The Paradoxical Role of Circulating Ketone Bodies in Glycemic Control of Individuals with Type 2 Diabetes: High Risk, High Reward?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Data Collection
2.3. Laboratory Methods
2.4. Statistical Analyses
3. Results
3.1. Baseline Characteristics of ZODIAC
3.2. Cross-Sectional Analyses
3.3. Longitudinal Analyses
3.4. Replication Cohort
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Hasselbalch, S.G.; Knudsen, G.M.; Jakobsen, J.; Hageman, L.P.; Holm, S.; Paulson, O.B. Brain metabolism during short-term starvation in humans. J. Cereb. Blood Flow Metab. 1994, 14, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Oxidation of Fatty Acids: Ketogenesis|Harper’s Illustrated Biochemistry, 30e|AccessMedicine|McGraw Hill Medical. Available online: https://accessmedicine.mhmedical.com/content.aspx?bookid=1366§ionid=73243965 (accessed on 17 May 2022).
- Puchalska, P.; Crawford, P.A. Multi-dimensional Roles of Ketone Bodies in Fuel Metabolism, Signaling, and Therapeutics. Cell Metab. 2017, 25, 262–284. [Google Scholar] [CrossRef]
- Garcia, E.; Shalaurova, I.; Matyus, S.P.; Oskardmay, D.N.; Otvos, J.D.; Dullaart, R.P.; Connelly, M.A. Ketone Bodies Are Mildly Elevated in Subjects with Type 2 Diabetes Mellitus and Are Inversely Associated with Insulin Resistance as Measured by the Lipoprotein Insulin Resistance Index. J. Clin. Med. 2020, 9, 321. [Google Scholar] [CrossRef] [PubMed]
- Hall, S.E.H.; Wastney, M.E.; Bolton, T.M.; Braaten, J.T.; Berman, M. Ketone body kinetics in humans: The effects of insulin-dependent diabetes, obesity, and starvation. J. Lipid Res. 1984, 25, 1184–1194. [Google Scholar] [CrossRef]
- Mahendran, Y.; Vangipurapu, J.; Cederberg, H.; Stančáková, A.; Pihlajamäki, J.; Soininen, P.; Kangas, A.J.; Paananen, J.; Civelek, M.; Saleem, N.K.; et al. Association of ketone body levels with hyperglycemia and type 2 diabetes in 9,398 Finnish men. Diabetes 2013, 62, 3618–3626. [Google Scholar] [CrossRef] [PubMed]
- Post, A.; Garcia, E.; Berg, E.H.D.; Flores-Guerrero, J.L.; Gruppen, E.G.; Groothof, D.; Westenbrink, B.D.; Connelly, M.A.; Bakker, S.J.; Dullaart, R.P.F. Nonalcoholic fatty liver disease, circulating ketone bodies and all-cause mortality in a general population-based cohort. Eur. J. Clin. Investig. 2021, 51, e13627. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.K.; Kanikarla, P.; Sushil, M.; Jain, K. Hyperketonemia (Acetoacetate) Upregulates NADPH Oxidase 4 and Elevates Oxidative Stress, ICAM-1, and Monocyte Adhesivity in Endothelial Cells. Cell Physiol. Biochem. 2015, 35, 364–373. [Google Scholar] [CrossRef]
- Shi, X.; Li, X.; Li, D.; Li, Y.; Song, Y.; Deng, Q.; Wang, J.; Zhang, Y.; Ding, H.; Yin, L.; et al. ß-Hydroxybutyrate Activates the NF-κB Signaling Pathway to Promote the Expression of Pro-Inflammatory Factors in Calf Hepatocytes. Cell Physiol. Biochem. 2014, 33, 920–932. [Google Scholar] [CrossRef] [PubMed]
