Spectrum of Rare and Common Genetic Variants in Arrhythmogenic Cardiomyopathy Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Study Population
2.3. DNA Sequencing and Primary Bioinformatic Analysis
2.4. Variant Filtering and Classification
2.5. Statistical Analyses
3. Results
3.1. Clinical Characteristics of the Cohort
3.2. Rare genetic Variants
3.2.1. Rare Genetic Variants in ACM Genes
3.2.2. Rare Genetic Variants in Non-ACM Genes
3.3. Genotype-Phenotype Correlation between Common Genetic Variants and Patient Characteristics
3.4. An Increased Arrhythmic Risk Is Associated with Selected Common Genetic Variants
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACM | arrhythmogenic cardiomyopathy |
ACMG/AMP | American College of Medical Genetics and Genomics/Association for Molecular Pathology |
AF | atrial fibrillation |
CMR | cardiac magnetic resonance |
DCM | dilated cardiomyopathy |
DES | desmin |
DSC2 | desmocollin-2 |
DSG2 | desmoglein-2 |
DSP | desmoplakin |
EAM | electro-anatomical mapping |
ECG | electrocardiogram |
ECHO | echocardiography |
EDV | end-diastolic volume |
EPS | electrophysiological study |
HCM | hypertrophic cardiomyopathy |
HF | heart failure |
ICD | implantable cardioverter defibrillator |
JUP | plakoglobin |
LV | left ventricle |
LVNC | left ventricular noncompaction cardiomyopathy |
MAE | major arrhythmic event |
NGS | next generation sequencing |
NSVT | non-sustained ventricular tachycardia |
PKP2 | plakophilin-2 |
PLN | phospholamban |
PVC | premature ventricular contraction |
RV | right ventricle |
SCD | sudden cardiac death |
SVT | sustained ventricular tachycardia |
TCF | task force criteria |
TMEM43 | transmembrane protein 43 |
VF | ventricular fibrillation |
VUS | variant of uncertain significance |
References
- Basso, C.; Corrado, D.; Marcus, F.I.; Nava, A.; Thiene, G. Arrhythmogenic Right Ventricular Cardiomyopathy. Lancet 2009, 373, 1289–1300. [Google Scholar] [CrossRef]
- Marcus, F.I.; McKenna, W.J.; Sherrill, D.; Basso, C.; Bauce, B.; Bluemke, D.A.; Calkins, H.; Corrado, D.; Cox, M.G.P.J.; Daubert, J.P.; et al. Diagnosis of Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia: Proposed Modification of the Task Force Criteria. Eur. Heart J. 2010, 31, 806–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stadiotti, I.; Piacentini, L.; Vavassori, C.; Chiesa, M.; Scopece, A.; Guarino, A.; Micheli, B.; Polvani, G.; Colombo, G.I.; Pompilio, G.; et al. Human Cardiac Mesenchymal Stromal Cells From Right and Left Ventricles Display Differences in Number, Function, and Transcriptomic Profile. Front. Physiol. 2020, 11, 604. [Google Scholar] [CrossRef] [PubMed]
- Casella, M.; Gasperetti, A.; Sicuso, R.; Conte, E.; Catto, V.; Sommariva, E.; Bergonti, M.; Vettor, G.; Rizzo, S.; Pompilio, G.; et al. Characteristics of Patients With Arrhythmogenic Left Ventricular Cardiomyopathy: Combining Genetic and Histopathologic Findings. Circ. Arrhythm. Electrophysiol. 2020, 13, e009005. [Google Scholar] [CrossRef]
- Corrado, D.; Perazzolo Marra, M.; Zorzi, A.; Beffagna, G.; Cipriani, A.; Lazzari, M.D.; Migliore, F.; Pilichou, K.; Rampazzo, A.; Rigato, I.; et al. Diagnosis of Arrhythmogenic Cardiomyopathy: The Padua Criteria. Int. J. Cardiol. 2020, 319, 106–114. [Google Scholar] [CrossRef]
