Cortisol Regulates Cerebral Mitochondrial Oxidative Phosphorylation and Morphology of the Brain in a Region-Specific Manner in the Ovine Fetus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Experimental Procedures
2.2. Cerebral Oxygen Consumption
- The fraction of OXPHOS capacity dissipated in the leak state: CL/CI&CIIP;
- OXPHOS coupling efficiency for CI-linked substrates, which represents the net OXPHOS capacity, corrected for leak respiration (CIL): 1-CIL/CIP;
- CIP/CI&CIIP (Complex I Flux Control Ratio);
- CIIP/CI&CIIP (Complex II Flux Control Ratio).
2.3. Biochemical Analyses
2.4. Western Blot Analyses
2.5. Brain Histology and Stereology
2.6. Statistics
3. Results
3.1. Cortisol Infusion Increases Cortisol and Plasma Triiodothyronine (T3) Concentrations and Citrate Synthase Activity
3.2. Cortisol Infusion Affects Cerebral Mitochondrial Respiratory Function in a Region-Specific Manner
3.3. Cortisol Infusion Does Not Alter the Protein Abundance of Mitochondrial Complexes, but Increases ANT1 in the Cerebellum
3.4. Cortisol Infusion Increased Myelination in the Cerebrum
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herman, J.P.; McKlveen, J.M.; Ghosal, S.; Kopp, B.; Wulsin, A.; Makinson, R.; Scheimann, J.; Myers, B. Regulation of the Hypothalamic-Pituitary-Adrenocortical Stress Response. Compr. Physiol. 2016, 6, 603–621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fowden, A.L.; Valenzuela, O.A.; Vaughan, O.R.; Jellyman, J.K.; Forhead, A.J. Glucocorticoid programming of intrauterine development. Domest. Anim. Endocrinol. 2016, 56, S121–S132. [Google Scholar] [CrossRef] [PubMed]
- Fowden, A.L.; Li, J.; Forhead, A.J. Glucocorticoids and the preparation for life after birth: Are there long-term consequences of the life insurance? Proc. Nutr. Soc. 1998, 57, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Committee on Obstetric Practice. Committee Opinion No. 713: Antenatal Corticosteroid Therapy for Fetal Maturation. Obstet. Gynecol. 2017, 130, e102–e109. [Google Scholar] [CrossRef] [PubMed]
- Moisiadis, V.G.; Matthews, S.G. Glucocorticoids and fetal programming part 1: Outcomes. Nat. Rev. Endocrinol. 2014, 10, 391–402. [Google Scholar] [CrossRef]
- Rodriguez-Cano, A.M.; Calzada-Mendoza, C.C.; Estrada-Gutierrez, G.; Mendoza-Ortega, J.A.; Perichart-Perera, O. Nutrients, Mitochondrial Function, and Perinatal Health. Nutrients 2020, 12, 2166. [Google Scholar] [CrossRef]
- Klein, A.H.; Reviczky, A.; Padbury, J.F.; Fisher, D.A. Effect of changes in thyroid status on tissue respiration in fetal and newborn sheep. Am. J. Physiol. 1983, 244, E603–E606. [Google Scholar] [CrossRef]
- Picard, M.; McEwen, B.S.; Epel, E.S.; Sandi, C. An energetic view of stress: Focus on mitochondria. Front. Neuroendocrinol. 2018, 49, 72–85. [Google Scholar] [CrossRef]
- Vaughan, O.R.; Davies, K.L.; Ward, J.W.; de Blasio, M.J.; Fowden, A.L. A physiological increase in maternal cortisol alters uteroplacental metabolism in the pregnant ewe. J. Physiol. 2016, 594, 6407–6418. [Google Scholar] [CrossRef] [Green Version]
