What Makes GPCRs from Different Families Bind to the Same Ligand?
Abstract
:1. Introduction
- (1)
- Do the GPCRs that bind to the same ligand share any conserved sequence motifs? Are they locally similar in terms of their 3D structures?
- (2)
- For GPCRs that bind to the same ligand, how similar are their binding pockets in terms of sequence and structure? Which residues of the GPCR interact with which atoms of the ligand?
- (3)
- For the ligands binding to human GPCRs from different families, do they bind with the similar poses and affinities?
2. Materials and Methods
2.1. Dataset Collection
2.2. Motif Search
2.3. Structural Comparison
2.4. Binding Pocket Prediction
2.5. Binding Pocket Comparison
2.6. GPCR Ligand Docking
2.7. Ligand Binding Pose and Conformation
2.8. Protein Ligand Interaction
2.9. Predicted Pocket and 3D Structural Similarity Comparison Overlap
2.10. Pockets Electrostatic Properties
3. Results and Discussion
3.1. 3D Structures of GPCR
3.2. GPCR Ligand Binding
3.3. Conserved Motifs
3.4. Structural Comparison
3.5. Binding Pocket Comparison and GPCR Ligand Docking Relationship
3.6. Ligand Binding Pose and Conformation
3.7. Protein Ligand Interaction and Pocket Electrostatic Properties
3.8. Predicted Pocket and 3D Structural Similarity Comparison Overlap
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, G.; Inoue, A.; Gutkind, J.S.; Russell, R.B.; Raimondi, F. PRECOG: PREdicting COupling probabilities of G-protein coupled receptors. Nucleic Acids Res. 2019, 47, W395–W401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Zhao, Q.; Wu, B. Structural studies of G protein-coupled receptors. Mol. Cells 2015, 38, 836–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodsell, D.S.; Zardecki, C.; Di Costanzo, L.; Duarte, J.M.; Hudson, B.P.; Persikova, I.; Segura, J.; Shao, C.; Voigt, M.; Westbrook, J.D.; et al. RCSB Protein Data Bank: Enabling biomedical research and drug discovery. Protein Sci. 2019, 2019, 52–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lappano, R.; Maggiolini, M. GPCRs and cancer. Acta Pharmacol. Sin. 2012, 33, 351–362. [Google Scholar] [CrossRef] [Green Version]
- Horn, F. GPCRDB information system for G protein-coupled receptors. Nucleic Acids Res. 2003, 31, 294–297. [Google Scholar] [CrossRef] [Green Version]
- Begum, K.; Mohl, J.E.; Ayivor, F.; Perez, E.E.; Leung, M.Y. GPCR-PEnDB: A database of protein sequences and derived features to facilitate prediction and classification of G protein-coupled receptors. Database J. Biol. Databases Curation 2020, 2020, baaa087. [Google Scholar] [CrossRef]
- Nguyen, D.D.; Xiao, T.; Wang, M.; Wei, G.W. Rigidity Strengthening: A Mechanism for Protein-Ligand Binding. J. Chem. Inf. Modeling 2017, 57, 1715–1721. [Google Scholar] [CrossRef]
- Xie, Z.R.; Hwang, M.J. Methods for Predicting Protein-Ligand Binding Sites. In Molecular Modeling of Proteins. Methods in Molecular Biology (Methods and Protocols); Kukol, A., Ed.; Humana Press: New York, NY, USA, 2015; Volume 1215. [Google Scholar] [CrossRef]
- Fu, Y.; Zhao, J.; Chen, Z. Insights into the Molecular Mechanisms of Protein-Ligand Interactions by Molecular Docking and Molecular Dynamics Simulation: A Case of Oligopeptide Binding Protein. Comput. Math. Methods Med. 2018, 2018, 3502514. [Google Scholar] [CrossRef]