- Pinamonti, B.; Brun, F.; Mestroni, L.; Sinagra, G. Arrhythmogenic Right Ventricular Cardiomyopathy: From Genetics to Diagnostic and Therapeutic Challenges. World J. Cardiol. 2014, 6, 1234–1244. [Google Scholar] [CrossRef] [PubMed]
- James, C.A.; Jongbloed, J.D.H.; Hershberger, R.E.; Morales, A.; Judge, D.P.; Syrris, P.; Pilichou, K.; Domingo, A.M.; Murray, B.; Cadrin-Tourigny, J.; et al. International Evidence Based Reappraisal of Genes Associated With Arrhythmogenic Right Ventricular Cardiomyopathy Using the Clinical Genome Resource Framework. Circ. Genomic Precis. Med. 2021, 14, e003273. [Google Scholar] [CrossRef] [PubMed]
- Protonotarios, N.; Tsatsopoulou, A. Naxos Disease and Carvajal Syndrome: Cardiocutaneous Disorders That Highlight the Pathogenesis and Broaden the Spectrum of Arrhythmogenic Right Ventricular Cardiomyopathy. Cardiovasc. Pathol. 2004, 13, 185–194. [Google Scholar] [CrossRef]
- Gerull, B.; Kirchner, F.; Chong, J.X.; Tagoe, J.; Chandrasekharan, K.; Strohm, O.; Waggoner, D.; Ober, C.; Duff, H.J. Homozygous Founder Mutation in Desmocollin-2 (DSC2) Causes Arrhythmogenic Cardiomyopathy in the Hutterite Population. Circ. Cardiovasc. Genet. 2013, 6, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Groeneweg, J.A.; Bhonsale, A.; James, C.A.; te Riele, A.S.; Dooijes, D.; Tichnell, C.; Murray, B.; Wiesfeld, A.C.P.; Sawant, A.C.; Kassamali, B.; et al. Clinical Presentation, Long-Term Follow-Up, and Outcomes of 1001 Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy Patients and Family Members. Circ. Cardiovasc. Genet. 2015, 8, 437–446. [Google Scholar] [CrossRef]
- Xu, T.; Yang, Z.; Vatta, M.; Rampazzo, A.; Beffagna, G.; Pilichou, K.; Pillichou, K.; Scherer, S.E.; Saffitz, J.; Kravitz, J.; et al. Compound and Digenic Heterozygosity Contributes to Arrhythmogenic Right Ventricular Cardiomyopathy. J. Am. Coll. Cardiol. 2010, 55, 587–597. [Google Scholar] [CrossRef] [Green Version]
- König, E.; Volpato, C.B.; Motta, B.M.; Blankenburg, H.; Picard, A.; Pramstaller, P.; Casella, M.; Rauhe, W.; Pompilio, G.; Meraviglia, V.; et al. Exploring Digenic Inheritance in Arrhythmogenic Cardiomyopathy. BMC Med. Genet. 2017, 18, 145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.; Huang, J.; Zhao, T.; He, S.; Huang, Z.; Chen, X.; Fei, H.; Luo, H.; Liu, H.; Wu, S.; et al. Compound and Heterozygous Mutations of DSG2 Identified by Whole Exome Sequencing in Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia with Ventricular Tachycardia. J. Electrocardiol. 2018, 51, 837–843. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Huang, J.; He, S.; Feng, R.; Zhong, Z.; Liu, Y.; Ye, W.; Li, X.; Liao, H.; Fei, H.; et al. Case Report of Familial Sudden Cardiac Death Caused by a DSG2 p.F531C Mutation as Genetic Background When Carrying with Heterozygous KCNE5 p.D92E/E93X Mutation. BMC Med. Genet. 2018, 19, 148. [Google Scholar] [CrossRef] [PubMed]
- Hermida, A.; Fressart, V.; Hidden-Lucet, F.; Donal, E.; Probst, V.; Deharo, J.-C.; Chevalier, P.; Klug, D.; Mansencal, N.; Delacretaz, E.; et al. High Risk of Heart Failure Associated with Desmoglein-2 Mutations Compared to Plakophilin-2 Mutations in Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia. Eur. J. Heart Fail. 2019, 21, 792–800. [Google Scholar] [CrossRef] [PubMed]
