; Waltzman, S.B.; Svirsky, M.A. Reimplantation of Hybrid Cochlear Implant Users with a Full-Length Electrode After Loss of Residual Hearing. Otol. Neurotol. 2008, 29, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Harrison, L.; Manjaly, J.G.; Ellis, W.; Lavy, J.A.; Shaida, A.; Khalil, S.S.; Saeed, S.R. Hearing Preservation Outcomes with Standard Length Electrodes in Adult Cochlear Implantation and the Uptake of Electroacoustic Stimulation. Otol. Neurotol. 2020, 41, 1060–1065. [Google Scholar] [CrossRef] [PubMed]
- Mamelle, E.; Granger, B.; Sterkers, O.; Lahlou, G.; Ferrary, E.; Nguyen, Y.; Mosnier, I. Long-term residual hearing in cochlear implanted adult patients who were candidates for electro-acoustic stimulation. Eur. Arch. Otorhinolaryngol. 2020, 277, 705–713. [Google Scholar] [CrossRef]
- Perkins, E.; Lee, J.; Manzoor, N.; O’Malley, M.; Bennett, M.; Labadie, R.; Rivas, A.; Haynes, D.; Gifford, R. The Reality of Hearing Preservation in Cochlear Implantation: Who Is Utilizing EAS? Otol. Neurotol. 2021, 42, 832–837. [Google Scholar] [CrossRef]
- Wong, K.; Kozin, E.D.; Kanumuri, V.V.; Vachicouras, N.; Miller, J.; Lacour, S.; Brown, M.C.; Lee, D.J.; Wong, K.; Kozin, E.D.; et al. Auditory Brainstem Implants: Recent Progress and Future Perspectives. Front. Neurosci. 2019, 13, 10. [Google Scholar] [CrossRef] [Green Version]
- Carlson, M.L.; Breen, J.T.; Driscoll, C.L.; Link, M.J.; Neff, B.A.; Gifford, R.H.; Beatty, C.W. Cochlear Implantation in Patients with Neurofibromatosis Type 2: Variables affecting auditory performance. Otol. Neurotol. 2012, 33, 853–862. [Google Scholar] [CrossRef]
- Colletti, V.; Shannon, R.V. Open Set Speech Perception with Auditory Brainstem Implant? Laryngoscope 2005, 115, 1974–1978. [Google Scholar] [CrossRef]
- Arriaga, M.; Marks, S. Simultaneous cochlear implantation and acoustic neuroma resection: Imaging considerations, technique, and functional outcome. Otolaryngol. Head Neck Surg. 1995, 112, 325–328. [Google Scholar] [CrossRef]
- Lassaletta, L.; Aristegui, M.; Medina-González, M.D.M.; Aranguez, G.; Pérez-Mora, R.M.; Falcioni, M.; Gavilán, J.; Piazza, P.; Sanna, M. Ipsilateral cochlear implantation in patients with sporadic vestibular schwannoma in the only or best hearing ear and in patients with NF2. Eur. Arch. Otorhinolaryngol. 2016, 273, 27–35. [Google Scholar] [CrossRef]
- Lloyd, S.K.W.; Glynn, F.J.; Rutherford, S.A.; King, A.T.; Mawman, D.J.; O’Driscoll, M.P.; Evans, D.G.R.; Ramsden, R.T.; Freeman, S.R.M. Ipsilateral Cochlear Implantation After Cochlear Nerve Preserving Vestibular Schwannoma Surgery in Patients With Neurofibromatosis Type 2. Otol. Neurotol. 2014, 35, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Colletti, L.; Wilkinson, E.P.; Colletti, V. Auditory Brainstem Implantation after Unsuccessful Cochlear Implantation of Children with Clinical Diagnosis of Cochlear Nerve Deficiency. Ann. Otol. Rhinol. Laryngol. 2013, 122, 605–612. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.R.; Yaffe, K.; Xia, J.; Xue, Q.