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Abstract: Ischemic heart disease (IHD), especially myocardial infarction (MI), is a leading cause of
death worldwide. Although coronary reperfusion is the most straightforward treatment for limiting
the MI size, it has nevertheless been shown to exacerbate ischemic myocardial injury. Therefore,
identifying and developing therapeutic strategies to treat IHD is a major medical challenge. Snake
venoms contain biologically active proteins and peptides that are of major interest for pharmacological
applications in the cardiovascular system (CVS). This has led to their use for the development and
design of new drugs, such as the first-in-class angiotensin-converting enzyme inhibitor captopril,
developed from a peptide present in Bothrops jararaca snake venom. This review discusses the
potential usefulness of snake venom toxins for developing effective treatments against IHD and
related diseases such as hypertension and atherosclerosis. It describes their biological effects at the
molecular scale, their mechanisms of action according to their different pharmacological properties,
as well as their subsequent molecular pathways and therapeutic targets. The molecules reported here
have either been approved for human medical use and are currently available on the drug market or
are still in the clinical or preclinical developmental stages. The information summarized here may be
useful in providing insights into the development of future snake venom-derived drugs.

Keywords: atherosclerosis; biologically active molecules; cardioprotection; hypertension; ischemic
heart disease; myocardial infarction; snake venom

1. Introduction

Ischemic heart disease (IHD) is the most common cause of death worldwide, account-
ing for 16% of total diseases [1,2]. IHD includes acute coronary syndrome (ACS), which is
composed of unstable angina, myocardial infarction (MI) and sudden cardiac death [3]. MI,
which is the major IHD manifestation and cause of death, induces myocardial necrosis and
apoptosis in a short time, leading to organ dysfunction and HF with a poor prognosis [3].
IHD may arise for various causes, including hypertension, a major contributor to the
high IHD prevalence, and atherosclerosis with coronary blood flow reduction to the heart
muscle due to plaque formation and rupture [4,5]. Although myocardial reperfusion is
essential to safeguard viable myocardium in MI patients, the process of restoring coronary
blood flow to the ischemic myocardium can paradoxically induce myocardial injury in
itself—a manifestation that has been termed “myocardial reperfusion injury” [6]. However,
the progression of coronary revascularization techniques and angioplasty as well as the
significant advances in the MI diagnosis and treatment, such as the development of novel
antiplatelet and antithrombotic agents, remain insufficient [7]. This emphasizes the need to
identify and develop new therapeutic strategies to reduce the prevalence of IHD as well as
hypertension and atherosclerosis.

Some drug development strategies have shown promising results in the use of natural
products, such as snake venom, to treat many diseases, including IHD [7–10]. The concept
of using snake venom as a treatment for cardiovascular diseases (CVDs) emerged from
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the observation that snake bite envenoming is associated with a number of cardiovascular
effects, including hypotension/hypertension, cardiotoxicity, MI, cardiac arrest, arrhythmias,
coagulopathy and circulatory shock [11]. These potentially lethal manifestations caused
by snake venom components have led to their use for thousands of years in traditional
medicine as the basis of preparations and decoctions meant to cure cardiovascular disor-
ders [12]. Since 1837, cobra venom has been used to treat vascular problems and ACS [12].
In the 20th century, the first animal toxin-derived drug, captopril, was designed based on
bradykinin-potentiating peptides (BPPs) from the venom of the Bothrops jararaca snake and
approved in 1981 for the treatment of hypertension [13]. Since then, other venom drugs
have been developed based on or inspired by snake venom toxins, such as eptifibatide and
tirofiban, and used to prevent heart attacks and thrombotic diseases [14]. Today, there is a
renewed interest in snake-venom-based therapies, particularly due to the improvements
in high-throughput approaches to the discovery of new toxin-based drugs. Some of these
venom-based compounds are currently in clinical trials and many others may appear in the
future as studies continue to investigate snake venom [15–20]. Snake venom is composed
of highly selective and affine compounds [17,21] and mainly include proteins and peptides
(90% to 95% of the venom dry weight) that target receptors (acetylcholine receptors, mem-
brane transporters, enzymes) and ion channels (Na+, K+ and Ca2+ channels) [22]. In the
CVS, snake toxins may have multiple targets such as cardiac muscle and vascular smooth
muscle or the capillary vascular bed, and they include (i) proteins and peptides without
enzymatic activity, such as BPPs, natriuretic peptides (NPs), disintegrins, C-type lectin-like
proteins (CTLs), three-finger toxins (3FTx), vascular endothelial growth factors (svVEGFs),
sarafotoxins (SFTXs), alternagin-C and cysteine-rich secretory proteins (CRISPs); and
(ii) proteins with enzymatic activity, such as fibrinolytic enzymes (metalloproteinases and
serine proteinases) and phospholipases A2 (PLA2s) [23,24] (Figure 1 and Table 1).
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Overall, cardiovascular research on snake toxins has focused on three main areas
related to the management of (i) MI and ACS, (ii) hypertension and (iii) atherosclerosis
with the prevention of platelet aggregation and antithrombotic therapy. Therefore, this
review describes the snake venom components that interact with the CVS and their use for
the potential treatment of IHD and associated diseases (hypertension and atherosclerosis)
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by emphasizing their targets and mechanisms of action (Table 1). Venom toxins that do
not directly interact with the CVS, such as proteins and peptides affecting blood cells and
enzyme systems, are not discussed in this review.