- Bhonsale, A.; Groeneweg, J.A.; James, C.A.; Dooijes, D.; Tichnell, C.; Jongbloed, J.D.H.; Murray, B.; te Riele, A.S.J.M.; van den Berg, M.P.; Bikker, H.; et al. Impact of Genotype on Clinical Course in Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy-Associated Mutation Carriers. Eur. Heart J. 2015, 36, 847–855. [Google Scholar] [CrossRef]
- Svensson, A.; Platonov, P.G.; Haugaa, K.H.; Zareba, W.; Jensen, H.K.; Bundgaard, H.; Gilljam, T.; Madsen, T.; Hansen, J.; Dejgaard, L.A.; et al. Genetic Variant Score and Arrhythmogenic Right Ventricular Cardiomyopathy Phenotype in Plakophilin-2 Mutation Carriers. Cardiology 2021, 146, 763–771. [Google Scholar] [CrossRef]
- Christensen, A.H.; Platonov, P.G.; Jensen, H.K.; Chivulescu, M.; Svensson, A.; Dahlberg, P.; Madsen, T.; Frederiksen, T.C.; Heliö, T.; Lie, Ø.H.; et al. Genotype–Phenotype Correlation in Arrhythmogenic Right Ventricular Cardiomyopathy—Risk of Arrhythmias and Heart Failure. J. Med. Genet. 2021. [Google Scholar] [CrossRef]
- Milting, H.; Lukas, N.; Klauke, B.; Körfer, R.; Perrot, A.; Osterziel, K.-J.; Vogt, J.; Peters, S.; Thieleczek, R.; Varsányi, M. Composite Polymorphisms in the Ryanodine Receptor 2 Gene Associated with Arrhythmogenic Right Ventricular Cardiomyopathy. Cardiovasc. Res. 2006, 71, 496–505. [Google Scholar] [CrossRef]
- Whiffin, N.; Minikel, E.; Walsh, R.; O’Donnell-Luria, A.H.; Karczewski, K.; Ing, A.Y.; Barton, P.J.R.; Funke, B.; Cook, S.A.; MacArthur, D.; et al. Using High-Resolution Variant Frequencies to Empower Clinical Genome Interpretation. Genet. Med. Off. J. Am. Coll. Med. Genet. 2017, 19, 1151–1158. [Google Scholar] [CrossRef] [Green Version]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casella, M.; Pizzamiglio, F.; Dello Russo, A.; Carbucicchio, C.; Al-Mohani, G.; Russo, E.; Notarstefano, P.; Pieroni, M.; D’Amati, G.; Sommariva, E.; et al. Feasibility of Combined Unipolar and Bipolar Voltage Maps to Improve Sensitivity of Endomyocardial Biopsy. Circ. Arrhythm. Electrophysiol. 2015, 8, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Casella, M.; Dello Russo, A.; Vettor, G.; Lumia, G.; Catto, V.; Sommariva, E.; Ribatti, V.; Biagioli, V.; Tundo, F.; Carbucicchio, C.; et al. Electroanatomical Mapping Systems and Intracardiac Echo Integration for Guided Endomyocardial Biopsy. Expert Rev. Med. Devices 2017, 14, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Casella, M.; Dello Russo, A.; Bergonti, M.; Catto, V.; Conte, E.; Sommariva, E.; Gasperetti, A.; Vettor, G.; Tundo, F.; Sicuso, R.; et al. Diagnostic Yield of Electroanatomic Voltage Mapping in Guiding Endomyocardial Biopsies. Circulation 2020, 142, 1249–1260. [Google Scholar] [CrossRef] [PubMed]
- Sommariva, E.; Pappone, C.; Martinelli Boneschi, F.; Di Resta, C.; Rosaria Carbone, M.; Salvi, E.; Vergara, P.; Sala, S.; Cusi, D.; Ferrari, M.; et al. Genetics Can Contribute to the Prognosis of Brugada Syndrome: A Pilot Model for Risk Stratification. Eur. J. Hum. Genet. 2013, 21, 911–917. [Google Scholar] [CrossRef]