-L.; Harris, T.B.; Purchase-Helzner, E.; Satterfield, S.; Ayonayon, H.N.; Ferrucci, L.; Simonsick, E.M.; et al. Hearing Loss and Cognitive Decline in Older Adults. JAMA Intern. Med. 2013, 173, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Mormer, E.; Bubb, K.J.; Alrawashdeh, M.; Cipkala-Gaffin, J.A. Hearing Loss and Communication Among Hospitalized Older Adults: Prevalence and Recognition. J. Gerontol. Nurs. 2020, 46, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Jiam, N.T.-L.; Li, C.; Agrawal, Y. Hearing loss and falls: A systematic review and meta-analysis. Laryngoscope 2016, 126, 2587–2596. [Google Scholar] [CrossRef] [PubMed]
- Mener, D.J.; Betz, J.; Genther, D.; Chen, D.; Lin, F.R. Hearing Loss and Depression in Older Adults. J. Am. Geriatr. Soc. 2013, 61, 1627–1629. [Google Scholar] [CrossRef] [Green Version]
- Buchman, C.A.; Herzog, J.A.; McJunkin, J.L.; Wick, C.C.; Durakovic, N.; Firszt, J.B.; Kallogjeri, D. CI532 Study Group Assessment of Speech Understanding After Cochlear Implantation in Adult Hearing Aid Users: A Nonrandomized Controlled Trial. JAMA Otolaryngol. Neck Surg. 2020, 146, 916–924. [Google Scholar] [CrossRef]
- Zwolan, T.A.; Kallogjeri, D.; Firszt, J.B.; Buchman, C.A. Assessment of Cochlear Implants for Adult Medicare Beneficiaries Aged 65 Years or Older Who Meet Expanded Indications of Open-Set Sentence Recognition: A Multicenter Nonrandomized Clinical Trial. JAMA Otolaryngol. Neck Surg. 2020, 146, 933–941. [Google Scholar] [CrossRef]
- Roberts, D.S.; Lin, H.W.; Herrmann, B.S.; Lee, D.J. Differential cochlear implant outcomes in older adults. Laryngoscope 2013, 123, 1952–1956. [Google Scholar] [CrossRef]
- Schvartz-Leyzac, K.C.; Conrad, C.A.; Zwolan, T.A. Datalogging Statistics and Speech Recognition During the First Year of Use in Adult Cochlear Implant Recipients. Otol. Neurotol. 2019, 40, e686–e693. [Google Scholar] [CrossRef]
- Gordon, S.A.; Aylward, A.; Patel, N.S.; Bowers, C.; Presson, A.P.; Smith, K.R.; Foster, N.L.; Gurgel, R.K. Does Frailty or Age Increase the Risk of Postoperative Complications Following Cochlear Implantation? OTO Open 2021, 5, 2473974X211044084. [Google Scholar] [CrossRef] [PubMed]
- Connors, J.R.; Deep, N.L.; Huncke, T.K.; Roland, J.T., Jr. Cochlear Implantation Under Local Anesthesia with Conscious Sedation in the Elderly: First 100 Cases. Laryngoscope 2021, 131, E946–E951. [Google Scholar] [CrossRef] [PubMed]
- Capretta, N.R.; Moberly, A.C. Does quality of life depend on speech recognition performance for adult cochlear implant users? Laryngoscope 2016, 126, 699–706. [Google Scholar] [CrossRef] [PubMed]
- McRackan, T.R.; Bauschard, M.; Hatch, J.L.; Franko-Tobin, E.; Droghini, H.R.; Nguyen, S.A.; Dubno, J.R. Meta-analysis of quality-of-life improvement after cochlear implantation and associations with speech recognition abilities. Laryngoscope 2017, 128, 982–990. [Google Scholar] [CrossRef]
- McRackan, T.R.; Hand, B.N.; Velozo, C.A.; Dubno, J.R. Cochlear Implant Quality of Life Consortium Validity and reliability of the Cochlear Implant Quality of Life (CIQOL)-35 Profile and CIQOL-10 Global instruments in comparison to legacy instruments. Ear Hear. 2021, 42, 896–908. [Google Scholar] [CrossRef]
