Ethanolic Fermentation of Rye Mashes: Factors Influencing the Formation of Aldehydes and Process Efficiency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
- -
- Rye grains of the Amilo cultivar (Danko Plant Breeding Ltd., Choryń, Poland).
- -
- Enzyme preparations (Novozymes A/S, Bagsværd, Denmark): Termamyl SC (α-amylase) for starch liquefaction at a dose of 0.13 mL per 1 kg of starch; SAN Extra (glucan 1,4-α-glucosidase) for starch saccharification at a dose of 0.6 mL per 1 kg of starch; Viscoferm® (a multienzyme complex containing non-starch-degrading enzymes) at a dose of 0.15 mL per 1 kg of raw material; Neutrase (protease) at a dose of 0.15 mL per 1 kg of raw material.
- -
- Dry distillery yeast strains (Saccharomyces cerevisiae), all at a dose of 0.5 g d.m./L of mash: DistilaMax HT (Lallemand Inc., Montréal, QC, Canada), which is thermotolerant and a low producer of congeners, recommended for use in the production of vodka, neutral spirits, and light flavoured beverages; DistilaMax GW (Lallemand Inc., Canada), which is recommended for use in the production of American-style whiskies from various whole grains; Ethanol Red (Fermentis Division of S.I. Lesaffre, Marcq-en-Barœul, France), which is recommended for the production of industrial ethanol from starchy substrates.
2.2. Sweet Mash Preparation
- -
- The pressureless starch liberation (PLS) method. Milled rye grain was mixed with tap water at a ratio of 3.5 L water per 1 kg of milled grain in a vessel placed in a water bath and equipped with a laboratory stirrer and thermometer. The mixture was continually stirred and heated to 50 °C. A liquefying Termamyl SC α-amylase preparation and a viscosity reducing Viscoferm® preparation were added. The mixture was heated to 90 °C with continuous stirring. It was kept for 60 min at this temperature, then cooled to approximately 65 °C, digested with a saccharifying SAN Extra preparation and supportive Neutrase preparation and kept for 30 min at 65–50 °C. The mash was then cooled to a temperature of 30 °C (optimal for yeast inoculation). Its pH was adjusted with a sulfuric acid solution (25% w/w ) to 4.5, 5.0, 5.5, and 6.0, and supplemented with an aqueous solution of (NH4)2HPO4 (0.2 g/L mash) as a nutrient for yeast.
- -
- The pressure-thermal method. Rye grain (5 kg) was placed in a tapered cylindrical steamer previously filled with 17.5 L of water heated to boiling point. The steamer was then closed. The raw material was steamed at 150 °C with a pressure of 0.4 MPa for 35 min, with periodical circulation of the content. The content of the steamer was subsequently transferred to a cylindrical steel mashing vessel equipped with a heating/cooling coil and a thermometer. The mashing process was the same as in the PLS method.
2.3. Fermentation of Mashes
2.4. Analytical Methods
- -
- Temperature settings: oven temperature 50 °C, loop temperature 60 °C, transfer line temperature 70 °C.
- -
- Timing settings: vial equilibration time 20 min, injection duration 0.7 min, GC cycle time 47 min.
- -
- Vial and loop settings: vial shaking 71 shakes/min, fill pressure 15 psi, vial pressurization gas helium.
2.5. Calculations
2.6. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition of Distillery Mashes before Fermentation
3.2. Characteristics of Distillery Mashes after Fermentation
3.3. Fermentation Efficiency
3.4. Aldehydes in the Sweet and Fermented Rye Mashes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Regulation (EU) 2019/787 of the European Parliament and of the Council. Off. J. Eur. Union 2019, 130, 1–54.