Table 1. Cardiovascular properties of snake venom components.

Proteins and
Peptides

Molecular
Mass (kDa)

Main
Biological

Target
Effects on Cardiovascular System

Effects in Ischemic
Heart Disease

Effects on Blood
Pressure

Effects on
Atherosclerosis

Non-enzymatic toxins

Bradykinin-
potentiating

peptides
(BPPs)

1.5–3.0
Angiotensin-
converting

enzyme (ACE).

- Limiting
myocardial injury
and necrosis in MI
and HF [9,25–30].

- Decreasing the risk
of cardiac arrest
(>20%) and
increasing survival
rates after MI [31].

- Improving
endothelial
vasomotor
dysfunction and
preventing
myointimal
proliferation after
vascular injury
[32–35].

- Lowering of BP
through a
decrease in the
concentration of
Ang II and an
increase in the
concentration of
BK.

- Slowing the
progression of
arteriosclerotic
lesions [36].

- Reducing aortic
cholesterol
content and the
progression of
carotid and
coronary lesions
due to a
high-cholesterol
diet [32–35].

Natriuretic
peptides

(NPs)
2.5–5.5

Natriuretic
peptide

receptor A, B
and C.

- Cardioprotective
effects in chronic
HF [37,38].

- Improving cardiac
function and
reducing post-MI
necrosis, fibrosis
and inflammation
through an NPR-A–
cGMP-dependent
pathway,
downstream
activation of
mitochondrial
KATP channels and
inhibition of the
mitochondrial
permeability
transition pore
(mPTP) [15,17,18].

- Lowering of BP
through a
reduction in
vascular
resistance (due
to a decrease in
the influx of Ca2+

ions into muscle
cells) and a
decrease in the
volume of
circulating blood
(due to an
increase in the
volume of
excreted urine)

- Endothelium-
dependent
vasorelaxation
with increased
NO production
[39].
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Table 1. Cont.

Proteins and
Peptides

Molecular
Mass
(kDa)

Main
Biological

Target
Effects on Cardiovascular System

Effects in Ischemic Heart
Disease

Effects on Blood
Pressure

Effects on
Atherosclerosis

Disintegrins 4–15

Platelet
receptors

αIIbβ3 integrin
(glycoprotein

IIb/IIIa
receptors).

- Improving
microvascular flow,
reducing infarct size
and the number of
infiltrating platelets
and post-IM
leucocytes [40].

- Reducing the risk of
IHD and preventing
thrombotic
complications and
major adverse
cardiac events in MI
[41,42].

- Anti-atherogenic
role by
decreasing
carotid
atherosclerotic
plaque
inflammation
and improving
its stabilization
in ACS patients
[43,44].

- Improving the
prognosis of ACS
patients [45].

C-type lectins
(CTLs) 30

Platelet
receptors GPIb

and
GPIa/IIa (α2β1

integrin).

- Inhibiting
platelet
aggregation
[46,47].

Three-finger
toxins (3FTx) 5.2–8.0

Platelet
receptors
αIIbβ3

integrin,
cholinergic
receptors.

- Decreasing HR
in vivo and ex vivo
in isolated heart [48].

- Inducing a positive
cardiac inotropic
response [49].

- Suppressing the
contractility and
irreversible
contracture of the
myocardium,
cardioprotection
[49–51].

