Stereological Evidence of Non-Selective Hippocampal Neurodegeneration, IGF-1 Depletion, and Behavioral Deficit following Short Term Bilateral Adrenalectomy in Wistar Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Adrenalectomy
2.2. Determination of Serum Corticosterone Levels
2.3. Stereological Analysis
2.4. Transmission Electron Microscopy
2.5. Enzyme-Linked Immunosorbent Assay (ELISA)
2.6. Step-through Passive Avoidance Test
2.7. Statistical Analysis
3. Results
3.1. Determination of Serum Corticosterone Levels
3.2. Stereological Analysis
3.3. Transmission Electron Microscopy
3.4. Growth Factors Analysis
3.5. Animal Behavior Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADX | Adrenalectomy |
ANOVA | Analysis of Variance |
β-NGF | β-Nerve Growth Factor |
CA areas | Cornu Ammonis |
CAST | Assisted Stereological Toolbox |
CORT | Corticosterone |
CNS | Central Nervous System |
DG | Dentate Gyrus |
EIA | Enzyme Immunoassay |
ELISA | Enzyme-Linked Immunosorbent Assay |
FJB | Fluoro-Jade B |
IGF-1 | Insulin-Like Growth Factor-1 |
mRNA | Ribonucleic Acid |
PA | Passive Avoidance |
SRS | Systematic Random Sampling |
References
- Sloviter, R.S.; Valiquette, G.; Abrams, G.M.; Ronk, E.C.; Sollas, A.L.; Paul, L.A.; Neubort, S. Selective Loss of Hippocampal Granule Cells in the Mature Rat Brain after Adrenalectomy. Science 1989, 243, 535–538. [Google Scholar] [CrossRef] [PubMed]
- Conrad, C.D.; Roy, E.J. Selective Loss of Hippocampal Granule Cells Following Adrenalectomy: Implications for Spatial Memory. J. Neurosci. 1993, 13, 2582–2590. [Google Scholar] [CrossRef] [PubMed]
- Sloviter, R.S.; Dean, E.; Neubort, S. Electron Microscopic Analysis of Adrenalectomy-Induced Hippocampal Granule Cell Degeneration in the Rat: Apoptosis in the Adult Central Nervous System. J. Comp. Neurol. 1993, 330, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Sloviter, R.S.; Sollas, A.L.; Dean, E.; Neubort, S. Adrenalectomy-Induced Granule Cell Degeneration in the Rat Hippocampal Dentate Gyrus: Characterization of an in Vivo Model of Controlled Neuronal Death. J. Comp. Neurol. 1993, 330, 324–336. [Google Scholar] [CrossRef] [PubMed]
- Sousa, N.; Madeira, M.D.; Paula-Barbosa, M.M. Structural Alterations of the Hippocampal Formation of Adrenalectomized Rats: An Unbiased Stereological Study. J. Neurocytol. 1997, 26, 423–438. [Google Scholar] [CrossRef] [PubMed]
- Sapolsky, R.M.; Stein-Behrens, B.A.; Armanini, M.P. Long-Term Adrenalectomy Causes Loss of Dentate Gyrus and Pyramidal Neurons in the Adult Hippocampus. Exp. Neurol. 1991, 114, 246–249. [Google Scholar] [CrossRef]
- Adem, A.; Islam, A.; Bogdanovic, N.; Carlström, K.; Winblad, B. Loss of Neurones after Long-Term Adrenalectomy in the Adult Rat Hippocampal Formation. Neuroreport 1994, 5, 2285–2288. [Google Scholar] [CrossRef]
- Islam, A.; Westman, J.; Bogdanovic, N.; Suliman, I.A.; Lindell, I.; Winblad, B.; Adem, A. Ultrastructural Analysis of the Hippocampus of Adult Rats after Long-Term Adrenalectomy. Brain Res. 1999, 849, 226–230. [Google Scholar] [CrossRef]
- Martínez-Claros, M.; Steinbusch, H.W.M.; van Selm, A.; van den Hove, D.L.A.; Prickaerts, J.; Pawluski, J.L. Adrenalectomy and Corticosterone Replacement Differentially Alter CA3 Dendritic Morphology and New Cell Survival in the Adult Rat Hippocampus. J. Chem. Neuroanat. 2013, 48–49, 23–28. [Google Scholar] [CrossRef]