- Pielech-Przybylska, K.; Balcerek, M.; Nowak, A.; Wojtczak, M.; Czyżowska, A.; Dziekońska-Kubczak, U.; Patelski, P. The effect of different starch liberation and saccharification methods on the microbial contaminations of distillery mashes, fermentation efficiency, and spirits quality. Molecules 2017, 22, 1647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balcerek, M.; Pielech-Przybylska, K.; Strąk, E.; Patelski, P.; Dziekońska, U. Comparison of fermentation results and quality of the agricultural distillates obtained by application of commercial amylolytic preparations and cereal malts. Eur. Food Res. Technol. 2016, 242, 321–335. [Google Scholar] [CrossRef] [Green Version]
- Dymerski, T.; Gębicki, J.; Wardencki, W.; Namieśnik, J. Quality evaluation of agricultural distillates using an electronic nose. Sensors 2013, 13, 15954–15967. [Google Scholar] [CrossRef] [PubMed]
- Baert, J.J.; De Clippeleer, J.; Hughes, P.S.; De Cooman, L.; Aerts, G. On the origin of free and bound staling aldehydes in beer. J. Agric. Food Chem. 2012, 60, 11449–11472. [Google Scholar] [CrossRef] [PubMed]
- Balcerek, M. Carbonyl compounds in aronia spirits. Pol. J. Food Nutr. Sci. 2010, 60, 243–249. [Google Scholar]
- Pielech-Przybylska, K.; Balcerek, M. Alcoholic Beverages; Chapter 3: The Science of Beverages; Grumezescu, A.M., Holban, A.M., Eds.; Woodhead Publishing: Cambridge, UK, 2019; Volume 7, pp. 65–111. [Google Scholar]
- Hazelwood, L.A.; Daran, J.M.; van Maris, A.J.; Pronk, J.T.; Dickinson, J.R. The Ehrlich pathway for fusel alcohol production: A century of research on Saccharomyces cerevisiae metabolism. Appl. Environ. Microbiol. 2008, 74, 2259–2266. [Google Scholar] [CrossRef] [Green Version]
- Vuralhan, Z.; Morais, M.A.; Tai, S.L.; Piper, M.D.W.; Pronk, J.T. Identification and characterization of phenylpyruvate decarboxylase genes in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2003, 69, 4534–4541. [Google Scholar] [CrossRef] [Green Version]
- Walker, G.M. Metals in yeast fermentation processes. Adv Appl Microbiol. 2004, 54, 197–229. [Google Scholar] [CrossRef] [Green Version]
- Walker, G.M. Encyclopedia of Food Microbiology; Batt, C.A., Ed.; Academic Press: London, UK, 2014; pp. 769–777. [Google Scholar] [CrossRef]
- Kłosowski, G.; Mikulski, D.; Rolbiecka, A.; Czupryński, B. Changes in the concentration of carbonyl compounds during the alcoholic fermentation process carried out with Saccharomyces cerevisiae yeast. Pol. J. Microbiol. 2017, 66, 327–334. [Google Scholar] [CrossRef] [Green Version]
- Cheraiti, N.; Guezenec, S.; Salmon, J.-M. Very early acetaldehyde production by industrial Saccharomyces cerevisiae strains: A new intrinsic character. Appl. Microbiol. Biotechnol. 2010, 86, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Li, E.; de Orduña, R.M. Evaluation of acetaldehyde production and degradation potential of enological Saccharomyces and non-Saccharomyces yeast strains in a resting cell model system. J. Ind. Microbiol. Biotechnol. 2011, 38, 1391–1398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno-Arribas, M.V.; Polo, M.C. Wine Chemistry and Biochemistry; Springer: New York, NY, USA, 2009; p. 21. [Google Scholar]
- Kłosowski, G.; Mikulski, D. The effect of raw material contamination with mycotoxins on the composition of alcoholic fermentation volatile by-products in raw spirits. Bioresour. Technol. 2010, 101, 9723–9727. [Google Scholar] [CrossRef] [PubMed]
- Kokkinidou, S.; Peterson, D.G. Identification of compounds that contribute to trigeminal burn in aqueous ethanol solutions. Food Chem. 2016, 211, 757–762. [Google Scholar] [CrossRef] [PubMed]
- Cometto-Muñiz, J.E.; Cain, W.S. Efficacy of volatile organic compounds in evoking nasal pungency and odor. Arch. Environ. Occup. Health 1993, 48, 309–314. [Google Scholar] [CrossRef] [Green Version]
- Cometto-Muñiz, J.E.; Abraham, M.H. Odor detection by humans of lineal aliphatic aldehydes and helional as gauged by dose-response functions. Chem. Senses 2010, 35, 289–299. [Google Scholar] [CrossRef]
- IARC. Chemical composition of alcoholic beverages, Additives and contaminants. In IARC Monographs on the Evaluation of Carcinogenic Risk to Humans; IARC: Lyon, France, 1988; Volume 44, pp. 71–93. [Google Scholar]
- Polish Standard, PN-A-79523:2002 Agricultural Distillate; Polish Committee for Standardization: Warsaw, Poland, 2002.
