Ferritin-Based Single-Electron Devices
Abstract
:1. Introduction
2. Results
3. Discussion
4. Methods
4.1. Ferritin Purity Assessment
4.2. Ferritin Size Statistics
4.3. Device Fabrication
4.4. Electrical Measurements
4.5. Coulomb-Blockade Fits
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arosio, P.; Elia, L.; Poli, M. Ferritin, cellular iron storage and regulation. IUBMB Life 2017, 69, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Finazzi, D.; Arosio, P. Biology of ferritin in mammals: An update on iron storage, oxidative damage and neurodegeneration. Arch. Toxicol. 2014, 88, 1787–1802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedman, A.; Arosio, P.; Finazzi, D.; Koziorowski, D.; Galazka-Friedman, J. Ferritin as an important player in neurodegeneration. Park. Relat. Disord. 2011, 17, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Quintana, C.; Bellefqih, S.; Laval, J.; Guerquin-Kern, J.; Wu, T.; Avila, J.; Ferrer, I.; Arranz, R.; Patiño, C. Study of the localization of iron, ferritin, and hemosiderin in Alzheimer’s disease hippocampus by analytical microscopy at the subcellular level. J. Struct. Biol. 2006, 153, 42–54. [Google Scholar] [CrossRef]
- Quintana, C.; Gutiérrez, L. Could a dysfunction of ferritin be a determinant factor in the aetiology of some neurodegenerative diseases? Biochim. Biophys. Acta (BBA) Gen. Subj. 2010, 1800, 770–782. [Google Scholar] [CrossRef]
- Kumar, K.S.; Pasula, R.R.; Lim, S.; Nijhuis, C.A. Long-Range Tunneling Processes across Ferritin-Based Junctions. Adv. Mater. 2016, 28, 1824–1830. [Google Scholar] [CrossRef]
- Xu, D.; Watt, G.D.; Harb, J.N.; Davis, R.C. Electrical Conductivity of Ferritin Proteins by Conductive AFM. Nano Lett. 2005, 5, 571–577. [Google Scholar] [CrossRef]
- Kim, B.J.; Ko, Y.; Cho, J.H.; Cho, J. Organic Field-Effect Transistor Memory Devices Using Discrete Ferritin Nanoparticle-Based Gate Dielectrics. Small 2013, 9, 3784–3791. [Google Scholar] [CrossRef]
- Yamamoto, S.I.; Kobayashi, K.; Yamada, H.; Yoshioka, H.; Uraoka, Y.; Fuyuki, T.; Yamashita, I. Electrical characterisitics of ferritin cores investegated by Kelvin Probe force microscopy. J. Phys. Conf. Ser. 2008, 100, 052004. [Google Scholar] [CrossRef]
- Zhang, C.; Shang, J.; Xue, W.; Tan, H.; Pan, L.; Yang, X.; Guo, S.; Hao, J.; Liu, G.; Li, R.W. Convertible resistive switching characteristics between memory switching and threshold switching in a single ferritin-based memristor. Chem. Commun. 2016, 52, 4828–4831. [Google Scholar] [CrossRef]
- Erickson, S.; Smith, T.; Moses, L.; Watt, R.; Colton, J. Non-native Co-, Mn-, and Ti-oxyhydroxide nanocrystals in ferritin for high efficiency solar energy conversion. Nanotechnology 2015, 26, 015703. [Google Scholar] [CrossRef] [PubMed]
- Watt, G.; Kim, J.W.; Zhang, B.; Miller, T.; Harb, J.; Davis, R.; Choi, S. A Protein-Based Ferritin Bio-Nanobattery. J. Nanotechnol. 2012, 2012, 516309. [Google Scholar] [CrossRef] [Green Version]