- Zheng, W.-H.; Quirion, R. Comparative Signaling Pathways of Insulin-like Growth Factor-1 and Brain-Derived Neurotrophic Factor in Hippocampal Neurons and the Role of the PI3 Kinase Pathway in Cell Survival. J. Neurochem. 2004, 89, 844–852. [Google Scholar] [CrossRef]
- Russo, V.C.; Gluckman, P.D.; Feldman, E.L.; Werther, G.A. The Insulin-Like Growth Factor System and Its Pleiotropic Functions in Brain. Endocr. Rev. 2005, 26, 916–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaker, Z.; George, C.; Petrovska, M.; Caron, J.-B.; Lacube, P.; Caillé, I.; Holzenberger, M. Hypothalamic Neurogenesis Persists in the Aging Brain and Is Controlled by Energy-Sensing IGF-I Pathway. Neurobiol. Aging 2016, 41, 64–72. [Google Scholar] [CrossRef] [Green Version]
- Sanz-Gallego, I.; Rodriguez-de-Rivera, F.J.; Pulido, I.; Torres-Aleman, I.; Arpa, J. IGF-1 in Autosomal Dominant Cerebellar Ataxia—Open-Label Trial. Cerebellum Ataxias 2014, 1, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madathil, S.K.; Carlson, S.W.; Brelsfoard, J.M.; Ye, P.; D’Ercole, A.J.; Saatman, K.E. Astrocyte-Specific Overexpression of Insulin-Like Growth Factor-1 Protects Hippocampal Neurons and Reduces Behavioral Deficits Following Traumatic Brain Injury in Mice. PLoS ONE 2013, 8, e67204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mairet-Coello, G.; Tury, A.; DiCicco-Bloom, E. Insulin-like Growth Factor-1 Promotes G(1)/S Cell Cycle Progression through Bidirectional Regulation of Cyclins and Cyclin-Dependent Kinase Inhibitors via the Phosphatidylinositol 3-Kinase/Akt Pathway in Developing Rat Cerebral Cortex. J. Neurosci. 2009, 29, 775–788. [Google Scholar] [CrossRef] [Green Version]
- Labandeira-Garcia, J.L.; Costa-Besada, M.A.; Labandeira, C.M.; Villar-Cheda, B.; Rodríguez-Perez, A.I. Insulin-Like Growth Factor-1 and Neuroinflammation. Front. Aging Neurosci. 2017, 9, 365. [Google Scholar] [CrossRef] [Green Version]
- Lewitt, M.S.; Boyd, G.W. The Role of Insulin-Like Growth Factors and Insulin-Like Growth Factor–Binding Proteins in the Nervous System. Biochem Insights 2019, 12, 1178626419842176. [Google Scholar] [CrossRef] [Green Version]
- Stern, S.A.; Chen, D.Y.; Alberini, C.M. The Effect of Insulin and Insulin-like Growth Factors on Hippocampus- and Amygdala-Dependent Long-Term Memory Formation. Learn. Mem. 2014, 21, 556–563. [Google Scholar] [CrossRef] [Green Version]
- Conner, J.M.; Franks, K.M.; Titterness, A.K.; Russell, K.; Merrill, D.A.; Christie, B.R.; Sejnowski, T.J.; Tuszynski, M.H. NGF Is Essential for Hippocampal Plasticity and Learning. J. Neurosci. 2009, 29, 10883–10889. [Google Scholar] [CrossRef] [Green Version]
- Lockhart, S.T.; Turrigiano, G.G.; Birren, S.J. Nerve Growth Factor Modulates Synaptic Transmission between Sympathetic Neurons and Cardiac Myocytes. J. Neurosci. 1997, 17, 9573–9582. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.-H.; Mao, C.-Q.; Zhuo, L.-L.; Ong, J.L. Beta-Nerve Growth Factor Promotes Neurogenesis and Angiogenesis during the Repair of Bone Defects. Neural Regen. Res. 2015, 10, 1159–1165. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.-K.; Kim, W.; Lee, K.-Y.; Ahn, J.-O.; Choi, J.H.; Hwang, I.K.; Chung, J.-Y. Beta-Nerve Growth Factor Gene Therapy Alleviates Pyridoxine-Induced Neuropathic Damage by Increasing Doublecortin and Tyrosine Kinase A in the Dorsal Root Ganglion. Neural Regen. Res. 2020, 15, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Petruska, J.C.; Mendell, L.M. Nerve Growth Factor. In Encyclopedia of Neuroscience; Squire, L.R., Ed.; Academic Press: Oxford, UK, 2009; pp. 71–78. ISBN 978-0-08-045046-9. [Google Scholar]