- Lowering BP and
inducing
hypotension.

- Inducing
vasodilation
through a
vasorelaxant effect
on smooth muscles
and preventing
muscle contraction
[52,53].

- Inhibiting
platelet
aggregation
[54–56].

Vascular
endothelial

growth
factors

(svVEGFs)

24–25

Receptor
tyrosine
kinases

VEGFR-1,
VEGFR-2 and

VEGFR-3.

- Decreasing infarct
size through
stimulation of
VEGFR-2 receptors,
ERK pathway
activation and
subsequent
inhibition of mPTP
opening and
improvement of
oxidative
phosphorylation at
the onset of
reperfusion [16].

- Lowering BP
through
endothelium-
dependent NO
production [16,57].



Biomolecules 2023, 13, 1539 5 of 28

Table 1. Cont.

Proteins and
Peptides

Molecular
Mass
(kDa)

Main
Biological

Target
Effects on Cardiovascular System

Effects in Ischemic Heart
Disease

Effects on Blood
Pressure

Effects on
Atherosclerosis

Sarafotoxins
(SFTXs) 2.3–2.7

Endothelin
type-A (ETA)
and -B (ETB)

receptors.

- Reducing infarct size
and the incidence of
arrhythmias [58–61]
through the selective
activation of ETB
receptors prior to
coronary occlusion, NO
release and
cardiomyocyte
mitochondrial KATP
channel activation
[58–61].

- Inducing
vasorelaxant
and
vasodilator
effects [60,61].

Alternagin-C 21.7 Integrin α2ß1
and VEGFR-2.

- Enhancing cardiac
protection against
hypoxia/reoxygenation-
induced cardiomyocyte
negative inotropism
[62].

Cysteine-rich
secretory
proteins
(CRISPs)

23–25 Voltage-gated
ion channels.

- Blocking smooth muscle
contraction [63,64].

- Inhibiting high
K-induced contraction
[65].

- Inhibiting or activating
aortic smooth muscle
contraction [63,66].

- Blocking the ryanodine
receptor [67].

Enzymatic toxins

Fibrinolytic
enzymes

(metallopro-
teinases and

serine
proteinases)

8–104
Fibrinogen (α-
and β chains),

fibrin.

- Reducing the mortality
rate after IR, decreasing
cardiomyocyte damage
and cardiac biomarkers
of ACS and improving
myocardial function
[68].

- Effective thrombolytic
activity with a
reasonable
recanalization rate, low
reocclusion rate and a
low rate of bleeding
complications [69].

- Stabilizing and
inhibiting
atherosclerotic
lesions [70,71].

- Reducing total
cholesterol
content [71].

- Reducing the
degree of
stenosis of the
coronary artery
[71].

- Inhibiting
platelet
aggregation [72].
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Table 1. Cont.

Proteins and
Peptides

Molecular
Mass
(kDa)

Main
Biological

Target
Effects on Cardiovascular System

Effects in Ischemic Heart
Disease

Effects on Blood
Pressure

Effects on
Atherosclerosis

Phospholipases
A2 (PLA2s) 13–14

Cell membrane,
secretory PLA2

receptors.

- Cardiotoxicity [73,74].
- Bradycardia and

atrioventricular block
[75,76].

- Myocardial contracture
[74,76,77].

- Lowering BP
through the
increase in
plasma PGI2
and
thromboxane
A2 levels [78].

- Vasorelaxation
[79,80].

- Anti-atherogenic
activity [80,81].

The upper part of the table presents protein compounds without enzymatic activity: bradykinin-potentiating
peptides (BPPs), natriuretic peptides (NPs), disintegrins, C-type lectin-like proteins (CTLs), three-finger toxins
(3FTx), vascular endothelial growth factors (svVEGFs), sarafotoxins (SFTXs), alternagin-C and cysteine-rich
secretory proteins (CRISPs). The lower part of the table presents protein compounds with enzymatic activ-
ity: fibrinolytic enzymes (metalloproteinases and serine proteinases) and phospholipases A2 (PLA2s). ACE,
angiotensin-converting enzyme; ACS, acute coronary syndrome; Ang II, angiotensin II; BK, bradykinin; BP, blood
pressure; MI, myocardial infarction; HF, heart failure; IHD, ischemic heart disease.