- Bera, S.; Kolay, J.; Banerjee, S.; Mukhopadhyay, R. Nanoscale On-Silico Electron Transport via Ferritins. Langmuir 2017, 33, 1951–1958. [Google Scholar] [CrossRef] [PubMed]
- Bera, S.; Kolay, J.; Pramanik, P.; Bhattacharyya, A.; Mukhopadhyay, R. Long-range Solid-state Electron Transport through Ferritin Multilayers. J. Mater. Chem. C 2019, 7, 9038–9048. [Google Scholar] [CrossRef]
- Mulyana, Y.; Uenuma, M.; Okamoto, N.; Ishikawa, Y.; Yamashita, I.; Uraoka, Y. Creating Reversible p–n Junction on Graphene through Ferritin Adsorption. ACS Appl. Mater. Interfaces 2016, 8, 8192–8200. [Google Scholar] [CrossRef]
- Shin, H.J.; Shin, K.M.; Lee, J.W.; Kwon, C.H.; Lee, S.H.; Kim, S.I.; Jeon, J.H.; Kim, S.J. Electrocatalytic characteristics of electrodes based on ferritin/carbon nanotube composites for biofuel cells. Sens. Actuators B Chem. 2011, 160, 384–388. [Google Scholar] [CrossRef]
- Kolay, J.; Bera, S.; Rakshit, T.; Mukhopadhyay, R. Negative Differential Resistance Behavior of the Iron Storage Protein Ferritin. Langmuir 2018, 34, 3126–3135. [Google Scholar] [CrossRef]
- Rakshit, T.; Mukhopadhyay, R. Tuning Band Gap of Holoferritin by Metal Core Reconstitution with Cu, Co, and Mn. Langmuir 2011, 27, 9681–9686. [Google Scholar] [CrossRef]
- Rakshit, T.; Bera, S.; Kolay, J.; Mukhopadhyay, R. Nanoscale solid-state electron transport via ferritin: Implications in molecular bioelectronics. Nano-Struct. Nano-Objects 2020, 24, 100582. [Google Scholar] [CrossRef]
- Rourk, C.; Huang, Y.; Chen, M.; Shen, C. Indication of Strongly Correlated Electron Transport and Mott Insulator in Disordered Multilayer Ferritin Structures (DMFS). Materials 2021, 14, 4527. [Google Scholar] [CrossRef]
- Holovchenko, A. Electrical Characterization of Nanoparticle and Protein Networks. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Preisinger, M.; Krispin, M.; Rudolf, T.; Horn, S.; Strongin, D. Electronic structure of nanoscale iron oxide particles measured by scanning tunneling and photoelectron spectroscopies. Phys. Rev. B 2005, 71, 165409. [Google Scholar] [CrossRef] [Green Version]
- Kumagai, S.; Yoshii, S.; Matsukawa, N.; Nishio, K.; Tsukamoto, R.; Yamashita, I. Self-aligned placement of biologically synthesized Coulomb islands within nanogap electrodes for single electron transistor. Appl. Phys. Lett. 2009, 94, 083103. [Google Scholar] [CrossRef]
- Rakshit, T.; Banerjee, S.; Mukhopadhyay, R. Near-Metallic Behavior of Warm Holoferritin Molecules on a Gold(111) Surface. Langmuir 2010, 26, 16005–16012. [Google Scholar] [CrossRef] [PubMed]
- Rakshit, T. Differentiating Holo- and Apoferritin by AFM approach. J. Surf. Sci. Technol. 2015, 31, 165–170. [Google Scholar]
- Choi, S.H.; Kim, J.W.; Chu, S.H.; Park, Y.; King, G.C.; Lillehei, P.T.; Kim, S.J.; Elliott, J.R. Ferritin-templated quantum dots for quantum logic gates. In Smart Structures and Materials 2005: Smart Electronics, MEMS, BioMEMS, and Nanotechnology; Varadan, V.K., Ed.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2005; Volume 5763, pp. 213–232. [Google Scholar] [CrossRef]