- Martorana, F.; Gaglio, D.; Bianco, M.R.; Aprea, F.; Virtuoso, A.; Bonanomi, M.; Alberghina, L.; Papa, M.; Colangelo, A.M. Differentiation by Nerve Growth Factor (NGF) Involves Mechanisms of Crosstalk between Energy Homeostasis and Mitochondrial Remodeling. Cell Death Dis. 2018, 9, 391. [Google Scholar] [CrossRef] [PubMed]
- Kristiansen, M.; Ham, J. Programmed Cell Death during Neuronal Development: The Sympathetic Neuron Model. Cell Death Differ. 2014, 21, 1025–1035. [Google Scholar] [CrossRef] [Green Version]
- Aloe, L. Adrenalectomy Decreases Nerve Growth Factor in Young Adult Rat Hippocampus. Proc. Natl. Acad. Sci. USA 1989, 86, 5636–5640. [Google Scholar] [CrossRef] [Green Version]
- Cheung, P.T.; Wu, J.; Banach, W.; Chernausek, S.D. Glucocorticoid Regulation of an Insulin-like Growth Factor-Binding Protein-4 Protease Produced by a Rat Neuronal Cell Line. Endocrinology 1994, 135, 1328–1335. [Google Scholar] [CrossRef]
- Adamo, M.; Werner, H.; Farnsworth, W.; Roberts, C.T.; Raizada, M.; LeRoith, D. Dexamethasone Reduces Steady State Insulin-like Growth Factor I Messenger Ribonucleic Acid Levels in Rat Neuronal and Glial Cells in Primary Culture. Endocrinology 1988, 123, 2565–2570. [Google Scholar] [CrossRef]
- Swolin, D.; Brantsing, C.; Matejka, G.; Ohlsson, C. Cortisol Decreases IGF-I MRNA Levels in Human Osteoblast-like Cells. J. Endocrinol. 1996, 149, 397–403. [Google Scholar] [CrossRef]
- Armstrong, J.N.; McIntyre, D.C.; Neubort, S.; Sloviter, R.S. Learning and Memory after Adrenalectomy-Induced Hippocampal Dentate Granule Cell Degeneration in the Rat. Hippocampus 1993, 3, 359–371. [Google Scholar] [CrossRef]
- Spanswick, S.C.; Epp, J.R.; Keith, J.R.; Sutherland, R.J. Adrenalectomy-Induced Granule Cell Degeneration in the Hippocampus Causes Spatial Memory Deficits That Are Not Reversed by Chronic Treatment with Corticosterone or Fluoxetine. Hippocampus 2007, 17, 137–146. [Google Scholar] [CrossRef]
- Borrell, J.; De Kloet, E.R.; Versteeg, D.H.; Bohus, B. Inhibitory Avoidance Deficit Following Short-Term Adrenalectomy in the Rat: The Role of Adrenal Catecholamines. Behav. Neural. Biol. 1983, 39, 241–258. [Google Scholar] [CrossRef] [PubMed]
- Odaci, E.; Bas, O.; Kaplan, S. Effects of Prenatal Exposure to a 900 MHz Electromagnetic Field on the Dentate Gyrus of Rats: A Stereological and Histopathological Study. Brain Res. 2008, 1238, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Bastaki, S.M.A.; Amir, N.; Saeed, T.; Adeghate, E. Effect of Diabetes Mellitus on Vitamin B12, Pepsinogen and Gastric Intrinsic Factor Levels in Rats. Hamdan Med. J. 2020, 13, 93. [Google Scholar] [CrossRef]
- Paxinos, G.; Watson, C. The Rat Brain in Stereotaxic Coordinates—6th Edition. Available online: https://www.elsevier.com/books/the-rat-brain-in-stereotaxic-coordinates/paxinos/978-0-12-374121-9?aaref=https%3A%2F%2Fwww.google.com%2F (accessed on 6 November 2020).