- Fressart, V.; Duthoit, G.; Donal, E.; Probst, V.; Deharo, J.-C.; Chevalier, P.; Klug, D.; Dubourg, O.; Delacretaz, E.; Cosnay, P.; et al. Desmosomal Gene Analysis in Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy: Spectrum of Mutations and Clinical Impact in Practice. Eur. Eur. Pacing Arrhythm. Card. Electrophysiol. J. Work. Groups Card. Pacing Arrhythm. Card. Cell. Electrophysiol. Eur. Soc. Cardiol. 2010, 12, 861–868. [Google Scholar] [CrossRef] [PubMed]
- Corrado, D.; Basso, C.; Pilichou, K.; Thiene, G. Molecular Biology and Clinical Management of Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia. Heart Br. Card. Soc. 2011, 97, 530–539. [Google Scholar] [CrossRef] [PubMed]
- Bosman, L.P.; Te Riele, A.S.J.M. Arrhythmogenic Right Ventricular Cardiomyopathy: A Focused Update on Diagnosis and Risk Stratification. Heart Br. Card. Soc. 2022, 108, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Xing, Y.; Li, H. Heterozygous Desmin Gene (DES) Mutation Contributes to Familial Dilated Cardiomyopathy. J. Int. Med. Res. 2021, 49, 03000605211006598. [Google Scholar] [CrossRef]
- Yu, R.; Liu, L.; Chen, C.; Shen, J.-M. Exome Sequencing Identifies a Novel DES Mutation (R227C) in a Chinese Dilated Cardiomyopathy Family. Cardiology 2017, 137, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Kulikova, O.; Brodehl, A.; Kiseleva, A.; Myasnikov, R.; Meshkov, A.; Stanasiuk, C.; Gärtner, A.; Divashuk, M.; Sotnikova, E.; Koretskiy, S.; et al. The Desmin (DES) Mutation p.A337P Is Associated with Left-Ventricular Non-Compaction Cardiomyopathy. Genes 2021, 12, 121. [Google Scholar] [CrossRef] [PubMed]
- Simpson, M.A.; Mansour, S.; Ahnood, D.; Kalidas, K.; Patton, M.A.; McKenna, W.J.; Behr, E.R.; Crosby, A.H. Homozygous Mutation of Desmocollin-2 in Arrhythmogenic Right Ventricular Cardiomyopathy with Mild Palmoplantar Keratoderma and Woolly Hair. Cardiology 2009, 113, 28–34. [Google Scholar] [CrossRef]
- Lorenzon, A.; Pilichou, K.; Rigato, I.; Vazza, G.; De Bortoli, M.; Calore, M.; Occhi, G.; Carturan, E.; Lazzarini, E.; Cason, M.; et al. Homozygous Desmocollin-2 Mutations and Arrhythmogenic Cardiomyopathy. Am. J. Cardiol. 2015, 116, 1245–1251. [Google Scholar] [CrossRef] [PubMed]
- Au, A.; Griffiths, L.R.; Irene, L.; Kooi, C.W.; Wei, L.K. The Impact of APOA5, APOB, APOC3 and ABCA1 Gene Polymorphisms on Ischemic Stroke: Evidence from a Meta-Analysis. Atherosclerosis 2017, 265, 60–70. [Google Scholar] [CrossRef] [Green Version]
- Benn, M. Apolipoprotein B Levels, APOB Alleles, and Risk of Ischemic Cardiovascular Disease in the General Population, a Review. Atherosclerosis 2009, 206, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.T.; Lee, K.; Abul-Husn, N.S.; Amendola, L.M.; Brothers, K.; Chung, W.K.; Gollob, M.H.; Gordon, A.S.; Harrison, S.M.; Hershberger, R.E.; et al. ACMG SF v3.1 List for Reporting of Secondary Findings in Clinical Exome and Genome Sequencing: A Policy Statement of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2022. [Google Scholar] [CrossRef] [PubMed]
- Borén, J.; White, A.; Wettesten, M.; Scott, J.; Graham, L.; Olofsson, S.-O. The Molecular Mechanism for the Assembly and Secretion of ApoB-100-Containing Lipoproteins. Prog. Lipid Res. 1991, 30, 205–218. [Google Scholar] [CrossRef]