- Fursina, A.; Lee, S.; Sofin, R.G.S.; Shvets, I.V.; Natelson, D. Nanogaps with very large aspect ratios for electrical measurements. Appl. Phys. Lett. 2008, 92, 113102. [Google Scholar] [CrossRef]
- Labra-Muñoz, J.; Konstantinović, Z.; Balcells, L.; Pomar, A.; van der Zant, H.S.J.; Dulić, D. Trapping and electrical characterization of single core/shell iron-based nanoparticles in self-aligned nanogaps. Appl. Phys. Lett. 2019, 115, 063104. [Google Scholar] [CrossRef] [Green Version]
- de Val, N.; Declercq, J.P.; Lim, C.K.; Crichton, R.R. Structural analysis of haemin demetallation by L-chain apoferritins. J. Inorg. Biochem. 2012, 112, 77–84. [Google Scholar] [CrossRef]
- Claeson, T.; Delsing, P.; Haviland, D.; Kuzmin, L.; Likharev, K.K. Correlated Single Electron Tunneling in Ultrasmall Junctions. In Nonlinear Superconductive Electronics and Josephson Devices; Costabile, G., Pagano, S., Pedersen, N.F., Russo, M., Eds.; Springer: Boston, MA, USA, 1991; pp. 197–228. [Google Scholar] [CrossRef]
- Axford, D.; Davis, J. Electron flux through apo-and holoferritin. Nanotechnology 2007, 18, 145502. [Google Scholar] [CrossRef]
- Laghaei, R.; Kowallis, W.; Evans, D.G.; Coalson, R.D. Calculation of Iron Transport through Human H-chain Ferritin. J. Phys. Chem. A 2014, 118, 7442–7453. [Google Scholar] [CrossRef]
- Li, L.; Li, C.; Zhang, Z.; Alexov, E. On the Dielectric “Constant” of Proteins: Smooth Dielectric Function for Macromolecular Modeling and Its Implementation in DelPhi. J. Chem. Theory Comput. 2013, 9, 2126–2136. [Google Scholar] [CrossRef]
- Amdursky, N.; Marchak, D.; Sepunaru, L.; Pecht, I.; Sheves, M.; Cahen, D. Electronic Transport via Proteins. Adv. Mater. 2014, 26, 7142–7161. [Google Scholar] [CrossRef] [PubMed]
Device | (aF) | (aF) | (M) | (M) | (e) | T (K) |
---|---|---|---|---|---|---|
D2 | 12.0 | 12.0 | 0.4 | 22.0 | −0.55 | 5.0 |
I1 | 0.8 | 8.7 | 8.6 | 38.2 | −0.06 | 4.2 |
E1 | 9.5 | 9.2 | 17.8 | 17.8 | −0.12 | 4.2 |
D1 | 12.0 | 12.0 | 5500.0 | 5500.0 | −0.35 | 4.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Labra-Muñoz, J.A.; de Reuver, A.; Koeleman, F.; Huber, M.; van der Zant, H.S.J. Ferritin-Based Single-Electron Devices. Biomolecules 2022, 12, 705. https://doi.org/10.3390/biom12050705
Labra-Muñoz JA, de Reuver A, Koeleman F, Huber M, van der Zant HSJ. Ferritin-Based Single-Electron Devices. Biomolecules. 2022; 12(5):705. https://doi.org/10.3390/biom12050705
Chicago/Turabian StyleLabra-Muñoz, Jacqueline A., Arie de Reuver, Friso Koeleman, Martina Huber, and Herre S. J. van der Zant. 2022. "Ferritin-Based Single-Electron Devices" Biomolecules 12, no. 5: 705. https://doi.org/10.3390/biom12050705
APA StyleLabra-Muñoz, J. A., de Reuver, A., Koeleman, F., Huber, M., & van der Zant, H. S. J. (2022). Ferritin-Based Single-Electron Devices. Biomolecules, 12(5), 705. https://doi.org/10.3390/biom12050705