- Ahlander-Lüttgen, M.; Madjid, N.; Schött, P.A.; Sandin, J.; Ogren, S.O. Analysis of the Role of the 5-HT1B Receptor in Spatial and Aversive Learning in the Rat. Neuropsychopharmacology 2003, 28, 1642–1655. [Google Scholar] [CrossRef]
- Misane, I.; Ögren, S.O. Selective 5-HT 1A Antagonists WAY 100635 and NAD-299 Attenuate the Impairment of Passive Avoidance Caused by Scopolamine in the Rat. Neuropsychopharmacology 2003, 28, 253–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gould, E.; Woolley, C.S.; McEwen, B.S. Short-Term Glucocorticoid Manipulations Affect Neuronal Morphology and Survival in the Adult Dentate Gyrus. Neuroscience 1990, 37, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Jaarsma, D.; Postema, F.; Korf, J. Time course and distribution of neuronal degeneration in the dentate gyrus of rat after adrenalectomy: A silver impregnation study. Hippocampus 1992, 2, 143–150. [Google Scholar] [CrossRef]
- Spanswick, S.C.; Lehmann, H.; Sutherland, R.J. A Novel Animal Model of Hippocampal Cognitive Deficits, Slow Neurodegeneration, and Neuroregeneration. Available online: https://www.hindawi.com/journals/bmri/2011/527201/ (accessed on 29 August 2020).
- MacLennan, K.M.; Smith, P.F.; Darlington, C.L. Adrenalectomy-Induced Neuronal Degeneration. Prog. Neurobiol. 1998, 54, 481–498. [Google Scholar] [CrossRef]
- Hamadi, N.; Sheikh, A.; Madjid, N.; Lubbad, L.; Amir, N.; Shehab, S.A.-D.S.; Khelifi-Touhami, F.; Adem, A. Increased Pro-Inflammatory Cytokines, Glial Activation and Oxidative Stress in the Hippocampus after Short-Term Bilateral Adrenalectomy. BMC Neurosci. 2016, 17, 61. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Famuyide, M.; Bhatt, A.J. Dexamethasone Decreases Insulin-like Growth Factor-I and -II via a Glucocorticoid Receptor Dependent Mechanism in Developing Rat Brain. Neuro Endocrinol. Lett. 2013, 34, 624–634. [Google Scholar]
- Murialdo, G.; Barreca, A.; Nobili, F.; Rollero, A.; Timossi, G.; Gianelli, M.V.; Copello, F.; Rodriguez, G.; Polleri, A. Relationships between Cortisol, Dehydroepiandrosterone Sulphate and Insulin-like Growth Factor-I System in Dementia. J. Endocrinol. Investig. 2001, 24, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Puche, J.; Muñoz, U.; García-Magariño, M.; Sádaba, M.; Castilla-Cortázar, I. Partial IGF-1 Deficiency Induces Brain Oxidative Damage and Edema, Which Are Ameliorated by Replacement Therapy. BioFactors 2016, 42, 60–79. [Google Scholar] [CrossRef] [PubMed]
- Beck, K.D.; Powell-Braxton, L.; Widmer, H.R.; Valverde, J.; Hefti, F. Igf1 Gene Disruption Results in Reduced Brain Size, CNS Hypomyelination, and Loss of Hippocampal Granule and Striatal Parvalbumin-Containing Neurons. Neuron 1995, 14, 717–730. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; Mitschelen, M.; Toth, P.; Ashpole, N.M.; Farley, J.A.; Hodges, E.L.; Warrington, J.P.; Han, S.; Fung, K.-M.; Csiszar, A.; et al. Endothelin-1-Induced Focal Cerebral Ischemia in the Growth Hormone/IGF-1 Deficient Lewis Dwarf Rat. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 1353–1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, A.; Ayer-LeLievre, C.; Heigensköld, C.; Bogdanovic, N.; Winblad, B.; Adem, A. Changes in IGF-1 Receptors in the Hippocampus of Adult Rats after Long-Term Adrenalectomy: Receptor Autoradiography and in Situ Hybridization Histochemistry. Brain Res. 1998, 797, 342–346. [Google Scholar] [CrossRef]
- Beilharz, E.J.; Bassett, N.S.; Sirimanne, E.S.; Williams, C.E.; Gluckman, P.D. Insulin-like Growth Factor II Is Induced during Wound Repair Following Hypoxic-Ischemic Injury in the Developing Rat Brain. Mol. Brain Res. 1995, 29, 81–91. [Google Scholar] [CrossRef]