- Davies, K.L.; Smith, D.J.; El-Bacha, T.; Stewart, M.E.; Easwaran, A.; Wooding, P.F.P.; Forhead, A.J.; Murray, A.J.; Fowden, A.L.; Camm, E.J. Development of cerebral mitochondrial respiratory function is impaired by thyroid hormone deficiency before birth in a region-specific manner. FASEB J. 2021, 35, e21591. [Google Scholar] [CrossRef]
- Burtscher, J.; Zangrandi, L.; Schwarzer, C.; Gnaiger, E. Differences in mitochondrial function in homogenated samples from healthy and epileptic specific brain tissues revealed by high-resolution respirometry. Mitochondrion 2015, 25, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Camm, E.J.; Inzani, I.; de Blasio, M.J.; Davies, K.L.; Lloyd, I.R.; Wooding, F.P.; Blache, D.; Fowden, A.L.; Forhead, A.J. Thyroid hormone deficiency suppresses fetal pituitary-adrenal function near term: Implications for the control of fetal maturation and parturition. Thyroid 2021, 31, 861–869. [Google Scholar] [CrossRef] [PubMed]
- Freitas, T.P.; Rezin, G.T.; Goncalves, C.L.; Jeremias, G.C.; Gomes, L.M.; Scaini, G.; Teodorak, B.P.; Valvassori, S.S.; Quevedo, J.; Streck, E.L. Evaluation of citrate synthase activity in brain of rats submitted to an animal model of mania induced by ouabain. Mol. Cell. Biochem. 2010, 341, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Larsen, S.; Nielsen, J.; Hansen, C.N.; Nielsen, L.B.; Wibrand, F.; Stride, N.; Schroder, H.D.; Boushel, R.; Helge, J.W.; Dela, F.; et al. Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J. Physiol. 2012, 590, 3349–3360. [Google Scholar] [CrossRef]
- Davies, K.L.; Camm, E.J.; Atkinson, E.V.; Lopez, T.; Forhead, A.J.; Murray, A.J.; Fowden, A.L. Development and thyroid hormone dependence of skeletal muscle mitochondrial function towards birth. J. Physiol. 2020, 598, 2453–2468. [Google Scholar] [CrossRef]
- Kumar, S.; Cole, R.; Chiappelli, F.; de Vellis, J. Differential regulation of oligodendrocyte markers by glucocorticoids: Post-transcriptional regulation of both proteolipid protein and myelin basic protein and transcriptional regulation of glycerol phosphate dehydrogenase. Proc. Natl. Acad. Sci. USA 1989, 86, 6807–6811. [Google Scholar] [CrossRef] [Green Version]
- Chan, J.R.; Phillips, L.J., 2nd; Glaser, M. Glucocorticoids and progestins signal the initiation and enhance the rate of myelin formation. Proc. Natl. Acad. Sci. USA 1998, 95, 10459–10464. [Google Scholar] [CrossRef] [Green Version]
- Motulsky, H.J.; Brown, R.E. Detecting outliers when fitting data with nonlinear regression—A new method based on robust nonlinear regression and the false discovery rate. BMC Bioinform. 2006, 7, 123. [Google Scholar] [CrossRef] [Green Version]
- Vaughan, O.R.; de Blasio, M.J.; Fowden, A.L. Ovine uteroplacental and fetal metabolism during and after fetal cortisol overexposure in late gestation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 314, R791–R801. [Google Scholar] [CrossRef]