- Lane, R.H. Official Methods of Analysis of the Association of Official Analytical Chemists, 15th ed.; Helrich, K., Ed.; Association of Official Analytical Chemists, Inc.: Arlington, WA, USA, 1995; Volume 2, pp. 777–796. [Google Scholar]
- Dziekońska-Kubczak, U.; Berłowska, J.; Dziugan, P.; Patelski, P.; Pielech-Przybylska, K.; Balcerek, M. Nitric acid pretreatment of jerusalem artichoke stalks for enzymatic saccharification and bioethanol production. Energies 2018, 11, 2153. [Google Scholar] [CrossRef] [Green Version]
- Strąk, E.; Balcerek, M. Industrial technologies used for the production of ethanol. Acta Sci. Pol. Technol. Biotech. 2015, 14, 33–44. (In Polish) [Google Scholar]
- Sjulander, N.; Kikas, T. Origin, Impact and control of lignocellulosic inhibitors in bioethanol production—A Review. Energies 2020, 13, 4751. [Google Scholar] [CrossRef]
- Balcerek, M.; Pielech-Przybylska, K.; Dziekońska-Kubczak, U.; Patelski, P.; Strąk, E. Fermentation results and chemical composition of agricultural distillates obtained from rye and barley grains and the corresponding malts as a source of amylolytic enzymes and starch. Molecules 2016, 21, 1320. [Google Scholar] [CrossRef] [Green Version]
- Wei, F.; Li, M.; Wang, M.; Li, H.; Li, Z.; Qin, W.; Wei, T.; Zhao, J.; Bao, X. A C6/C5 co-fermenting Saccharomyces cerevisiae strain with the alleviation of antagonism between xylose utilization and robustness. GCB Bioenergy 2021, 13, 83–97. [Google Scholar] [CrossRef]
- Yalcin, S.K.; Ozbas, Z.Y. Effects of pH and temperature on growth and glycerol production kinetics of two indigenous wine strains of Saccharomyces cerevisiae from Turkey. Braz. J. Microbiol. 2008, 39, 325–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Torrado, R.; Oliveira, B.M.; Zemančíková, J.; Sychrová, H.; Querol, A. Alternative glycerol balance strategies among Saccharomyces species in response to winemaking stress. Front. Microbiol. 2016, 7, 435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasserot, Y.; Mornet, F.; Jeandet, P. Acetic acid removal by Saccharomyces cerevisiae during fermentation in oenological conditions. Metabolic consequences. Food Chem. 2010, 119, 1220–1223. [Google Scholar] [CrossRef]
- Liu, X.; Jia, B.; Sun, X.; Ai, J.; Wang, L.; Wang, C.; Zhao, F.; Zhan, J.; Huang, W. Effect of initial pH on growth characteristics and fermentation properties of Saccharomyces cerevisiae. J. Food Sci. 2015, 80, 800–808. [Google Scholar] [CrossRef]
- Heiniö, R.L.; Katina, K.; Wilhelmson, A.; Myllymäki, O.; Rajamäki, T.; Latva-Kala, K.; Liukkonen, K.-H.; Poutanen, K. Relationship between sensory perception and flavour-active volatile compounds of germinated, sourdough fermented and native rye following the extrusion process. LWT—Food Sci. Technol. 2003, 36, 533–545. [Google Scholar] [CrossRef]
- Rustemeier, K.; Stabbert, R.; Haussmann, H.J.; Roemer, E.; Carmines, E.L. Evaluation of the potential effects of ingredients added to cigarettes. Part 2: Chemical composition of mainstream smoke. Food Chem. Toxicol. 2002, 40, 93–104. [Google Scholar] [CrossRef]
- Smit, B.A.; Engels, W.J.; Alewijn, M.; Lommerse, G.T.; Kippersluijs, E.A.; Wouters, J.T.; Smit, G. Chemical conversion of alpha-keto acids in relation to flavor formation in fermented foods. J. Agric. Food Chem. 2004, 52, 1263–1268. [Google Scholar] [CrossRef]
- Strecker, A. On a peculiar oxidation by alloxan. Justus Liebigs Ann. Chem. 1862, 123, 363. (In German) [Google Scholar]
- Smit, B.A.; Engels, W.J.M.; Smit, G. Branched chain aldehydes: Production and breakdown pathways and relevance for flavour in foods. Appl. Microbiol. Biotechnol. 2009, 81, 987–999. [Google Scholar] [CrossRef] [Green Version]
- The Metabolomic Innovations Centre. Available online: https://foodb.ca/compounds/FDB008048 (accessed on 12 July 2022).