- Knusel, B.; Michel, P.P.; Schwaber, J.S.; Hefti, F. Selective and Nonselective Stimulation of Central Cholinergic and Dopaminergic Development in Vitro by Nerve Growth Factor, Basic Fibroblast Growth Factor, Epidermal Growth Factor, Insulin and the Insulin-like Growth Factors I and II. J. Neurosci. 1990, 10, 558–570. [Google Scholar] [CrossRef] [Green Version]
- Strange, B.A.; Witter, M.P.; Lein, E.S.; Moser, E.I. Functional Organization of the Hippocampal Longitudinal Axis. Nat. Rev. Neurosci. 2014, 15, 655–669. [Google Scholar] [CrossRef] [Green Version]
- Zeidman, P.; Maguire, E.A. Anterior Hippocampus: The Anatomy of Perception, Imagination and Episodic Memory. Nat. Rev. Neurosci. 2016, 17, 173–182. [Google Scholar] [CrossRef] [Green Version]
- Morgado-Bernal, I. Learning and Memory Consolidation: Linking Molecular and Behavioral Data. Neuroscience 2011, 176, 12–19. [Google Scholar] [CrossRef]
- Conrad, C.D. Chronic Stress-Induced Hippocampal Vulnerability: The Glucocorticoid Vulnerability Hypothesis. Rev. Neurosci. 2008, 19, 395–411. [Google Scholar] [CrossRef] [PubMed]
- Rogalska, J. Mineralocorticoid and Glucocorticoid Receptors in Hippocampus: Their Impact on Neurons Survival and Behavioral Impairment after Neonatal Brain Injury. Vitam. Horm. 2010, 82, 391–419. [Google Scholar] [CrossRef] [PubMed]
- Islam, A.; Henriksson, B.; Mohammed, A.; Winblad, B.; Adem, A. Behavioural Deficits in Adult Rats Following Long-Term Adrenalectomy. Neurosci. Lett. 1995, 194, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Veldhuis, H.D.; De Kloet, E.R.; Van Zoest, I.; Bohus, B. Adrenalectomy Reduces Exploratory Activity in the Rat: A Specific Role of Corticosterone. Horm. Behav. 1982, 16, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Conrad, C.D.; Roy, E.J. Dentate Gyrus Destruction and Spatial Learning Impairment after Corticosteroid Removal in Young and Middle-Aged Rats. Hippocampus 1995, 5, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Oitzl, M.S.; de Kloet, E.R. Selective Corticosteroid Antagonists Modulate Specific Aspects of Spatial Orientation Learning. Behav. Neurosci. 1992, 106, 62–71. [Google Scholar] [CrossRef]
- Joffe, J.M.; Mulick, J.A.; Rawson, R.A. Effects of Adrenalectomy on Open-Field Behavior in Rats. Horm. Behav. 1972, 3, 87–96. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamadi, N.; Deniz, Ö.G.; Issa, A.S.A.; Islam, A.U.S.; Amir, N.; Minhas, S.T.; Madjid, N.; Khelifi-Touhami, F.; Kaplan, S.; Adem, A. Stereological Evidence of Non-Selective Hippocampal Neurodegeneration, IGF-1 Depletion, and Behavioral Deficit following Short Term Bilateral Adrenalectomy in Wistar Rats. Biomolecules 2023, 13, 22. https://doi.org/10.3390/biom13010022
Hamadi N, Deniz ÖG, Issa ASA, Islam AUS, Amir N, Minhas ST, Madjid N, Khelifi-Touhami F, Kaplan S, Adem A. Stereological Evidence of Non-Selective Hippocampal Neurodegeneration, IGF-1 Depletion, and Behavioral Deficit following Short Term Bilateral Adrenalectomy in Wistar Rats. Biomolecules. 2023; 13(1):22. https://doi.org/10.3390/biom13010022
Chicago/Turabian StyleHamadi, Naserddine, Ömür Gülsüm Deniz, Ahlam Said Abi Issa, Azim Ullah Shamsul Islam, Naheed Amir, Saeed Tariq Minhas, Nather Madjid, Fatima Khelifi-Touhami, Süleyman Kaplan, and Abdu Adem. 2023. "Stereological Evidence of Non-Selective Hippocampal Neurodegeneration, IGF-1 Depletion, and Behavioral Deficit following Short Term Bilateral Adrenalectomy in Wistar Rats" Biomolecules 13, no. 1: 22. https://doi.org/10.3390/biom13010022
APA StyleHamadi, N., Deniz, Ö. G., Issa, A. S. A., Islam, A. U. S., Amir, N., Minhas, S. T., Madjid, N., Khelifi-Touhami, F., Kaplan, S., & Adem, A. (2023). Stereological Evidence of Non-Selective Hippocampal Neurodegeneration, IGF-1 Depletion, and Behavioral Deficit following Short Term Bilateral Adrenalectomy in Wistar Rats. Biomolecules, 13(1), 22. https://doi.org/10.3390/biom13010022