- Youm, Y.-H.; Nguyen, K.Y.; Grant, R.W.; Goldberg, E.L.; Bodogai, M.; Kim, D.; D’Agostino, D.; Planavsky, N.; Lupfer, C.; Kanneganti, T.-D.; et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome–mediated inflammatory disease. Nat. Med. 2015, 21, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Shimazu, T.; Hirschey, M.D.; Newman, J.; He, W.; Shirakawa, K.; Le Moan, N.; Grueter, C.A.; Lim, H.; Saunders, L.R.; Stevens, R.D.; et al. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 2013, 339, 211–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douris, N.; Melman, T.; Pecherer, J.M.; Pissios, P.; Flier, J.S.; Cantley, L.C.; Locasale, J.W.; Maratos-Flier, E. Adaptive changes in amino acid metabolism permit normal longevity in mice consuming a low-carbohydrate ketogenic diet. Biochim. Biophys. Acta 2015, 1852, 2056–2065. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.; Tian, W.; Liu, F.; Xie, G. Protective effects of exogenous β-hydroxybutyrate on paraquat toxicity in rat kidney. Biochem. Biophys. Res. Commun. 2014, 447, 666–671. [Google Scholar] [CrossRef] [PubMed]
- Milder, J.B.; Liang, L.P.; Patel, M. Acute oxidative stress and systemic Nrf2 activation by the ketogenic diet. Neurobiol. Dis. 2010, 40, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Meroni, E.; Papini, N.; Criscuoli, F.; Casiraghi, M.C.; Massaccesi, L.; Basilico, N.; Erba, D. Metabolic Responses in Endothelial Cells Following Exposure to Ketone Bodies. Nutrients 2018, 10, 250. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.M.; Ramprasath, T.; Zou, M.H. β-hydroxybutyrate and its metabolic effects on age-associated pathology. Exp. Mol. Med. 2020, 52, 548–555. [Google Scholar] [CrossRef]
- Fang, Y.; Chen, B.; Gong, A.Y.; Malhotra, D.K.; Gupta, R.; Dworkin, L.D.; Gong, R. The ketone body β-hydroxybutyrate mitigates the senescence response of glomerular podocytes to diabetic insults. Kidney Int. 2021, 100, 1037–1053. [Google Scholar] [CrossRef] [PubMed]
- Yurista, S.R.; Nguyen, C.T.; Rosenzweig, A.; de Boer, R.A.; Westenbrink, B.D. Ketone bodies for the failing heart: Fuels that can fix the engine? Trends Endocrinol. Metab. 2021, 32, 814–826. [Google Scholar] [CrossRef] [PubMed]
- Bilo, H.J.G.; Logtenberg, S.J.J.; Joosten, H.; Groenier, K.H.; Ubink-Veltmaat, L.J.; Kleefstra, N. Modification of diet in renal disease and Cockcroft-Gault formulas do not predict mortality (ZODIAC-6). Diabet. Med. 2009, 26, 478–482. [Google Scholar] [CrossRef] [PubMed]
- Hillege, H.L.; Janssen, W.M.T.; Bak, A.A.A.; Diercks, G.F.H.; Grobbee, D.E.; Crijns, H.J.G.M.; van Gilst, W.; De Zeeuw, D.; De Jong, P.E. Microalbuminuria is common, also in a nondiabetic, nonhypertensive population, and an independent indicator of cardiovascular risk factors and cardiovascular morbidity. J. Intern. Med. 2001, 249, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Gerrits, E.G.; Lutgers, H.L.; Kleefstra, N.; Groenier, K.H.; Smit, A.J.; Gans, R.O.B.; Bilo, H.J.G. Skin advanced glycation end product accumulation is poorly reflected by glycemic control in type 2 diabetic patients (ZODIAC-9). J. Diabetes Sci. Technol. 2008, 2, 572–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, X.A.; Donaldson, L.; Correa-Cano, M.E.; Evans, J.; Fisher, D.N.; Goodwin, C.E.D.; Robinson, B.S.; Hodgson, D.J.; Inger, R. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 2018, 6, e4764. [Google Scholar] [CrossRef] [PubMed]
- Saasa, V.; Beukes, M.; Lemmer, Y.; Mwakikunga, B. Blood Ketone Bodies and Breath Acetone Analysis and Their Correlations in Type 2 Diabetes Mellitus. Diagnostics 2019, 9, 224. [Google Scholar] [CrossRef] [PubMed]