- Dudareva, N.; Klempien, A.; Muhlemann, J.K.; Kaplan, I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 2013, 198, 16–32. [Google Scholar] [CrossRef] [PubMed]
- Buśko, M.; Jeleń, H.; Góral, T.; Chmielewski, J.; Stuper, K.; Szwajkowska-Michałek, L.; Tyrakowska, B.; Perkowski, J. Volatile metabolites in various cereal grains. Food Addit. Contam. Part A 2010, 27, 1574–1581. [Google Scholar] [CrossRef]
- Romano, P.; Suzzi, G.; Turbanti, L.; Polsinelli, M. Acetaldehyde production in Saccharomyces cerevisiae wine yeasts, FEMS Microbiol. Lett. 1994, 118, 213–218. [Google Scholar] [CrossRef]
- Millán, C.; Ortega, J.M. Production of ethanol, acetaldehyde, and acetic acid in wine by various yeast races: Role of alcohol and aldehyde dehydrogenase. Am. J. Enol. Vitic. 1988, 39, 107–112. [Google Scholar]
- Urban-Alandete, L. Lipid Degradation during Grain Storage: Markers, Mechanisms and Shelf-Life Extension Treatments. Ph.D. Thesis, School of Agriculture and Food Science, University of Queensland, St Lucia, QLD, Australia, 15 March 2019. [Google Scholar] [CrossRef] [Green Version]
Compound | Content (g/L) | Pressure-Thermal Method | PLS Method |
---|---|---|---|
Sugars before hydrolysis of dextrins | |||
Maltotriose | M | 10.57 a | 7.79 b |
SD | 0.53 | 0.39 | |
Maltose | M | 15.89 b | 72.70 a |
SD | 0.79 | 3.64 | |
Glucose | M | 67.06 a | 35.91 b |
SD | 3.35 | 1.80 | |
Sugars after hydrolysis of dextrins | |||
Maltotriose | M | 1.01 b | 1.25 a |
SD | 0.05 | 0.06 | |
Maltose | M | 7.37 b | 9.36 a |
SD | 0.37 | 0.47 | |
Glucose | M | 138.84 b | 154.08 a |
SD | 6.94 | 7.70 | |
Total sugars * | M | 147.68 b | 165.27 a |
SD | 7.38 | 8.26 | |
Other compounds | |||
Xylose | M | 4.12 a | 1.61 b |
SD | 0.21 | 0.08 | |
Arabinose | M | 0.31 a | 0.12 b |
SD | 0.02 | 0.01 | |
Formic acid | M | 0.09 a | 0.07 b |
SD | 0.01 | 0.00 | |
Acetic acid | M | 0.24 a | 0.25 a |
SD | 0.01 | 0.01 |
Compound | Content (g/L) | DistilaMax HT | DistilaMax GW | Ethanol Red | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH 4.5 | pH 5.0 | pH 5.5 | pH 6.0 | pH 4.5 | pH 5.0 | pH 5.5 | pH 6.0 | pH 4.5 | pH 5.0 | pH 5.5 | pH 6.0 | ||
Maltotriose | M | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | 0.018 c | 0.044 b | 0.092 a |
SD | - | - | - | - | - | - | - | - | - | 0.002 | 0.008 | 0.015 | |
Maltose | M | 0.314 e | 0.392 c | 0.328 e | 0.304 f | 0.399 c | 0.450 b | 0.408 c | 0.317 f | 0.500 a | 0.366 d | 0.160 g | 0.062 h |
SD | 0.013 | 0.020 | 0.007 | 0.012 | 0.004 | 0.015 | 0.005 | 0.011 | 0.008 | 0.023 | 0.003 | 0.002 | |
Glucose | M | 0.047 ef | 0.054 e | 0.055 e | 0.068 e | 0.018 g | 0.019 g | 0.021 g | 0.032 f | 0.390 d | 0.424 c | 0.479 b | 0.619 a |
SD | 0.016 | 0.008 | 0.015 | 0.010 | 0.004 | 0.007 | 0.007 | 0.007 | 0.012 | 0.013 | 0.009 | 0.014 | |
Xylose | M | 0.278 e | 0.380 c | 0.370 c | 0.397 c | 0.229 f | 0.576 b | 0.765 a | 0.518 b | 0.267 e | 0.275 de | 0.298 d | 0.291 d |