- Mostyn, A.; Pearce, S.; Budge, H.; Elmes, M.; Forhead, A.J.; Fowden, A.L.; Stephenson, T.; Symonds, M.E. Influence of cortisol on adipose tissue development in the fetal sheep during late gestation. J. Endocrinol. 2003, 176, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Wang, Y.; Hunter, R.; Wei, Y.; Blumenthal, R.; Falke, C.; Khairova, R.; Zhou, R.; Yuan, P.; Machado-Vieira, R.; et al. Dynamic regulation of mitochondrial function by glucocorticoids. Proc. Natl. Acad. Sci. USA 2009, 106, 3543–3548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Djouadi, F.; Bastin, J.; Gilbert, T.; Rotig, A.; Rustin, P.; Merlet-Benichou, C. Mitochondrial biogenesis and development of respiratory chain enzymes in kidney cells: Role of glucocorticoids. Am. J. Physiol. 1994, 267, C245–C254. [Google Scholar] [CrossRef] [PubMed]
- Rachamim, N.; Latter, H.; Malinin, N.; Asher, C.; Wald, H.; Garty, H. Dexamethasone enhances expression of mitochondrial oxidative phosphorylation genes in rat distal colon. Am. J. Physiol. 1995, 269, C1305–C1310. [Google Scholar] [CrossRef] [PubMed]
- Weber, K.; Bruck, P.; Mikes, Z.; Kupper, J.H.; Klingenspor, M.; Wiesner, R.J. Glucocorticoid hormone stimulates mitochondrial biogenesis specifically in skeletal muscle. Endocrinology 2002, 143, 177–184. [Google Scholar] [CrossRef]
- Psarra, A.M.; Sekeris, C.E. Glucocorticoids induce mitochondrial gene transcription in HepG2 cells: Role of the mitochondrial glucocorticoid receptor. Biochim. Biophys. Acta 2011, 1813, 1814–1821. [Google Scholar] [CrossRef] [Green Version]
- Snyder, J.M.; Rodgers, H.F.; O’Brien, J.A.; Mahli, N.; Magliato, S.A.; Durham, P.L. Glucocorticoid effects on rabbit fetal lung maturation in vivo: An ultrastructural morphometric study. Anat. Rec. 1992, 232, 133–140. [Google Scholar] [CrossRef]
- Prieur, B.; Bismuth, J.; Delaval, E. Effects of adrenal steroid hormones on mitochondrial maturation during the late fetal period. Eur. J. Biochem. 1998, 252, 194–199. [Google Scholar] [CrossRef]
- Nakai, A.; Shibazaki, Y.; Taniuchi, Y.; Oya, A.; Asakura, H.; Koshino, T.; Araki, T. Effect of dexamethasone on mitochondrial maturation in the fetal rat brain. Am. J. Obstet. Gynecol. 2002, 186, 574–578. [Google Scholar] [CrossRef]
- Rog-Zielinska, E.A.; Craig, M.A.; Manning, J.R.; Richardson, R.V.; Gowans, G.J.; Dunbar, D.R.; Gharbi, K.; Kenyon, C.J.; Holmes, M.C.; Hardie, D.G.; et al. Glucocorticoids promote structural and functional maturation of foetal cardiomyocytes: A role for PGC-1alpha. Cell Death Differ. 2015, 22, 1106–1116. [Google Scholar] [CrossRef] [Green Version]
- Davies, K.L.; Camm, E.J.; Smith, D.J.; Vaughan, O.R.; Forhead, A.J.; Murray, A.J.; Fowden, A.L. Glucocorticoid Maturation of Mitochondrial Respiratory Capacity in Skeletal Muscle before Birth. J. Endocrinol. 2021, 251, 53–68. [Google Scholar] [CrossRef]
- Rog-Zielinska, E.A.; Thomson, A.; Kenyon, C.J.; Brownstein, D.G.; Moran, C.M.; Szumska, D.; Michailidou, Z.; Richardson, J.; Owen, E.; Watt, A.; et al. Glucocorticoid receptor is required for foetal heart maturation. Hum. Mol. Genet. 2013, 22, 3269–3282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.T.; Hu, Y.; Yang, Q.Y.; Son, J.S.; Liu, X.D.; de Avila, J.M.; Zhu, M.J.; Du, M. Excessive Glucocorticoids During Pregnancy Impair Fetal Brown Fat Development and Predispose Offspring to Metabolic Dysfunctions. Diabetes 2020, 69, 1662–1674. [Google Scholar] [CrossRef]