- Sommariva, E.; Stadiotti, I.; Casella, M.; Catto, V.; Dello Russo, A.; Carbucicchio, C.; Arnaboldi, L.; De Metrio, S.; Milano, G.; Scopece, A.; et al. Oxidized LDL-Dependent Pathway as New Pathogenic Trigger in Arrhythmogenic Cardiomyopathy. EMBO Mol. Med. 2021, 13, e14365. [Google Scholar] [CrossRef] [PubMed]
- Bienengraeber, M.; Olson, T.M.; Selivanov, V.A.; Kathmann, E.C.; O’Cochlain, F.; Gao, F.; Karger, A.B.; Ballew, J.D.; Hodgson, D.M.; Zingman, L.V.; et al. ABCC9 Mutations Identified in Human Dilated Cardiomyopathy Disrupt Catalytic KATP Channel Gating. Nat. Genet. 2004, 36, 382–387. [Google Scholar] [CrossRef] [Green Version]
- Olson, T.M.; Alekseev, A.E.; Moreau, C.; Liu, X.K.; Zingman, L.V.; Miki, T.; Seino, S.; Asirvatham, S.J.; Jahangir, A.; Terzic, A. KATP Channel Mutation Confers Risk for Vein of Marshall Adrenergic Atrial Fibrillation. Nat. Clin. Pract. Cardiovasc. Med. 2007, 4, 110–116. [Google Scholar] [CrossRef] [Green Version]
- Luxán, G.; Casanova, J.C.; Martínez-Poveda, B.; Prados, B.; D’Amato, G.; MacGrogan, D.; Gonzalez-Rajal, A.; Dobarro, D.; Torroja, C.; Martinez, F.; et al. Mutations in the NOTCH Pathway Regulator MIB1 Cause Left Ventricular Noncompaction Cardiomyopathy. Nat. Med. 2013, 19, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Balla, C.; De Raffele, M.; Deserio, M.A.; Sanchini, M.; Farnè, M.; Trabanelli, C.; Ragni, L.; Biffi, M.; Ferlini, A.; Rapezzi, C.; et al. Left Ventricular Myocardial Noncompaction with Advanced Atrioventricular Conduction Disorder and Ventricular Arrhythmias in a Young Patient: Role of MIB1 Gene. J. Cardiovasc. Dev. Dis. 2021, 8, 109. [Google Scholar] [CrossRef] [PubMed]
- Chopra, N.; Knollmann, B.C. Genetics of Sudden Cardiac Death Syndromes. Curr. Opin. Cardiol. 2011, 26, 196–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scrocco, C.; Bezzina, C.R.; Ackerman, M.J.; Behr, E.R. Genetics and Genomics of Arrhythmic Risk: Current and Future Strategies to Prevent Sudden Cardiac Death. Nat. Rev. Cardiol. 2021, 18, 774–784. [Google Scholar] [CrossRef] [PubMed]
- Lippi, M.; Stadiotti, I.; Pompilio, G.; Sommariva, E. Human Cell Modeling for Cardiovascular Diseases. Int. J. Mol. Sci. 2020, 21, 6388. [Google Scholar] [CrossRef]
- Sommariva, E.; Stadiotti, I.; Perrucci, G.L.; Tondo, C.; Pompilio, G. Cell Models of Arrhythmogenic Cardiomyopathy: Advances and Opportunities. Dis. Model. Mech. 2017, 10, 823–835. [Google Scholar] [CrossRef] [Green Version]
- Bartos, D.C.; Anderson, J.B.; Bastiaenen, R.; Johnson, J.N.; Gollob, M.H.; Tester, D.J.; Burgess, D.E.; Homfray, T.; Behr, E.R.; Ackerman, M.J.; et al. A KCNQ1 Mutation Causes a High Penetrance for Familial Atrial Fibrillation. J. Cardiovasc. Electrophysiol. 2013, 24, 562–569. [Google Scholar] [CrossRef] [Green Version]
- Barbuti, A.; Baruscotti, M.; Difrancesco, D. The Pacemaker Current: From Basics to the Clinics. J. Cardiovasc. Electrophysiol. 2007, 18, 342–347. [Google Scholar] [CrossRef]