SD | 0.021 | 0.016 | 0.009 | 0.043 | 0.020 | 0.079 | 0.078 | 0.053 | 0.008 | 0.019 | 0.006 | 0.003 | |
Arabinose | M | 0.247 b | 0.266 b | 0.219 | 0.295 a | 0.213 | 0.237 | 0.227 c | 0.282 a | 0.227 | 0.215 | 0.213 | 0.152 |
SD | 0.047 | 0.011 | 0.028 | 0.037 | 0.001 | 0.032 | 0.035 | 0.006 | 0.003 | 0.007 | 0.004 | 0.106 | |
Glycerol | M | 3.928 c | 4.070 b | 4.103 b | 4.300 a | 3.362 e | 3.530 d | 3.605 d | 3.644 d | 3.923 c | 3.992 c | 4.074 b | 4.170 b |
SD | 0.027 | 0.017 | 0.054 | 0.010 | 0.093 | 0.027 | 0.035 | 0.080 | 0.068 | 0.060 | 0.112 | 0.094 | |
Acetic acid | M | 0.066 e | 0.070 de | 0.067 e | 0.079 d | 0.055 f | 0.046 g | 0.028 h | 0.061 e | 0.107 c | 0.110 abc | 0.118 b | 0.135 a |
SD | 0.003 | 0.005 | 0.002 | 0.004 | 0.003 | 0.002 | 0.001 | 0.007 | 0.004 | 0.008 | 0.003 | 0.004 | |
Ethanol | M | 64.09 b | 64.58 b | 62.93 bc | 63.99 b | 64.35 ab | 66.20 a | 64.95 b | 63.57 b | 63.20 c | 63.08 c | 63.08 c | 62.14 c |
SD | 0.04 | 0.46 | 2.13 | 0.36 | 1.69 | 0.24 | 0.46 | 2.17 | 0.64 | 0.70 | 0.83 | 1.05 |
Compound | Content (g/L) | DistilaMax HT | DistilaMax GW | Ethanol Red | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH 4.5 | pH 5.0 | pH 5.5 | pH 6.0 | pH 4.5 | pH 5.0 | pH 5.5 | pH 6.0 | pH 4.5 | pH 5.0 | pH 5.5 | pH 6.0 | ||
Maltotriose | M | 1.936 b | 1.948 b | 1.985 ab | 1.987 ab | 1.549 c | 1.565 c | 1.503 c | 1.485 c | 2.020 a | 2.012 a | 2.111 a | 2.148 a |
SD | 0.044 | 0.023 | 0.067 | 0.007 | 0.046 | 0.085 | 0.032 | 0.022 | 0.109 | 0.102 | 0.024 | 0.075 | |
Maltose | M | 1.066 bc | 1.039 b | 0.985 c | 0.917 d | 0.947 cd | 0.927 d | 0.895 e | 0.870 e | 1.579 a | 1.533 a | 1.748 a | 1.547 a |
SD | 0.110 | 0.034 | 0.012 | 0.020 | 0.031 | 0.022 | 0.009 | 0.018 | 0.157 | 0.128 | 0.348 | 0.163 | |
Glucose | M | 4.117 b | 4.479 b | 4.646 b | 4.673 b | 1.809 c | 1.847 c | 1.729 c | 1.666 c | 10.989 a | 11.402 a | 11.406 a | 11.794 a |
SD | 0.386 | 0.330 | 0.515 | 0.194 | 0.118 | 0.370 | 0.169 | 0.162 | 0.646 | 0.682 | 0.537 | 0.520 | |
Xylose | M | 0.984 b | 1.082 b | 1.210 a | 1.285 a | 0.681 d | 0.859 c | 0.859 c | 0.878 c | 0.663 d | 0.685 d | 0.485 e | 0.469 e |
SD | 0.099 | 0.038 | 0.040 | 0.102 | 0.020 | 0.037 | 0.034 | 0.033 | 0.101 | 0.105 | 0.011 | 0.016 | |
Arabinose | M | 0.076 d | 0.093 c | 0.099 c | 0.096 c | 0.102 bc | 0.114 bc | 0.128 a | 0.132 a | 0.101 bc | 0.112 bc | 0.105 bc | 0.099 bc |
SD | 0.005 | 0.002 | 0.011 | 0.008 | 0.019 | 0.012 | 0.003 | 0.004 | 0.007 | 0.024 | 0.018 | 0.007 | |
Glycerol | M | 6.133 b | 6.234 ab | 6.494 a | 6.589 a | 5.100 e | 5.481 d | 5.698 c | 5.888 c | 5.787 c | 5.766 c | 6.175 b | 6.555 a |
SD | 0.157 | 0.243 | 0.196 | 0.232 | 0.190 | 0.058 | 0.033 | 0.018 | 0.140 | 0.335 | 0.175 | 0.025 | |
Acetic acid | M | 0.027 cd | 0.029 cd | 0.054 b | 0.074 a | 0.037 c | 0.028 d | 0.034 cd | 0.032 cd | 0.025 d | 0.023 d | 0.031 cd | 0.028 cd |