- Arvier, M.; Lagoutte, L.; Johnson, G.; Dumas, J.F.; Sion, B.; Grizard, G.; Malthiery, Y.; Simard, G.; Ritz, P. Adenine nucleotide translocator promotes oxidative phosphorylation and mild uncoupling in mitochondria after dexamethasone treatment. Am. J. Physiol. Endocrinol. Metab. 2007, 293, E1320–E1324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura, S.; Rasmussen, H. Adrenal glucocorticoids, adenine nucleotide translocation, and mitochondrial calcium accumulation. J. Biol. Chem. 1977, 252, 1217–1225. [Google Scholar] [CrossRef]
- Brand, M.D.; Pakay, J.L.; Ocloo, A.; Kokoszka, J.; Wallace, D.C.; Brookes, P.S.; Cornwall, E.J. The basal proton conductance of mitochondria depends on adenine nucleotide translocase content. Biochem. J. 2005, 392, 353–362. [Google Scholar] [CrossRef] [Green Version]
- Sparks, L.M.; Gemmink, A.; Phielix, E.; Bosma, M.; Schaart, G.; Moonen-Kornips, E.; Jorgensen, J.A.; Nascimento, E.B.; Hesselink, M.K.; Schrauwen, P.; et al. ANT1-mediated fatty acid-induced uncoupling as a target for improving myocellular insulin sensitivity. Diabetologia 2016, 59, 1030–1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forhead, A.J.; Curtis, K.; Kaptein, E.; Visser, T.J.; Fowden, A.L. Developmental control of iodothyronine deiodinases by cortisol in the ovine fetus and placenta near term. Endocrinology 2006, 147, 5988–5994. [Google Scholar] [CrossRef] [PubMed]
- Forhead, A.J.; Fowden, A.L. Thyroid hormones in fetal growth and prepartum maturation. J. Endocrinol. 2014, 221, R87–R103. [Google Scholar] [CrossRef] [Green Version]
- Barres, B.A.; Lazar, M.A.; Raff, M.C. A novel role for thyroid hormone, glucocorticoids and retinoic acid in timing oligodendrocyte development. Development 1994, 120, 1097–1108. [Google Scholar] [CrossRef]
- Kinney, H.C.; Brody, B.A.; Kloman, A.S.; Gilles, F.H. Sequence of central nervous system myelination in human infancy. II. Patterns of myelination in autopsied infants. J. Neuropathol. Exp. Neurol. 1988, 47, 217–234. [Google Scholar] [CrossRef] [Green Version]
- Roberts, D.; Brown, J.; Medley, N.; Dalziel, S.R. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst. Rev. 2017, 3, CD004454. [Google Scholar] [CrossRef] [PubMed]
- Baud, O.; Maury, L.; Lebail, F.; Ramful, D.; El Moussawi, F.; Nicaise, C.; Zupan-Simunek, V.; Coursol, A.; Beuchee, A.; Bolot, P.; et al. Effect of early low-dose hydrocortisone on survival without bronchopulmonary dysplasia in extremely preterm infants (PREMILOC): A double-blind, placebo-controlled, multicentre, randomised trial. Lancet 2016, 387, 1827–1836. [Google Scholar] [CrossRef]