The review focuses on major toxins that directly affect the CVS, including four cate-
gories that are classified based on their cardiovascular therapeutic usefulness in humans:
toxin-based approved drugs, toxin-based orphan drugs (i.e., synthetic pharmaceutical
products that remain commercially undeveloped), toxins of interest in experimental and
pre-clinical studies and toxins with limited experimental data (Table 2).

It should be noted that several molecules that were successful in animal assays were
not approved in subsequent clinical trials. Several orphan drugs derived from snake venom
also reached advanced clinical phases, but were stopped before market approval [82,83].
This is mainly due to the extrapolation of biological data across species, which is a key
aspect of biomedical research and drug development. Caution should also be considered in
interpreting animal experiments, as the use of in vitro assays in artificial conditions lacking
a normal physiological environment and neurohumoral connections may influence study
results and bias the subsequent in vivo data. This explains why some studies discussed in
this review report conflicting results regarding venom compounds.

Table 2. Classification of main snake venom toxins according to their usefulness in cardiovascular
therapy or research.

Toxin-Based Approved Drugs

Peptide/Protein Origin Drug Mode of Action Cardiovascular
Indications

BPP-5a, BPP-9a
(Bradykinin-
potentiating peptides,
BPPs)

Bothrops jararaca Captopril/Enalapril ACE inhibitor Hypertension, MI, HF [84].

Barbourin
(Disintegrin) Sistrurus m. barbouri Integrilin/Eptifibatide GPIIb/IIIa antagonist ACS and antithrombotic

therapy [14,41].

Echistatin
(Disintegrin) Echis carinatus Aggrastat/Tirofiban GPIIb/IIIa antagonist ACS and antithrombotic

therapy [14,41].

Batroxobin
(Fibrinolytic enzyme)

Bothrops moojeni
Bothrops atrox Defibrase Cleavage of

fibrinogen Aα subunit
Anticoagulant therapy in

ACS [85,86].
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Table 2. Cont.

Toxin-Based Approved Drugs

Peptide/Protein Origin Drug Mode of Action Cardiovascular
Indications

Toxin-based orphan drugs

Peptide/Protein Origin Drug Mode of action Cardiovascular indications

DNP
(Natriuretic peptide)

Dendroaspis
angusticeps Cenderitide (CD-NP) NPR-A and -B agonist HF [37,38].

Fibrolase
(Fibrinolytic enzyme)

Agkistrodon contortrix
contortrix Alfimeprase Cleavage of fibrinogen

α- and β-chains

Acute ischemic stroke,
acute peripheral arterial

occlusion, catheter
occlusion [87–89].

Ancrod
(Fibrinolytic enzyme)

Calloselasma
rhodostoma Viprinex Cleavage of fibrinogen

α-chain
Anticoagulant therapy in

thrombosis [88,90].

Toxins of interest in experimental and pre-clinical studies

Peptide/Protein family Origin Molecule Mode of action Cardiovascular indications

Natriuretic peptides Macrovipera lebetina Lebetin 2 (L2) NPR-A and -B agonist Increased BP, MI [15,17,18].

Disintegrins Rhinocerophis
alternates Alternagin-C

GPIa/IIa (α2β1
integrin) antagonist
VEGFR-2 inhibition

MI [62,91].

C-type Lectins (CTLs) Vipera palaestinae Vipegitide GPIa/IIa (α2β1
integrin) antagonist

Antithrombotic therapy
[14,92].

Three-finger toxins
(3FTx)

Dendroaspis jamesoni
kaimosae

Dendroaspin
(mambin)

GPIIb/IIIa (Integrin
αIIbβ3) antagonist

Antithrombotic therapy
[54].

Vascular endothelial
growth factors
(svVEGFs)

Macrovipera lebetina ICPP VEGF-A agonist Increased BP, acute MI [16].

Sarafotoxins (SRTXs) Atractaspis
engaddensis SRTX-6c Endothelin receptors

ETB agonist MI [58–61].

Toxins with limited experimental data

Peptide/Protein family Origin Molecule Mode of action Cardiovascular indications

Cysteine-rich secretory
proteins (CRISPs) Gloydius blomhoffii Ablomin L-type voltage-gated

Ca2+ channel blockade Hypertension [63,64].

Phospholipases A2
(PLA2s)

Oxyuranus scutellatus
Vipera palaestinae

OSC3
PLA2 isoforms

Hypertension [93].
Atherosclerosis [81].