- Huang, Y.; Todd, N.; Thathiah, A. The role of GPCRs in neurodegenerative diseases: Avenues for therapeutic intervention. Curr. Opin. Pharmacol. 2017, 32, 96–110. [Google Scholar] [CrossRef]
- Freudenberg, J.M.; Dunham, I.; Sanseau, P.; Rajpal, D.K. Uncovering new disease indications for G-protein coupled receptors and their endogenous ligands. BMC Bioinform. 2018, 19, 345. [Google Scholar] [CrossRef]
- Mazarati, A.; Langel, Ü.; Bartfai, T. Galanin: An endogenous anticonvulsant? Neuroscientist 2001, 7, 506–517. [Google Scholar] [CrossRef]
- Srinivasan, S.; Guixà-González, R.; Cordomí, A.; Garriga, P. Ligand Binding Mechanisms in Human Cone Visual Pigments. Trends Biochem. Sci. 2019, 44, 629–639. [Google Scholar] [CrossRef] [PubMed]
- Matera, M.G.; Page, C.; Rinaldi, B. β2-Adrenoceptor signalling bias in asthma and COPD and the potential impact on the comorbidities associated with these diseases. Curr. Opin. Pharmacol. 2018, 40, 142–146. [Google Scholar] [CrossRef] [PubMed]
- Jo, M.; Jung, S.T. Engineering therapeutic antibodies targeting G-protein-coupled receptors. Exp. Mol. Med. 2016, 48, e207. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.; Choi, J.; Ahn, S.K.; Kim, K.W.; Kim, J.; Choi, J.; Kim, J.; Ahn, J. Prediction of GPCR-Ligand Binding Using Machine Learning Algorithms. Comput. Math. Methods Med. 2018, 2018, 6565241. [Google Scholar] [CrossRef] [PubMed]
- Ciancetta, A.; Sabbadin, D.; Federico, S.; Spalluto, G.; Moro, S. Advances in computational techniques to study GPCR–ligand recognition. Trends Pharmacol. Sci. 2015, 36, 878–890. [Google Scholar] [CrossRef]
- Teilum, K.; Olsen, J.G.; Kragelund, B.B. Functional aspects of protein flexibility. Cell. Mol. Life Sci. 2009, 66, 2231. [Google Scholar] [CrossRef]
- Govindaraj, R.G.; Brylinski, M. Comparative assessment of strategies to identify similar ligand-binding pockets in proteins. BMC Bioinform. 2018, 19, 91. [Google Scholar] [CrossRef]
- Yeturu, K.; Chandra, N. PocketMatch: A new algorithm to compare binding sites in protein structures. BMC Bioinform. 2008, 9, 543. [Google Scholar] [CrossRef] [Green Version]
- Kinoshita, K.; Murakami, Y.; Nakamura, H. eF-seek: Prediction of the functional sites of proteins by searching for similar electrostatic potential and molecular surface shape. Nucleic Acids Res. 2007, 35, W398–W402. [Google Scholar] [CrossRef] [Green Version]
- Sael, L.; Kihara, D. Detecting local ligand-binding site similarity in nonhomologous proteins by surface patch comparison. Proteins 2012, 80, 1177–1195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinoshita, K.; Furui, J.; Nakamura, H. Identification of protein functions from a molecular surface database, eF-site. J. Struct. Funct. Genom. 2002, 2, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, S.; Kuhn, D.; Klebe, G. A new method to detect related function among proteins independent of sequence and fold homology. J. Mol. Biol. 2002, 323, 387–406. [Google Scholar] [CrossRef]
- Shulman-Peleg, A.; Nussinov, R.; Wolfson, H.J. SiteEngines: Recognition and comparison of binding sites and protein-protein interfaces. Nucleic Acids Res. 2005, 33, W337–W341. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Skolnick, J. APoc: Large-scale identification of similar protein pockets. Bioinformatics 2013, 29, 597–604. [Google Scholar] [CrossRef] [Green Version]