- Watterberg, K.L.; Shaffer, M.L.; Mishefske, M.J.; Leach, C.L.; Mammel, M.C.; Couser, R.J.; Abbasi, S.; Cole, C.H.; Aucott, S.W.; Thilo, E.H.; et al. Growth and neurodevelopmental outcomes after early low-dose hydrocortisone treatment in extremely low birth weight infants. Pediatrics 2007, 120, 40–48. [Google Scholar] [CrossRef] [Green Version]
- Kuznetsov, A.V.; Strobl, D.; Ruttmann, E.; Konigsrainer, A.; Margreiter, R.; Gnaiger, E. Evaluation of mitochondrial respiratory function in small biopsies of liver. Anal. Biochem. 2002, 305, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Salin, K.; Villasevil, E.M.; Auer, S.K.; Anderson, G.J.; Selman, C.; Metcalfe, N.B.; Chinopoulos, C. Simultaneous measurement of mitochondrial respiration and ATP production in tissue homogenates and calculation of effective P/O ratios. Physiol. Rep. 2016, 4, e13007. [Google Scholar] [CrossRef] [Green Version]
Saline | Cortisol | p Value | |
---|---|---|---|
n = 4F, 3M | n = 4F, 2M | ||
129.7 ± 0.5 dGA | 130.3 ± 0.2 dGA | ||
Hormone Concentrations | Median (IQR) | Median (IQR) | |
Plasma cortisol (ng/mL) | 14.0 (8.5–16.6) | 44.6 (36.6–51.1) * | <0.001 |
Plasma T3 (ng/mL) | 0.39 (0.32–0.52) | 0.77 (0.56–1.1) * | 0.012 |
Plasma T4 (ng/mL) | 137.2 (124.2–158.6) | 142.7 (128.0–146.0) | 0.911 |
Morphometry | |||
Body weight (kg) | 3.1 (2.8–3.2) | 2.7 (2.5–3.1) | 0.276 |
Crown–rump length (cm) | 44.0 (43.0–46.0) | 44.0 (43.8–46.3) | 0.657 |
Biparietal diameter (cm) | 12.0 (11.0–12.0) | 11.0 (10.5–11.6) | 0.128 |
Brain weight (g) | 42.8 (42.2–46.4) | 40.4 (36.3–43.8) | 0.096 |
Brain:body weight ratio (g:kg) | 14.8 (13.4–15.2) | 14.2 (11.8–16.6) | 0.971 |
Biochemical Composition | |||
Cortex water content (%) | 87.9 (87.6–88.7) | 87.2 (86.0–87.4) | 0.071 |
Cerebellum water content (%) | 85.5 (84.2–85.7) | 84.9 (84.1–85.8) | 0.785 |
Protein cortex (mg/g) | 36.3 (33.3–41.1) | 37.6 (33.4–38.9) | 0.582 |
Protein cerebellum (mg/g) | 32.9 (30.8–45.0) | 39.6 (30.5–49.1) | 0.497 |
Cortex CS activity (μmol/min/mg protein) | 0.228 (0.204–0.314) | 0.237 (0.226–0.281) | 0.966 |
Cerebellum CS activity (μmol/min/mg protein) | 0.192 (0.161–0.217) | 0.244 (0.227–0.281) * | 0.015 |
Cortex | CIL | CIP | CI&IIP | CIIP | Citrate Synthase Activity |
---|---|---|---|---|---|
Log10 plasma cortisol (ng/mL) | r = −0.494 | r = −0.629 | r = −0.613 | r = −0.491 | r = 0.066 |
p = 0.103 | p = 0.028 | p = 0.034 | p = 0.105 | p = 0.838 | |
n = 12 | n = 12 | n = 12 | n = 12 | n = 12 | |
Log10 plasma T3 (ng/mL) | r = −0.153 | r = −0.436 | r = −0.519 | r = −0.364 | r = 0.245 |
p = 0.635 | p = 0.156 | p = 0.083 | p = 0.245 | p = 0.442 | |
n = 12 | n = 12 | n = 12 | n = 12 | n = 12 | |
Cerebellum | CIL | CIP | CI + IIP | CII | Citrate Synthase Activity |
Log10 plasma cortisol (ng/mL) | r = −0.664 | r = −0.741 | r = −0.718 | r = −0.638 | r = 0.692 |
p = 0.024 | p = 0.006 | p = 0.009 | p = 0.026 | p = 0.013 | |
n = 12 | n = 12 | n = 12 | n = 12 | n = 12 | |
Log10 plasma T3 (ng/mL) | r = −0.258 | r = −0.347 | r = −0.247 | r = −0.075 | r = 0.315 |
p = 0.419 | p = 0.270 | p = 0.440 | p = 0.818 | p = 0.318 | |
n = 12 | n = 12 | n = 12 | n = 12 | n = 12 |
Brain Region | Saline | Cortisol | p Value |
---|---|---|---|