SD | 0.005 | 0.006 | 0.009 | 0.003 | 0.006 | 0.001 | 0.008 | 0.008 | 0.003 | 0.004 | 0.005 | 0.004 | |
Ethanol | M | 65.27 b | 64.03 b | 64.03 b | 63.92 b | 67.19 a | 69.18 a | 69.15 a | 69.13 a | 58.92 c | 56.33 c | 57.04 c | 58.09 c |
SD | 1.63 | 1.12 | 1.05 | 0.88 | 2.74 | 0.76 | 0.77 | 1.63 | 1.35 | 2.44 | 0.61 | 0.62 |
Yeast Strain | Initial pH of the Mash | Fermentation Efficiency (% of the Theoretical Value) | |
---|---|---|---|
Pressure-Thermal Method | PLS Method | ||
DistilaMax HT | pH 4.5 | 84.88 ab | 77.50 ab |
pH 5.0 | 85.56 ab | 75.79 a | |
pH 5.5 | 83.38 ab | 75.80 a | |
pH 6.0 | 84.78 ab | 75.67 a | |
DistilaMax GW | pH 4.5 | 85.26 ab | 79.55 ab |
pH 5.0 | 87.71 b | 81.89 b | |
pH 5.5 | 86.05 ab | 81.86 b | |
pH 6.0 | 84.22 ab | 81.84 b | |
Ethanol Red | pH 4.5 | 83.73 ab | 69.75 c |
pH 5.0 | 83.58 ab | 66.68 c | |
pH 5.5 | 83.57 ab | 67.52 c | |
pH 6.0 | 82.33 a | 68.77 c |
Compound | Concentration (mg/L of Mash) | ||
---|---|---|---|
M | Pressure-Thermal Method | PLS Method | |
SD | |||
Acetaldehyde | M | 1.952 a | 0.832 b |
SD | 0.098 | 0.040 | |
Propionaldehyde | M | 0.011 a | 0.012 a |
SD | 0.001 | 0.001 | |
Isobutyraldehyde | M | 0.078 a | 0.024 b |
SD | 0.004 | 0.002 | |
2-Methylbutyraldehyde | M | 0.022 a | 0.014 b |
SD | 0.001 | 0.001 | |
Isovaleraldehyde | M | 0.051 a | 0.029 b |
SD | 0.003 | 0.002 | |
Valeraldehyde | M | 0.011 a | 0.017 a |
SD | 0.005 | 0.001 | |
Capronaldehyde | M | 0.260 b | 0.456 a |
SD | 0.013 | 0.020 | |
Enanthaldehyde | M | 0.005 a | 0.005 a |
SD | 0.000 | 0.001 | |
Pelargonaldehyde | M | 0.042 a | n.d. |
SD | 0.002 | - |
Compound | Concentration (mg/L) | Results of Two-Way ANOVA | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | DistilaMax HT | DistilaMax GW | Ethanol Red | |||||||||||||
SD | pH 4.5 | pH 5.0 | pH 5.5 | pH 6.0 | pH 4.5 | pH 5.0 | pH 5.5 | pH 6.0 | pH 4.5 | pH 5.0 | pH 5.5 | pH 6.0 | YS | IpH | YS × IpH | |
Acetaldehyde | M | 14.343 i | 34.464 gh | 105.37 d | 216.819 b | 23.166 hi | 52.111 g | 146.973 f | 253.941 a | 28.160 hi | 77.097 e | 145.143 f | 191.304 c | *** | *** | *** |
SD | 1.779 | 1.621 | 10.728 | 3.278 | 7.326 | 6.078 | 3.520 | 7.953 | 3.943 | 8.653 | 8.429 | 8.864 | ||||
Propionaldehyde | M | 0.011 f | 0.016 f | 0.034 d | 0.070 b | 0.014 f | 0.019 ef | 0.038 cd | 0.100 a | 0.014 f | 0.024 e | 0.043 c | 0.064 b | *** | *** | *** |
SD | 0.001 | 0.001 | 0.004 | 0.003 | 0.012 | 0.002 | 0.003 | 0.002 | 0.001 | 0.002 | 0.003 | 0.004 | ||||
Isobutyraldehyde | M | 0.083 gh | 0.127 gh | 0.294 ef | 0.518 b | 0.048 h | 0.088 gh | 0.319 e | 0.840 a | 0.150 dg | 0.223 df | 0.299 ef | 0.402 c | *** | *** | *** |
SD | 0.011 | 0.009 | 0.045 | 0.046 | 0.111 | 0.001 | 0.003 | 0.009 | 0.005 | 0.020 | 0.013 | 0.011 | ||||
2-Methylbutyr- aldehyde | M | 0.035 d | 0.065 cd | 0.216 b | 0.240 b | 0.064 cd | 0.073 cd | 0.169 bc | 0.749 a | 0.038 d | 0.050 d | 0.048 d | 0.085 cd | *** | *** | *** |