- McRackan, T.R.; Hand, B.; Velozo, C.A.; Dubno, J.R. Cochlear Implant Quality of Life Development Consortium Cochlear Implant Quality of Life (CIQOL): Development of a Profile Instrument (CIQOL-35 Profile) and a Global Measure (CIQOL-10 Global). J. Speech Lang. Hear. Res. 2019, 62, 3554–3563. [Google Scholar] [CrossRef]
- Carlyon, R.P.; Goehring, T. Cochlear Implant Research and Development in the Twenty-first Century: A Critical Update. J. Assoc. Res. Otolaryngol. 2021, 22 (Suppl. 2), 481–508. [Google Scholar] [CrossRef]
- Patrick, D.L.; Burke, L.B.; Powers, J.H.; Scott, J.A.; Rock, E.P.; Dawisha, S.; O’Neill, R.; Kennedy, D.L. Patient-Reported Outcomes to Support Medical Product Labeling Claims: FDA Perspective. Value Health 2007, 10, S125–S137. [Google Scholar] [CrossRef] [Green Version]
- Shearer, A.; Eppsteiner, R.W.; Frees, K.; Tejani, V.; Sloan-Heggen, C.M.; Brown, C.; Abbas, P.; Dunn, C.; Hansen, M.; Gantz, B.; et al. Genetic variants in the peripheral auditory system significantly affect adult cochlear implant performance. Hear. Res. 2017, 348, 138–142. [Google Scholar] [CrossRef] [Green Version]
- Miyagawa, M.; Nishio, S.-Y.; Usami, S.-I. A Comprehensive Study on the Etiology of Patients Receiving Cochlear Implantation with Special Emphasis on Genetic Epidemiology. Otol. Neurotol. 2016, 37, e126–e134. [Google Scholar] [CrossRef] [Green Version]
- Yoshimura, H.; Moteki, H.; Nishio, S.-Y.; Miyajima, H.; Miyagawa, M.; Usami, S.-I. Genetic testing has the potential to impact hearing preservation following cochlear implantation. Acta Oto-Laryngol. 2020, 140, 438–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seligman, K.L.; Shearer, A.E.; Frees, K.; Nishimura, C.; Kolbe, D.; Dunn, C.; Hansen, M.R.; Gantz, B.J.; Smith, R.J.H. Genetic Causes of Hearing Loss in a Large Cohort of Cochlear Implant Recipients. Otolaryngol. Head Neck Surg. 2022, 166, 734–737. [Google Scholar] [CrossRef] [PubMed]
- Carlson, M.L.; Sladen, D.P.; Gurgel, R.K.; Tombers, N.M.; Lohse, C.M.; Driscoll, C.L. Survey of the American Neurotology Society on Cochlear Implantation: Part 1, Candidacy Assessment and Expanding Indications. Otol. Neurotol. 2018, 39, e12–e19. [Google Scholar] [CrossRef] [PubMed]
- Brenner, M.J.; Shenson, J.A.; Rose, A.S.; Valdez, T.A.; Takashima, M.; Ahmed, O.G.; Weissbrod, P.A.; Hong, R.S.; Djalilian, H.; Wolf, J.S.; et al. New Medical Device and Therapeutic Approvals in Otolaryngology: State of the Art Review 2020. OTO Open 2021, 5, 2473974X211057035. [Google Scholar] [CrossRef] [PubMed]
- Park, L.R.; Gagnon, E.B.; Brown, K.D. The Limitations of FDA Criteria: Inconsistencies with Clinical Practice, Findings, and Adult Criteria as a Barrier to Pediatric Implantation. Semin. Hear. 2021, 42, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Hang, A.X.; Roush, P.A.; Teagle, H.F.B.; Zdanski, C.; Pillsbury, H.C.; Adunka, O.F.; Buchman, C.A. Is “No Response” on Diagnostic Auditory Brainstem Response Testing an Indication for Cochlear Implantation in Children? Ear Hear. 2015, 36, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Govaerts, P.J.; De Beukelaer, C.; Daemers, K.; De Ceulaer, G.; Yperman, M.; Somers, T.; Schatteman, I.; Offeciers, F.E. Outcome of Cochlear Implantation at Different Ages from 0 to 6 Years. Otol. Neurotol. 2002, 23, 885–890. [Google Scholar] [CrossRef]