n = 4F, 3M | n = 4F, 2M | ||
Cerebrum | |||
Level A | Median (IQR) | Median (IQR) | |
Area of cerebrum (mm2) | 266.9 (253.6–311.4) | 280.3 (252.9–304.9) | 0.989 |
Area of myelin (mm2) | 28.2 (25.8–30.2) | 26.6 (21.2–30.1) | 0.365 |
Myelin (%) | 10.5 (8.7–11.6) | 9.8 (7.8–11.0) | 0.331 |
Myelin-periventricular (O.D.) | 0.129 (0.108–0.136) | 0.137 (0.120–0.148) | 0.408 |
Myelin-intragyral (O.D.) | 0.094 (0.082–0.127) | 0.094 (0.087–0.107) | 0.755 |
Level B | |||
Area of cerebrum (mm2) | 402.8 (377.7–413.5) | 404.3 (360.9–441.8) | 0.888 |
Area of myelin (mm2) | 80.4 (79.6–97.3) | 114.3 (93.7–155.3) * | 0.033 |
Myelin (%) | 21.4 (19.8–23.5) | 28.5 (25.9–34.3) * | 0.003 |
Myelin-periventricular (O.D.) | 0.166 (0.144–0.184) | 0.187 (0.171–0.194) | 0.135 |
Myelin-intragyral (O.D.) | 0.106 (0.090–0.152) | 0.116 (0.111–0.119) | 0.904 |
Level C | |||
Area of cerebrum (mm2) | 275.4 (226.3–323.9) | 210.9 (209.7–282.3) | 0.383 |
Area of myelin (mm2) | 28.9 (19.7–41.0) | 29.9 (28.0–43.8) | 0.889 |
Myelin (%) | 9.9 (8.0–18.1) | 14.2 (13.3–15.5) | 0.488 |
Myelin-periventricular (O.D.) | 0.154 (0.112–0.186) | 0.156 (0.147–0.165) | 0.661 |
Myelin-intragyral (O.D.) | 0.128 (0.067–0.151) | 0.123 (0.107–0.144) | 0.528 |
Cerebellum | |||
Area of cerebellum (mm2) | 149.1 (146.8–170.1) | 161.6 (125.2–194.1) | 0.807 |
Area of myelin (mm2) | 37.4 (34.1–41.1) | 33.8 (30.1–45.1) | 0.821 |
Myelin (%) | 23.8 (20.1–29.5) | 24.6 (17.6–27.6) | 0.679 |
Myelin-arbour vitae, central (O.D.) | 0.156 (0.141–0.159) | 0.148 (0.130–0.157) | 0.677 |
Myelin-arbour vitae, peripheral (O.D.) | 0.189 (0.166–0.202) | 0.181 (0.155–0.190) | 0.773 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davies, K.L.; Smith, D.J.; El-Bacha, T.; Wooding, P.F.P.; Forhead, A.J.; Murray, A.J.; Fowden, A.L.; Camm, E.J. Cortisol Regulates Cerebral Mitochondrial Oxidative Phosphorylation and Morphology of the Brain in a Region-Specific Manner in the Ovine Fetus. Biomolecules 2022, 12, 768. https://doi.org/10.3390/biom12060768
Davies KL, Smith DJ, El-Bacha T, Wooding PFP, Forhead AJ, Murray AJ, Fowden AL, Camm EJ. Cortisol Regulates Cerebral Mitochondrial Oxidative Phosphorylation and Morphology of the Brain in a Region-Specific Manner in the Ovine Fetus. Biomolecules. 2022; 12(6):768. https://doi.org/10.3390/biom12060768
Chicago/Turabian StyleDavies, Katie L., Danielle J. Smith, Tatiana El-Bacha, Peter F. P. Wooding, Alison J. Forhead, Andrew J. Murray, Abigail L. Fowden, and Emily J. Camm. 2022. "Cortisol Regulates Cerebral Mitochondrial Oxidative Phosphorylation and Morphology of the Brain in a Region-Specific Manner in the Ovine Fetus" Biomolecules 12, no. 6: 768. https://doi.org/10.3390/biom12060768
APA StyleDavies, K. L., Smith, D. J., El-Bacha, T., Wooding, P. F. P., Forhead, A. J., Murray, A. J., Fowden, A. L., & Camm, E. J. (2022). Cortisol Regulates Cerebral Mitochondrial Oxidative Phosphorylation and Morphology of the Brain in a Region-Specific Manner in the Ovine Fetus. Biomolecules, 12(6), 768. https://doi.org/10.3390/biom12060768