SD | 0.018 | 0.004 | 0.036 | 0.091 | 0.068 | 0.010 | 0.022 | 0.012 | 0.004 | 0.004 | 0.007 | 0.003 | ||||
Isovaleraldehyde | M | 0.081 c | 0.122 c | 0.245 b | 0.296 b | 0.081 c | 0.092 c | 0.124 c | 0.403 a | 0.076 c | 0.092 c | 0.125 c | 0.249 b | *** | *** | *** |
SD | 0.021 | 0.003 | 0.028 | 0.082 | 0.065 | 0.004 | 0.021 | 0.009 | 0.005 | 0.012 | 0.014 | 0.012 | ||||
Valeraldehyde | M | 0.013 a | 0.007 d | 0.005 d | n.d. | 0.013 a | 0.009 bc | 0.009 bc | 0.009 bc | 0.011 ab | n.d. | n.d. | n.d. | *** | *** | *** |
SD | 0.001 | 0.001 | 0.001 | - | 0.002 | 0.002 | 0.001 | 0.001 | 0.001 | - | - | - | ||||
Capronaldehyde | M | 0.263 ef | 0.214 f | 0.437 c | 0.401 cd | 0.376 cd | 0.337 cde | 0.259 ef | 0.247 ef | 0.311 def | 0.246 ef | 0.122 ab | 0.108 b | *** | ** | *** |
SD | 0.038 | 0.023 | 0.060 | 0.068 | 0.093 | 0.030 | 0.044 | 0.019 | 0.024 | 0.011 | 0.021 | 0.007 | ||||
Enanthaldehyde | M | 0.021 d | 0.021 cd | 0.020 d | 0.021 cd | 0.025 ac | 0.026 a | 0.024 acd | 0.024 acd | 0.010 b | 0.012 b | 0.011 b | 0.012 b | *** | n.s. | n.s. |
SD | 0.001 | 0.001 | 0.001 | 0.002 | 0.001 | 0.001 | 0.003 | 0.001 | 0.000 | 0.001 | 0.001 |
Compound | Concentration (mg/L) | Results of Two-Way ANOVA | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | DistilaMax HT | DistilaMax GW | Ethanol Red | |||||||||||||
SD | pH 4.5 | pH 5.0 | pH 5.5 | pH 6.0 | pH 4.5 | pH 5.0 | pH 5.5 | pH 6.0 | pH 4.5 | pH 5.0 | pH 5.5 | pH 6.0 | YS | IpH | YS × IpH | |
Acetaldehyde | M | 29.377 de | 26.795 d | 29.613 de | 34.556 de | 40.095 ce | 39.623 cde | 47.713 bc | 67.744 a | 37.239 cde | 30.421 de | 41.816 ce | 55.017 ab | *** | *** | ** |
SD | 1.834 | 5.850 | 6.281 | 7.620 | 3.167 | 5.068 | 2.932 | 5.221 | 1.374 | 1.888 | 3.139 | 2.577 | ||||
Propionaldehyde | M | 0.009 cd | 0.008 d | 0.009 cd | 0.009 bcd | 0.010 bcd | 0.010 bcd | 0.011 bc | 0.012 b | 0.010 bcd | 0.009 cd | 0.012 ab | 0.014 a | *** | *** | ** |
SD | 0.001 | 0.001 | 0.001 | 0.001 | 0.000 | 0.001 | 0.001 | 0.001 | 0.000 | 0.000 | 0.001 | 0.001 | ||||
Isobutyraldehyde | M | 0.063 d | 0.063 d | 0.068 cd | 0.078 cd | 0.043 d | 0.043 d | 0.050 d | 0.104 c | 0.064 d | 0.077 cd | 0.220 b | 0.378 a | *** | *** | *** |
SD | 0.001 | 0.003 | 0.003 | 0.002 | 0.004 | 0.002 | 0.004 | 0.005 | 0.005 | 0.012 | 0.041 | 0.011 | ||||
2-Methylbutyr- aldehyde | M | 0.074 a | 0.074 a | 0.070 a | 0.074 a | 0.029 c | 0.032 c | 0.027 c | 0.054 b | 0.041 b | 0.041 b | 0.058 b | 0.066 b | *** | *** | *** |
SD | 0.003 | 0.004 | 0.001 | 0.004 | 0.003 | 0.008 | 0.004 | 0.004 | 0.003 | 0.001 | 0.013 | 0.009 | ||||
Isovaleraldehyde | M | 0.096 ef | 0.101 ef | 0.105 cef | 0.123 ce | 0.047 f | 0.052 f | 0.053 f | 0.107 ef | 0.085 df | 0.086 df | 0.137 ab | 0.160 a | *** | *** | *** |