- Colletti, V.; Carner, M.; Miorelli, V.; Guida, M.; Colletti, L.; Fiorino, F.G. Cochlear Implantation at under 12 months: Report on 10 Patients. Laryngoscope 2005, 115, 445–449. [Google Scholar] [CrossRef]
- Nassiri, A.M.; Marinelli, J.P.; Sorkin, D.L.; Carlson, M.L. Barriers to Adult Cochlear Implant Care in the United States: An Analysis of Health Care Delivery. Semin. Hear. 2021, 42, 311–320. [Google Scholar] [CrossRef]
- Sorkin, D.L. Cochlear implantation in the world’s largest medical device market: Utilization and awareness of cochlear implants in the United States. Cochlea- Implant. Int. 2013, 14 (Suppl. 1), S4–S12. [Google Scholar] [CrossRef]
- Sorkin, D.L.; Buchman, C.A. Cochlear Implant Access in Six Developed Countries. Otol. Neurotol. 2016, 37, e161–e164. [Google Scholar] [CrossRef] [PubMed]
- Barnes, J.H.; Yin, L.X.; Marinelli, J.P.; Carlson, M.L. Audiometric Profile of Cochlear Implant Recipients Demonstrates Need for Revising Insurance Coverage. Laryngoscope 2021, 131, E2007-E. [Google Scholar] [CrossRef] [PubMed]
- Semenov, Y.R.; Martinez-Monedero, R.; Niparko, J.K. Cochlear Implants: Clinical and societal outcomes. Otolaryngol. Clin. N. Am. 2012, 45, 959–981. [Google Scholar] [CrossRef] [PubMed]
- Dornhoffer, J.R.; Holcomb, M.A.; Meyer, T.A.; Dubno, J.R.; McRackan, T.R. Factors Influencing Time to Cochlear Implantation. Otol. Neurotol. 2020, 41, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Tolisano, A.M.; Schauwecker, N.; Baumgart, B.; Whitson, J.; Kutz, J.W., Jr.; Isaacson, B.; Hunter, J. Identifying Disadvantaged Groups for Cochlear Implantation: Demographics from a Large Cochlear Implant Program. Ann. Otol. Rhinol. Laryngol. 2020, 129, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Chang, D.T.; Ko, A.B.; Murray, G.S.; Arnold, J.E.; Megerian, C.A. Lack of Financial Barriers to Pediatric Cochlear Implantation: Impact of socioeconomic status on access and outcomes. Arch. Otolaryngol. Head Neck Surg. 2010, 136, 648–657. [Google Scholar] [CrossRef] [Green Version]
- Noblitt, B.; Alfonso, K.P.; Adkins, M.; Bush, M.L. Barriers to Rehabilitation Care in Pediatric Cochlear Implant Recipients. Otol. Neurotol. 2018, 39, e307–e313. [Google Scholar] [CrossRef]
- Schuh, M.; Bush, M.L. Defining Disparities in Cochlear Implantation through the Social Determinants of Health. Semin. Hear. 2021, 42, 321–330. [Google Scholar] [CrossRef]
- Sorkin, D.L. Impact of Medicaid on Cochlear Implant Access. Otol. Neurotol. 2019, 40, e336–e341. [Google Scholar] [CrossRef]
- Williams, D.R.; Cooper, L.A. Reducing Racial Inequities in Health: Using What We Already Know to Take Action. Int. J. Environ. Res. Public Health 2019, 16, 606. [Google Scholar] [CrossRef] [Green Version]