ACE, angiotensin-converting enzyme; ACS, acute coronary syndrome; DNP, Dendroaspis natriuretic peptide;
HF, heart failure; ICPP, increasing capillary permeability protein; MI, myocardial infarction; NPR-A and -B,
natriuretic peptide receptors A and B; VEGR-2, vascular endothelial growth factor receptor 2.

In the following part of the review, the order of toxins is presented as indicated in
Table 1: proteins and peptides without enzymatic activity are described first (Sections 2–9),
followed by compounds with enzymatic activity (Sections 10 and 11).

2. Bradykinin-Potentiating Peptides

Bradykinin-potentiating peptides (BPPs) are proline-rich oligopeptides of 5 to
14 amino acid residues, predominantly generated by the enzymatic action of kallikreins on
endogenous kininogen [94]. They are found in some snake venoms, mainly in
Bothrops species, where they represent the first natural bradykinin (BK) agonists and ACE
inhibitors [84,95]. In the organism, BPPs increase BK-induced hypotension and decrease
vasopressor effects linked to angiotensin I (Ang I) by inhibiting ACE [96,97] (Figure 2).
However, snake BPPs enhance BK-induced effects by interacting directly with BK receptors
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rather than inhibiting BK degradation through ACE inhibition [98]. Accordingly, BK recep-
tor B2 (B2-R) stimulation induces vasodilation as well as anti-fibrosis, anti-inflammatory
and anti-reactive oxygen species effects through various intracellular signaling pathways,
while the inhibition of angiotensin II (Ang II) production prevents vasoconstriction, inflam-
mation and cardiovascular damage [99,100]. The first BPP was isolated from the venom
of the Brazilian viper Bothrops jararaca and then developed into a drug, captopril, against
hypertension based on the structure of the peptides BPP-5a and BPP-9a [101]. Captopril
was a significant milestone in several aspects: it was (i) the first drug developed from
animal venom by converting the toxic effect into therapeutic action; (ii) one of the first
examples of ligand-based drug discovery; (iii) the first ACE-targeting drug, becoming a
blockbuster and inspiring many other ACE-inhibitor drugs based on the BPP-5a binding
motif, like enalapril, lisinopril, quinapril, ramipril, trandolapril and moexipril [102,103];
and (iv) the drug that initiated the development of the next class of antihypertensive drugs,
the Ang II-receptor antagonists (ARBs). Considering the therapeutic success of captopril,
other snake BPPs have been investigated, particularly due to their specificity for the ACE
C-domain. ACE has two homologous catalytic domains (N and C) with different substrate
specificities: BK is hydrolyzed approximately equally by both catalytic domains, while
Ang I is hydrolyzed approximately three times more efficiently by the C-domain than
by the N-domain [104]. Thus, a C-domain-selective inhibitor would be more relevant as
it mainly decreases the conversion of Ang I to Ang II by the C-domain and decreases
the degradation of BK while preventing its accumulation by preserving ACE N-domain
activity. As conventional ACE inhibitors, such as captopril, are not domain-selective
and thus induce a higher risk of developing BK-mediated angioedema, this property of
C-domain selectivity of BPPs makes them more beneficial than ACE inhibitors such as
captopril [105]. Nevertheless, studies have shown that the complete inhibition of Ang I
cleavage requires the blockade of both active sites of ACE [106–108]. Selectivity of action
of the C-domain has been reported for certain snake BPPs, such as R-BPP and Y-BPP de-
rived from Azemiops feae venom [109] and the decapeptide BPP-10c from Bothrops jararaca
venom, which was found to be 400-fold more selective for the C-domain (Ki = 0.5 nM)
than for the N-domain (Ki = 200 nM) [110]. In contrast, an opposite pattern was found for
BPP-12b from the same snake, which was shown to be more selective for the N-domain
(Ki = 5 nM) than for C-domain (Ki = 150 nM) [111]. Additionally, other BPPs with as-
sociated neuroendocrine functions have been discovered from the venom of Bothrops,
Crotalus and Lachesis [112–117] and are suggested to belong to a novel class of endogenous
neuropeptides [84,118].