- Bragg, F.; Trichia, E.; Aguilar-Ramirez, D.; Bešević, J.; Lewington, S.; Emberson, J. Predictive value of circulating NMR metabolic biomarkers for type 2 diabetes risk in the UK Biobank study. BMC Med. 2022, 20, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Veech, R.L.; Bradshaw, P.C.; Clarke, K.; Curtis, W.; Pawlosky, R.; King, M.T. Ketone bodies mimic the life span extending properties of caloric restriction. IUBMB Life 2017, 69, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Kolb, H.; Kempf, K.; Röhling, M.; Lenzen-Schulte, M.; Schloot, N.C.; Martin, S. Ketone bodies: From enemy to friend and guardian angel. BMC Med. 2021, 19, 323. [Google Scholar] [CrossRef] [PubMed]
- Tinguely, D.; Gross, J.; Kosinski, C. Efficacy of Ketogenic Diets on Type 2 Diabetes: A Systematic Review. Curr. Diab. Rep. 2021, 21, 32. [Google Scholar] [CrossRef] [PubMed]
- Kinzig, K.P.; Honors, M.A.; Hargrave, S.L. Insulin Sensitivity and Glucose Tolerance Are Altered by Maintenance on a Ketogenic Diet. Endocrinology 2010, 151, 3105–3114. [Google Scholar] [CrossRef] [PubMed]
- Ferrannini, E.; Baldi, S.; Frascerra, S.; Astiarraga, B.; Heise, T.; Bizzotto, R.; Mari, A.; Pieber, T.R.; Muscelli, E. Shift to Fatty Substrate Utilization in Response to Sodium–Glucose Cotransporter 2 Inhibition in Subjects Without Diabetes and Patients With Type 2 Diabetes. Diabetes 2016, 65, 1190–1195. [Google Scholar] [CrossRef]
- Al Jobori, H.; Daniele, G.; Adams, J.; Cersosimo, E.; Triplitt, C.; DeFronzo, R.A.; Abdul-Ghani, M. Determinants of the increase in ketone concentration during SGLT2 inhibition in NGT, IFG and T2DM patients. Diabetes Obes. Metab. 2017, 19, 809–813. [Google Scholar] [CrossRef] [PubMed]
- Tomita, I.; Kume, S.; Sugahara, S.; Osawa, N.; Yamahara, K.; Yasuda-Yamahara, M.; Takeda, N.; Chin-Kanasaki, M.; Kaneko, T.; Mayoux, E.; et al. SGLT2 Inhibition Mediates Protection from Diabetic Kidney Disease by Promoting Ketone Body-Induced mTORC1 Inhibition. Cell Metab. 2020, 32, 404–419.e6. [Google Scholar] [CrossRef] [PubMed]
- Al-Zaid, N.S.; Dashti, H.M.; Mathew, T.C.; Juggi, J.S. Low carbohydrate ketogenic diet enhances cardiac tolerance to global ischaemia. Acta Cardiol. 2007, 62, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Sherwin, R.S.; Hendler, R.G.; Felig, P. Effect of diabetes mellitus and insulin on the turnover and metabolic response to ketones in man. Diabetes 1976, 25, 776–784. [Google Scholar] [CrossRef] [PubMed]
Total (n = 271) | |
---|---|
Age (years) | 65 ± 10 |
Gender (female, %) | 143 (53) |
Smoking (yes, %) | 45 (17) |
BMI (kg/m2) | 28 ± 5 |
Systolic blood pressure (mmHg) | 152 ± 25 |
Diastolic blood pressure (mmHg) | 84 ± 11 |
History of cardiovascular disease (%) | 100 (37) |
eGFR (mL/min/1.73 m2) | 70 ± 15 |
HbA1c (%) | 7.2 ± 1.2 |
Total cholesterol (mmol/L) | 5.54 ± 1.07 |
HDL cholesterol (mmol/L) | 1.18 ± 0.32 |
Triglycerides (mmol/L) | 2.16 (1.54–3.30) |
C-reactive protein (mg/L) | 2.70 (1.70–4.40) |
Total fasting plasma KB (μmol/L) | 182 (147–232) |
β-hydroxybutyrate (μmol/L) | 120 (93–161) |
Acetoacetate (μmol/L) | 41 (32–56) |
Acetone (μmol/L) | 18 (12–25) |
T2D therapy | |
Diet (%) | 29 (11) |
Use of OBGLD (%) | 152 (56) |
Use of insulin (%) | 21 (8) |
Use of OBGLD and insulin (%) | 18 (7) |
Unknown (%) | 51 (19) |
T2D duration (years) | 4 (0–51) |