SD | 0.006 | 0.002 | 0.002 | 0.009 | 0.002 | 0.008 | 0.006 | 0.004 | 0.006 | 0.003 | 0.032 | 0.016 | ||||
Valeraldehyde | M | 0.007 bc | 0.005 de | 0.005 ae | 0.005 de | 0.006 cd | 0.006 de | 0.005 de | 0.005 e | 0.009 a | 0.007 b | 0.005 de | n.d. | n.s. | *** | *** |
SD | 0.001 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | - | ||||
Capronaldehyde | M | 0.469 a | 0.422 ab | 0.414 ab | 0.354 bc | 0.293 cd | 0.299 cd | 0.216 f | 0.226 ef | 0.241 ef | 0.201 f | 0.106 g | 0.095 g | *** | *** | * |
SD | 0.020 | 0.035 | 0.034 | 0.046 | 0.034 | 0.011 | 0.011 | 0.020 | 0.027 | 0.018 | 0.024 | 0.010 | ||||
Enanthaldehyde | M | 0.033 ab | 0.035 a | 0.037 a | 0.038 a | 0.022 ef | 0.021 f | 0.022 f | 0.023 def | 0.026 cdef | 0.028 cde | 0.029 cde | 0.028 cde | *** | * | n.s. |
SD | 0.003 | 0.002 | 0.003 | 0.003 | 0.002 | 0.001 | 0.001 | 0.001 | 0.002 | 0.001 | 0.001 | 0.001 | ||||
Caprylaldehyde | M | 0.017 d | 1.448 c | 4.476 a | 4.232 a | 4.167 a | 4.049 a | 3.979 a | 3.884 b | 3.868 b | 3.702 b | 3.621 b | 3.711 b | *** | ** | *** |
SD | 0.001 | 2.483 | 0.221 | 0.123 | 2.462 | 0.130 | 0.248 | 0.055 | 0.082 | 0.048 | 0.120 | 0.103 |
Compound | MSL | YS | IpH | MSL × YS | MSL × IpH | YS × IpH | MSL × YS × IpH |
---|---|---|---|---|---|---|---|
Acetaldehyde | *** | *** | *** | * | *** | *** | *** |
Propionaldehyde | *** | *** | *** | *** | *** | *** | *** |
Isobutyraldehyde | *** | *** | *** | *** | *** | *** | *** |
2-Methylbutyraldehyde | *** | *** | *** | *** | *** | *** | *** |
Isovaleraldehyde | *** | *** | *** | *** | *** | *** | *** |
Valeraldehyde | *** | *** | *** | *** | *** | *** | *** |
Capronaldehyde | n.s. | *** | *** | *** | * | *** | *** |
Enanthaldehyde | *** | *** | * | *** | * | n.s. | n.s. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pielech-Przybylska, K.; Balcerek, M.; Klebeko, M.; Dziekońska-Kubczak, U.; Hebdzyński, M. Ethanolic Fermentation of Rye Mashes: Factors Influencing the Formation of Aldehydes and Process Efficiency. Biomolecules 2022, 12, 1085. https://doi.org/10.3390/biom12081085
Pielech-Przybylska K, Balcerek M, Klebeko M, Dziekońska-Kubczak U, Hebdzyński M. Ethanolic Fermentation of Rye Mashes: Factors Influencing the Formation of Aldehydes and Process Efficiency. Biomolecules. 2022; 12(8):1085. https://doi.org/10.3390/biom12081085
Chicago/Turabian StylePielech-Przybylska, Katarzyna, Maria Balcerek, Maciej Klebeko, Urszula Dziekońska-Kubczak, and Mariusz Hebdzyński. 2022. "Ethanolic Fermentation of Rye Mashes: Factors Influencing the Formation of Aldehydes and Process Efficiency" Biomolecules 12, no. 8: 1085. https://doi.org/10.3390/biom12081085
APA StylePielech-Przybylska, K., Balcerek, M., Klebeko, M., Dziekońska-Kubczak, U., & Hebdzyński, M. (2022). Ethanolic Fermentation of Rye Mashes: Factors Influencing the Formation of Aldehydes and Process Efficiency. Biomolecules, 12(8), 1085. https://doi.org/10.3390/biom12081085