- Milanesi, R.; Baruscotti, M.; Gnecchi-Ruscone, T.; DiFrancesco, D. Familial Sinus Bradycardia Associated with a Mutation in the Cardiac Pacemaker Channel. N. Engl. J. Med. 2006, 354, 151–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marian, A.J.; Braunwald, E. Hypertrophic Cardiomyopathy. Circ. Res. 2017, 121, 749–770. [Google Scholar] [CrossRef]
- Ingles, J.; Goldstein, J.; Thaxton, C.; Caleshu, C.; Corty, E.W.; Crowley, S.B.; Dougherty, K.; Harrison, S.M.; McGlaughon, J.; Milko, L.V.; et al. Evaluating the Clinical Validity of Hypertrophic Cardiomyopathy Genes. Circ. Genomic Precis. Med. 2019, 12, e002460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carniel, E.; Taylor, M.R.G.; Sinagra, G.; Di Lenarda, A.; Ku, L.; Fain, P.R.; Boucek, M.M.; Cavanaugh, J.; Miocic, S.; Slavov, D.; et al. α-Myosin Heavy Chain. Circulation 2005, 112, 54–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.-H.; Wang, L.-L.; Tao, L.; Qi, B.; Wang, Y.; Guo, Y.-J.; Miao, L. Identification of MYH6 as the Potential Gene for Human Ischaemic Cardiomyopathy. J. Cell. Mol. Med. 2021, 25, 10736–10746. [Google Scholar] [CrossRef]
- Chen, S.N.; Czernuszewicz, G.; Tan, Y.; Lombardi, R.; Jin, J.; Willerson, J.T.; Marian, A.J. Human Molecular Genetic and Functional Studies Identify TRIM63, Encoding Muscle RING Finger Protein 1, as a Novel Gene for Human Hypertrophic Cardiomyopathy. Circ. Res. 2012, 111, 907–919. [Google Scholar] [CrossRef] [Green Version]
- Andreeva, S.; Chumakova, O.; Karelkina, E.; Lebedeva, V.; Lubimtseva, T.; Semenov, A.; Nikitin, A.; Speshilov, G.; Kozyreva, A.; Sokolnikova, P.; et al. Case Report: Two New Cases of Autosomal-Recessive Hypertrophic Cardiomyopathy Associated With TRIM63-Compound Heterozygous Variant. Front. Genet. 2022, 13, 743472. [Google Scholar] [CrossRef] [PubMed]
- Yokota, T.; McCourt, J.; Ma, F.; Ren, S.; Li, S.; Kim, T.-H.; Kurmangaliyev, Y.Z.; Nasiri, R.; Ahadian, S.; Nguyen, T.; et al. Type V Collagen in Scar Tissue Regulates the Size of Scar after Heart Injury. Cell 2020, 182, 545–562. [Google Scholar] [CrossRef]
- Sen, P.; Butler, M.G. Classic Ehlers-Danlos Syndrome in a Son and Father with a Heart Transplant Performed in the Father. J. Pediatr. Genet. 2019, 8, 69–72. [Google Scholar] [CrossRef]
- Gong, Z.; Wang, H.; Lin, Z. Glycine Substitution Mutation of COL5A1 in Classic Ehlers–Danlos Syndrome: A Case Report and Literature Review. Clin. Exp. Dermatol. 2021, 46, 987–989. [Google Scholar] [CrossRef]
- Hong, K.-W.; Shin, D.-J.; Lee, S.-H.; Son, N.-H.; Go, M.-J.; Lim, J.-E.; Shin, C.; Jang, Y.; Oh, B. Common Variants in RYR1 Are Associated with Left Ventricular Hypertrophy Assessed by Electrocardiogram. Eur. Heart J. 2012, 33, 1250–1256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brun, F.; Gigli, M.; Graw, S.L.; Judge, D.P.; Merlo, M.; Murray, B.; Calkins, H.; Sinagra, G.; Taylor, M.R.; Mestroni, L.; et al. FLNC Truncations Cause Arrhythmogenic Right Ventricular Cardiomyopathy. J. Med. Genet. 2020, 57, 254–257. [Google Scholar] [CrossRef] [PubMed]
Categories | Parameters | n | % |
---|---|---|---|
Sex | male sex | 66/82 | 80.5% |
Family history | family history ACM | 8/82 | 9.8% |
family history SCD | 12/82 | 14.6% | |
family history CMP | 17/82 | 20.7% | |
Lifestyle | smoke | 16/82 | 19.5% |
sport | 31/82 | 37.8% | |
sport endurance | 9/82 | 11.0% | |