Total KB Per Doubling | p | β-OHB Per Doubling | p | Acetoacetate Per Doubling | p | Acetone Per Doubling | p | |
---|---|---|---|---|---|---|---|---|
B (95% CI) | B (95% CI) | B (95% CI) | B (95% CI) | |||||
Crude | 0.42 (0.17–0.66) | 0.01 | 0.36 (0.16–0.56) | <0.001 | 0.02 (−0.13–0.17) | 0.82 | 0.01 (−0.10–0.12) | 0.86 |
Model 1 | 0.42 (0.17–0.67) | 0.01 | 0.36 (0.16–0.56) | <0.001 | −0.02 (−0.14–0.09) | 0.70 | 0.01 (−0.14–0.16) | 0.89 |
Model 2 | 0.33 (0.10–0.56) | 0.01 | 0.27 (0.09–0.44) | 0.01 | −0.04 (−0.16–0.07) | 0.46 | −0.01 (−0.17–0.15) | 0.89 |
Model 3 | 0.39 (0.14–0.64) | 0.01 | 0.33 (0.13–0.53) | <0.001 | −0.02 (−0.14–0.10) | 0.77 | 0.01 (−0.14–0.16) | 0.86 |
Model 4 | 0.35 (0.09–0.61) | 0.01 | 0.30 (0.10–0.51) | <0.001 | −0.04 (−0.16–0.08) | 0.53 | −0.00 (−0.14–0.16) | 0.88 |
Model 5 | 0.31 (0.06–0.57) | 0.02 | 0.28 (0.08–0.47) | 0.01 | −0.04 (−0.16–0.07) | 0.46 | −0.02 (−0.19–0.16) | 0.86 |
Total KB Per Doubling | p | β-OHB Per Doubling | p | Acetoacetate Per Doubling | p | Acetone Per Doubling | p | |
---|---|---|---|---|---|---|---|---|
B(95% CI) | B (95% CI) | B (95% CI) | B (95% CI) | |||||
Crude | −0.11 (−0.20–−0.02) | 0.01 | −0.09 (−0.16–−0.02) | 0.02 | −0.03 (−0.09–0.04) | 0.74 | −0.03 (−0.09–0.04) | 0.40 |
Model 1 | −0.11 (−0.20–−0.02) | 0.01 | −0.09 (−0.16–−0.02) | 0.02 | −0.03 (−0.10–0.03) | 0.57 | −0.03 (−0.10–0.03) | 0.35 |
Model 2 | −0.08 (−0.18–0.01) | 0.07 | −0.07 (−0.14–0.00) | 0.06 | −0.03 (−0.10–0.03) | 0.67 | −0.03 (−0.10–0.04) | 0.37 |
Model 3 | −0.11 (−0.20–−0.02) | 0.01 | −0.08 (−0.15–−0.01) | 0.03 | −0.03 (−0.10–0.03) | 0.57 | −0.03 (−0.09–0.04) | 0.37 |
Model 4 | −0.10 (−0.20–−0.01) | 0.03 | −0.08 (−0.16–−0.01) | 0.03 | −0.03 (−0.10–0.04) | 0.76 | −0.03 (−0.09–0.04) | 0.43 |
Model 5 | −0.10 (−0.19–−0.00) | 0.05 | −0.08 (−0.16–−0.01) | 0.03 | −0.01 (−0.06–0.04) | 0.77 | −0.01 (−0.08–0.05) | 0.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van der Vaart, A.; Knol, M.G.E.; de Borst, M.H.; Bakker, S.J.L.; Connelly, M.A.; Garcia, E.; Bilo, H.J.G.; van Dijk, P.R.; Dullaart, R.P.F. The Paradoxical Role of Circulating Ketone Bodies in Glycemic Control of Individuals with Type 2 Diabetes: High Risk, High Reward? Biomolecules 2022, 12, 1318. https://doi.org/10.3390/biom12091318
van der Vaart A, Knol MGE, de Borst MH, Bakker SJL, Connelly MA, Garcia E, Bilo HJG, van Dijk PR, Dullaart RPF. The Paradoxical Role of Circulating Ketone Bodies in Glycemic Control of Individuals with Type 2 Diabetes: High Risk, High Reward? Biomolecules. 2022; 12(9):1318. https://doi.org/10.3390/biom12091318
Chicago/Turabian Stylevan der Vaart, Amarens, Martine G. E. Knol, Martin H. de Borst, Stephan J. L. Bakker, Margery A. Connelly, Erwin Garcia, Henk J. G. Bilo, Peter R. van Dijk, and Robin P. F. Dullaart. 2022. "The Paradoxical Role of Circulating Ketone Bodies in Glycemic Control of Individuals with Type 2 Diabetes: High Risk, High Reward?" Biomolecules 12, no. 9: 1318. https://doi.org/10.3390/biom12091318
APA Stylevan der Vaart, A., Knol, M. G. E., de Borst, M. H., Bakker, S. J. L., Connelly, M. A., Garcia, E., Bilo, H. J. G., van Dijk, P. R., & Dullaart, R. P. F. (2022). The Paradoxical Role of Circulating Ketone Bodies in Glycemic Control of Individuals with Type 2 Diabetes: High Risk, High Reward? Biomolecules, 12(9), 1318. https://doi.org/10.3390/biom12091318