- Moses, L.E.; Friedmann, D.R. Cochlear implant indications: A review of third-party payers’ policies for standard and expanded indications. Cochlea- Implant. Int. 2021, 22, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Littlefield, P.D.; Richter, C. Near-infrared stimulation of the auditory nerve: A decade of progress toward an optical cochlear implant. Laryngoscope Investig. Otolaryngol. 2021, 6, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Dombrowski, T.; Rankovic, V.; Moser, T. Toward the Optical Cochlear Implant. Cold Spring Harb. Perspect. Med. 2019, 9, a033225. [Google Scholar] [CrossRef]
- Bennion, D.M.; Horne, R.; Peel, A.; Reineke, P.; Henslee, A.; Kaufmann, C.; Guymon, C.A.; Hansen, M.R. Zwitterionic Photografted Coatings of Cochlear Implant Biomaterials Reduce Friction and Insertion Forces. Otol. Neurotol. 2021, 42, 1476–1483. [Google Scholar] [CrossRef]
- Astolfi, L.; Simoni, E.; Giarbini, N.; Giordano, P.; Pannella, M.; Hatzopoulos, S.; Martini, A. Cochlear implant and inflammation reaction: Safety study of a new steroid-eluting electrode. Hear. Res. 2016, 336, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Wey, K.; Schirrmann, R.; Diesing, D.; Lang, S.; Brandau, S.; Hansen, S.; Epple, M. Coating of cochlear implant electrodes with bioactive DNA-loaded calcium phosphate nanoparticles for the local transfection of stimulatory proteins. Biomaterials 2021, 276, 121009. [Google Scholar] [CrossRef]
- Yin, L.X.; Barnes, J.H.; Saoji, A.A.; Carlson, M.L. Clinical Utility of Intraoperative Electrocochleography (ECochG) During Cochlear Implantation: A Systematic Review and Quantitative Analysis. Otol. Neurotol. 2021, 42, 363–371. [Google Scholar] [CrossRef]
- Hans, S.; Arweiler-Harbeck, D.; Kaster, F.; Ludwig, J.; Hagedorn, E.; Lang, S.; Meyer, M.; Holtmann, L.C. Transimpedance Matrix Measurements Reliably Detect Electrode Tip Fold-over in Cochlear Implantation. Otol. Neurotol. 2021, 42, e1494–e1502. [Google Scholar] [CrossRef]
- Söderqvist, S.; Lamminmäki, S.; Aarnisalo, A.; Hirvonen, T.; Sinkkonen, S.T.; Sivonen, V. Intraoperative transimpedance and spread of excitation profile correlations with a lateral-wall cochlear implant electrode array. Hear. Res. 2021, 405, 108235. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rauterkus, G.; Maxwell, A.K.; Kahane, J.B.; Lentz, J.J.; Arriaga, M.A. Conversations in Cochlear Implantation: The Inner Ear Therapy of Today. Biomolecules 2022, 12, 649. https://doi.org/10.3390/biom12050649
Rauterkus G, Maxwell AK, Kahane JB, Lentz JJ, Arriaga MA. Conversations in Cochlear Implantation: The Inner Ear Therapy of Today. Biomolecules. 2022; 12(5):649. https://doi.org/10.3390/biom12050649
Chicago/Turabian StyleRauterkus, Grant, Anne K. Maxwell, Jacob B. Kahane, Jennifer J. Lentz, and Moises A. Arriaga. 2022. "Conversations in Cochlear Implantation: The Inner Ear Therapy of Today" Biomolecules 12, no. 5: 649. https://doi.org/10.3390/biom12050649
APA StyleRauterkus, G., Maxwell, A. K., Kahane, J. B., Lentz, J. J., & Arriaga, M. A. (2022). Conversations in Cochlear Implantation: The Inner Ear Therapy of Today. Biomolecules, 12(5), 649. https://doi.org/10.3390/biom12050649