- Xie, L.; Bourne, P.E. Detecting evolutionary relationships across existing fold space, using sequence order-independent profile-profile alignments. Proc. Natl. Acad. Sci. USA 2008, 105, 5441–5446. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.S.; Im, W. G-LoSA for prediction of protein-ligand binding sites and structures. Methods Mol. Biol. 2017, 1611, 97–108. [Google Scholar] [CrossRef]
- Fu, D.Y.; Meiler, J. RosettaLigandEnsemble: A small-molecule ensemble-driven docking approach. ACS Omega 2018, 3, 3655–3664. [Google Scholar] [CrossRef] [Green Version]
- Malhotra, S.; Karanicolas, J. When does chemical elaboration induce a ligand to change its binding mode? J. Med. Chem. 2017, 60, 128–145. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, S.; Cordomí, A.; Ramon, E.; Garriga, P. Beyond spectral tuning: Human cone visual pigments adopt different transient conformations for chromophore regeneration. Cell. Mol. Life Sci. CMLS 2016, 73, 1253–1263. [Google Scholar] [CrossRef]
- Standfuss, J.; Edwards, P.C.; D’Antona, A.; Fransen, M.; Xie, G.; Oprian, D.D.; Schertler, G.F. The structural basis of agonist-induced activation in constitutively active rhodopsin. Nature 2011, 471, 656–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armstrong, J.F.; Faccenda, E.; Harding, S.D.; Pawson, A.J.; Southan, C.; Sharman, J.L.; Campo, B.; Cavanagh, D.R.; Alexander, S.P.H.; Davenport, A.P.; et al. The IUPHAR/BPS Guide to PHARMACOLOGY in 2020: Extending immunopharmacology content and introducing the IUPHAR/MMV Guide to MALARIA PHARMACOLOGY. Nucleic Acids Res. 2020, 48, D1006–D1021. [Google Scholar] [CrossRef] [PubMed]
- Gilson, M.K.; Liu, T.; Baitaluk, M.; Nicola, G.; Hwang, L.; Chong, J. BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology. Nucleic Acids Res. 2016, 44, D1045–D1053. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.K.B.; Zhang, H.; Yang, J.; Brender, J.R.; Hur, J.; Ozgur, A.; Zhang, Y. GLASS: A comprehensive database for experimentally validated GPCR-ligand associations. Bioinformatics 2015, 31, 3035–3042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, T.L.; Williams, N.; Misleh, C.; Li, W.W. MEME: Discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res. 2006, 34, 369–373. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME Suite: Tools for motif discovery and searching. Nucleic Acids Res. 2009, 37 (Suppl. S2), 202–208. [Google Scholar] [CrossRef]
- Bailey, T.L.; Johnson, J.; Grant, C.E.; Noble, W.S. The MEME Suite. Nucleic Acids Res. 2015, 43, W39–W49. [Google Scholar] [CrossRef] [Green Version]
- Ye, Y.; Godzik, A. Flexible structure alignment by chaining aligned fragment pairs allowing twists. Bioinformatics 2003, 19 (Suppl. S2), ii246–ii255. [Google Scholar] [CrossRef] [Green Version]
- Ye, Y.; Godzik, A. FATCAT: A web server for flexible structure comparison and structure similarity searching. Nucleic Acids Res. 2004, 32, 582–585. [Google Scholar] [CrossRef] [Green Version]
- Prlić, A.; Bliven, S.; Rose, P.W.; Bluhm, W.F.; Bizon, C.; Godzik, A.; Bourne, P.E. Pre-calculated protein structure alignments at the RCSB PDB website. Bioinformatics 2010, 26, 2983–2985. [Google Scholar] [CrossRef]