Comorbidities | hypertension | 17/82 | 20.7% |
diabetes | 2/82 | 2.4% | |
obesity | 4/82 | 4.9% | |
CAD | 8/82 | 9.8% | |
autoimmune disease | 8/82 | 9.8% | |
Biopsy | ACM features | 20/55 | 36.4% |
ACM + inflammatory infiltrates | 16/55 | 29.1% | |
Therapy | ACE-I/ARB | 29/82 | 35.4% |
β-blockers | 34/82 | 41.5% | |
1C antiarrhythmics | 5/82 | 6.1% | |
amiodarone | 22/82 | 26.8% | |
Medical interventions | trans-catheter ablation | 24/82 | 29.3% |
ICD implant | 52/82 | 63.4% | |
Arrhythmias | MAE | 35/82 | 42.7% |
NSVT + MAE | 50/82 | 61.0% | |
PVCs | 39/82 | 47.6% | |
atrial arrhythmias | 15/82 | 18.3% | |
events in the follow-up (NSVT + MAE) | 21/82 | 25.6% | |
ECG | ECG alterations | 64/82 | 78.0% |
epsilon wave | 4/82 | 4.9% | |
TWI V1–V3 | 39/82 | 47.6% | |
TWI V4–V6 | 28/82 | 34.1% | |
TWI V1–V6 | 11/82 | 13.4% | |
EAM | pathologic RV bipolar EAM | 30/54 | 55.5% |
pathologic RV unipolar EAM | 38/54 | 70.4% | |
pathologic LV bipolar EAM | 14/25 | 56% | |
pathologic LV unipolar EAM | 17/25 | 68% | |
CMR | exclusively RV disease | 18/71 | 25.5% |
exclusively LV disease | 13/71 | 18.3% | |
biventricular disease | 28/71 | 39.4%% | |
exclusively fibrosis | 11/71 | 15.5% | |
exclusively adipose infiltration | 6/71 | 8.5% | |
fibrosis + adipose infiltration | 32/71 | 45.1% |
Gene | Patient | Consequence | Genome Position | CDS Position | Protein Position | rs ID | Main Known Gene-Associated Diseases |
---|---|---|---|---|---|---|---|
APOB | s07 | stop gained | chr2:21232203 | c.7537C>T | p.R2513* | rs146538280 | hypercholesterolemia/cardiac ischemia |
MIB1 | s31 | stop gained | chr18:19345879 | c.376C>T | p.R126* | rs190657514 | LVNC |
DPP6 | s14 | splicing | chr7:154667815 | c.2078+5G>A | n.a. | idiopathic ventricularfibrillation | |
ABCC9 | s81 | splicing | chr12:22086715 | c.284+1G>A | n.a. | rs762907980 | DCM/AF |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lippi, M.; Chiesa, M.; Ascione, C.; Pedrazzini, M.; Mushtaq, S.; Rovina, D.; Riggio, D.; Di Blasio, A.M.; Biondi, M.L.; Pompilio, G.; et al. Spectrum of Rare and Common Genetic Variants in Arrhythmogenic Cardiomyopathy Patients. Biomolecules 2022, 12, 1043. https://doi.org/10.3390/biom12081043
Lippi M, Chiesa M, Ascione C, Pedrazzini M, Mushtaq S, Rovina D, Riggio D, Di Blasio AM, Biondi ML, Pompilio G, et al. Spectrum of Rare and Common Genetic Variants in Arrhythmogenic Cardiomyopathy Patients. Biomolecules. 2022; 12(8):1043. https://doi.org/10.3390/biom12081043
Chicago/Turabian StyleLippi, Melania, Mattia Chiesa, Ciro Ascione, Matteo Pedrazzini, Saima Mushtaq, Davide Rovina, Daniela Riggio, Anna Maria Di Blasio, Maria Luisa Biondi, Giulio Pompilio, and et al. 2022. "Spectrum of Rare and Common Genetic Variants in Arrhythmogenic Cardiomyopathy Patients" Biomolecules 12, no. 8: 1043. https://doi.org/10.3390/biom12081043
APA StyleLippi, M., Chiesa, M., Ascione, C., Pedrazzini, M., Mushtaq, S., Rovina, D., Riggio, D., Di Blasio, A. M., Biondi, M. L., Pompilio, G., Colombo, G. I., Casella, M., Novelli, V., & Sommariva, E. (2022). Spectrum of Rare and Common Genetic Variants in Arrhythmogenic Cardiomyopathy Patients. Biomolecules, 12(8), 1043. https://doi.org/10.3390/biom12081043