- Huang, B. Metapocket: A meta approach to improve protein ligand binding site prediction. OMICS J. Integr. Biol. 2009, 13, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Schroeder, M. LIGSITEcsc: Predicting ligand binding sites using the Connolly surface and degree of conservation. BMC Struct. Biol. 2006, 6, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brady, G.P., Jr.; Stouten, P.F. Fast prediction and visualization of protein binding pockets with PASS. J. Comput.-Aided Mol. Des. 2000, 14, 383–401. [Google Scholar] [CrossRef]
- Laurie, A.T.; Jackson, R.M. Q-SiteFinder: An energy-based method for the prediction of protein-ligand binding sites. Bioinformatics 2005, 21, 1908–1916. [Google Scholar] [CrossRef]
- Laskowski, R.A. SURFNET: A program for visualizing molecular surfaces, cavities, and intermolecular interactions. J. Mol. Graph. 1995, 13, 323–330. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2009, 31, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Likova, E.; Petkov, P.; Ilieva, N.; Litov, L. The PyMOL Molecular Graphics System, Version 2.0; Schrodinger, LLC: New York, NY, USA, 2015. [Google Scholar]
- Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Modeling 2011, 51, 2778–2786. [Google Scholar] [CrossRef]
- Bravi, G.; Gancia, E.; Mascagni, P.; Pegna, M.; Todeschini, R.; Zaliani, A. MS-WHIM, new 3D theoretical descriptors derived from molecular surface properties: A comparative 3D QSAR study in a series of steroids. J. Comput.-Aided Mol. Des. 1997, 11, 79–92. [Google Scholar] [CrossRef]
- Zaliani, A.; Gancia, E. MS-WHIM scores for amino acids: A new 3D-description for peptide QSAR and QSPR studies. J. Chem. Inf. Comput. Sci. 1999, 39, 525–533. [Google Scholar] [CrossRef]
- Osorio, D.; Rondón-Villarreal, P.; Torres, R. Peptides: A package for data mining of antimicrobial peptides. Small 2015, 12, 44–444. [Google Scholar] [CrossRef]
- Jurrus, E.; Engel, D.; Star, K.; Monson, K.; Brandi, J.; Felberg, L.E.; Brookes, D.H.; Wilson, L.; Chen, J.; Liles, K.; et al. Improvements to the APBS biomolecular solvation software suite. Protein Sci. 2018, 27, 112–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basith, S.; Cui, M.; Macalino, S.J.; Park, J.; Clavio, N.A.; Kang, S.; Choi, S. Exploring G protein-coupled receptors (GPCRs) ligand space via cheminformatics approaches: Impact on rational drug design. Front. Pharmacol. 2018, 9, 128. [Google Scholar] [CrossRef] [PubMed]
Ligand | Region | UniProt ID | Family | Motif & E-Value |
---|---|---|---|---|
NKOP | Full | P43220 | B | QHQWD 4.20 × 10−2 |
Q13255 | C | |||
XLWJ | N−terminal | Q03431, P43220 | B | GHVYRKCDANGSW 5.50 × 10−2 |
Q9UBS5 | C | |||
I2 | Q6W5P4, P21728, P16473 | A | DRYHAITYPM 7.60 × 10−2 | |
O75899 | C | |||
H7 | Q6W5P4, P21728, P16473 | A | NSALNPIIYC 5.10 × 10−2 | |
P43220, Q03431 | B | |||
YKMS | C−terminal | P14416, P35462, P21917 | A | EFRKAFLKILRC 2.10 × 10−4 |
P43220 | B |
Ligand | GPCR UniProt ID and IUPHAR Class | PDB ID and Chain ID | RMSD (Å) | Sequence Similarity (%) | ||
---|---|---|---|---|---|---|
Flex | Rigid | Flex | Rigid | |||
AJLF | P16473.A, P43220.B | 3G04.C, 7LCK.R | 2.92 | 4.87 | 19 | 17 |
DTZD | P43220.B, Q14831.C | 7LCK.R, 3MQ4.A | 3.63 | 10.53 | 20 | 16 |
P43220.B, P21728.A | 7LCK.R, 7LJC.R | 3.19 | 3.19 | 33 | 33 | |
Q14831.C, P21728.A | 3MQ4.A, 7LJC.R | 3.88 | 10.72 | 19 | 15 | |
CLQV | P21453.A, P43220.B | 3V2W.A, 7LCK.R | 2.84 | 4.94 | 27 | 21 |
P21453.A, Q14833.C | 3V2W.A, 7E9H.A | 3.99 | 4.51 | 24 | 25 | |
Q14833.C, P43220.B | 7E9H.A, 7LCK.R | 4.37 | 6.44 | 24 | 24 | |
IKSH | P16473.A, Q03431.B | 3G04.C, 6FJ3.A | 2.98 | 4.66 | 18 | 22 |
NKOP | P43220.B, Q13255.C | 7LCK.R, 3KS9.A | 4.47 | 8.08 | 18 | 17 |
USZP | P16473.A, P43220.B | 3G04.C, 7LCK.R | 2.92 | 4.87 | 19 | 17 |
P16473.A, P41594.C | 3G04.C, 6N52.A | 3.06 | 6.23 | 15 | 18 | |
P43220.B, P41594.C | 7LCK.R, 6N52.A | 3.83 | 9.67 | 25 | 20 | |
XLWJ | P16473.A, P43220.B | 3G04.C, 7LCK.R | 2.92 | 4.87 | 19 | 17 |
P16473.A, Q03431.B | 3G04.C, 6FJ3.A | 2.98 | 4.66 | 18 | 22 | |
P16473.A, P21728.A | 3G04.C, 7LJC.R | 3.81 | 3.81 | 23 | 23 | |
P43220.B, Q03431.B | 7LCK.R, 6FJ3.A | 2.53 | 3.85 | 45 | 50 | |
P43220.B, P21728.A | 7LCK.R, 7LJC.R | 3.19 | 3.19 | 33 | 33 | |
Q03431.B, P21728.A | 6FJ3.A, 7LJC.R | 3.86 | 3.03 | 27 | 30 | |
O75899.C, P16473.A | 6W2X.B, 3G04.C | 3.16 | 6.04 | 16 | 22 | |
O75899.C, P43220.B | 6W2X.B, 7LCK.R | 2.92 | 5.69 | 24 | 22 | |
O75899.C, Q03431.B | 6W2X.B, 6FJ3.A | 3.20 | 4.60 | 24 | 22 | |
O75899.C, P21728.A | 6W2X.B, 7LJC.R | 3.03 | 3.15 | 25 | 26 | |
YKMS | P35462.A, Q14416.C | 3PBL.A, 5KZN.A | 5.38 | 11.06 | 17 | 17 |
P35462.A, P21917.A | 3PBL.A, 5WIV.A | 1.96 | 3.95 | 52 | 53 | |
P35462.A, P14416.A | 3PBL.A, 6CM4.A | 2.15 | 9.63 | 88 | 64 | |
P35462.A, P43220.B | 3PBL.A, 7LCK.R | 6.28 | 4.44 | 17 | 21 | |
Q14416.C, P21917.A | 5KZN.A, 5WIV.A | 5.42 | 6.76 | 19 | 19 | |
Q14416.C, P14416.A | 5KZN.A, 6CM4.A | 5.23 | 14.95 | 17 | 25 | |
Q14416.C, P43220.B | 5KZN.A, 7LCK.R | 5.64 | 9.41 | 15 | 23 | |
P21917.A, P14416.A | 5WIV.A, 6CM4.A | 2.72 | 8.72 | 52 | 50 | |
P21917.A, P43220.B | 5WIV.A, 7LCK.R | 3.01 | 4.88 | 21 | 23 | |
P14416.A, P43220.B | 6CM4.A, 7LCK.R | 3.49 | 4.44 | 32 | 31 |
Ligand | Min | Mean | STD | Max |
---|---|---|---|---|
Control Data | 0.114 | 0.487 | 0.206 | 0.901 |
AJLF | 0.219 | 0.287 | 0.0374 | 0.372 |
CLQV | 0.212 | 0.326 | 0.0554 | 0.528 |
DTZD | 0.218 | 0.315 | 0.0498 | 0.466 |
IKSH | 0.228 | 0.291 | 0.0309 | 0.349 |
NKOP | 0.221 | 0.295 | 0.0375 | 0.369 |
USZP | 0.210 | 0.295 | 0.0557 | 0.500 |
XLWJ | 0.218 | 0.318 | 0.0570 | 0.508 |
YKMS | 0.209 | 0.334 | 0.0802 | 0.733 |
Ligand | Correlation | p-Value |
---|---|---|
XLWJ | −0.2776 | 1.29 × 10−7 |
AJLF | −0.7213 | 4.73 × 10−5 |
NKOP | −0.4732 | 6.23 × 10−3 |
IKSH | −0.3501 | 3.92 × 10−2 |
DTZD | −0.1947 | 4.55 × 10−2 |
USZP | −0.2056 | 7.68 × 10−2 |
CLQV | 0.1162 | 0.238 |
YKMS | 0.0318 | 0.609 |
Ligand | Correlation | p-Value |
---|---|---|
YKMS | −0.1936 | 0.0016 |
CLQV | −0.2872 | 0.0029 |
NKOP | −0.4035 | 0.0219 |
USZP | −0.2411 | 0.0372 |
AJLF | −0.1964 | 0.3466 |
XLWJ | −0.0314 | 0.5588 |
DTZD | −0.0306 | 0.7552 |
IKSH | 0.0263 | 0.8805 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dankwah, K.O.; Mohl, J.E.; Begum, K.; Leung, M.-Y. What Makes GPCRs from Different Families Bind to the Same Ligand? Biomolecules 2022, 12, 863. https://doi.org/10.3390/biom12070863
Dankwah KO, Mohl JE, Begum K, Leung M-Y. What Makes GPCRs from Different Families Bind to the Same Ligand? Biomolecules. 2022; 12(7):863. https://doi.org/10.3390/biom12070863
Chicago/Turabian StyleDankwah, Kwabena Owusu, Jonathon E. Mohl, Khodeza Begum, and Ming-Ying Leung. 2022. "What Makes GPCRs from Different Families Bind to the Same Ligand?" Biomolecules 12, no. 7: 863. https://doi.org/10.3390/biom12070863
APA StyleDankwah, K. O., Mohl, J. E., Begum, K., & Leung, M. -Y. (2022). What Makes GPCRs from Different Families Bind to the Same Ligand? Biomolecules, 12(7), 863. https://doi.org/10.3390/biom12070863