2.1. BPPs and Cardioprotection in Ischemia–Reperfusion Injury

Initially indicated for the treatment of arterial hypertension, the use of BPP-based
drugs such as captopril has been extended to prevent, treat or improve symptoms in con-
ditions such as coronary artery disease and HF [29,30]. These drugs showed beneficial
effects in limiting myocardial injury and necrosis in various models of coronary artery
occlusion [9,25–28] and in clinical trials [29,30], where they decreased by more than 20%
the risk of cardiac arrest and increased survival rates after MI [31]. Captopril has also
been shown to slow the progression of arteriosclerotic lesions in clinical and preclinical
studies by improving endothelial vasomotor dysfunction, preventing myointimal prolif-
eration after vascular injury, reducing aortic cholesterol content and the progression of
carotid and coronary lesions in high-cholesterol diet models [32,33,36,119]. Several lines
of evidence indicate that the actions of ACE inhibitors in cardiac ischemia are due to their
effect on the inhibition of endogenous BK degradation rather than their effect on Ang II
inhibition [8,9,120,121]. BK has been suggested to be a key mediator in ischemic and
pharmacological cardioprotective maneuvers via the inhibition of platelet aggregation and
plasminogen activation, which could contribute to ACE-inhibitor-induced cardiovascular
protection in IHD [9]. The BP effects of ACE inhibitors may also play a role; however,
captopril has been found to be cardioprotective in hypertensive as well as in normotensive
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rats, suggesting that the cardiac effect of captopril may also involve the suppression of
Ang II [119]. Recently, other BPPs, such as BPP-10c, which kinetically modulate argini-
nosuccinate synthase activity with nitric oxide (NO) production in endothelial cells, have
been shown to reduce hydrogen peroxide-induced oxidative stress [122,123]. Since post-MI
reperfusion induces oxidative stress, NO deficiency and endothelial dysfunction leading
to severe cardiac injury, BPP-10c could be further investigated as a promising therapeutic
strategy for IHD.
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Figure 2. Snake venom toxins with hypotensive properties (highlighted in red): mechanisms of action
in endothelial cells (EC) and vascular smooth muscle cells (VSMC) (details are included in the text).
AC, adenylyl cyclase; ACE, angiotensin-converting enzyme; AKT, protein kinase B; AMP, adenosine
monophosphate; Ang, angiotensin I; Ang II, angiotensin II; AT1-receptors, Angiotensin II receptor
type 1; B2-R, bradykinin receptor B2; BK, bradykinin; BPPs, bradykinin-potentiating peptides; cAMP,
cyclic adenosine monophosphate; cGMP, cyclic guanosine monophosphate; COX, cyclooxygenase;
CRISPs, cysteine-rich secretory proteins; EDRF, endothelium-derived relaxing factor; eNOS, endothe-
lial nitric oxide synthase; GC, guanylate cyclase; H1-R, histamine H1 receptor; mAChR-M1, M1
muscarinic acetylcholine receptor; MT-α, muscarinic toxin; NO, nitric oxide; PGI2 prostaglandin I2
(prostacyclin); PI3K, phosphoinositide 3-kinase; PKA, protein kinase A; PKG, protein kinase G; PLA2s,
phospholipases A2; NPs, snake venom natriuretic peptides; PI3K, phosphatidylinositol-3-kinase;
svVEGFs, snake venom vascular endothelial growth factors; 3FTx, three finger toxins; VEGFR-2,
vascular endothelial growth factor receptor type 2.

2.2. BPPs with Potential in Hypertension Therapy

A persistent increase in BP is a sign of hypertension that can lead, if untreated, to
IHD [4,5]. To date, numerous antihypertensive drugs with different mechanisms of action
have been developed. Snake venom BPPs decrease BP by enhancing the action of the
endogenous vasodilator BK and inhibiting the vasoconstrictor Ang II [96,97] (Figure 2).
However, it is not yet well established whether the cardiovascular effects of BPPs are only
due to ACE inhibition [84]. Some studies have revealed that there are BPPs, such as BPP-10c,
that possess non-ACE-inhibition mechanisms, such as the stimulation of argininosucci-
nate synthase, which leads to the production of NO in endothelial cells and a decrease
in BP [84]. The BPP-5a peptide has also been shown to exert a long-lasting antihyperten-
sive effect in spontaneously hypertensive rats (SHRs) via a unique target involving an
NO-dependent mechanism [124–126]. In another study, the BPP-5a peptide was found
to promote vasodilation by interacting with M1 muscarinic cholinergic receptors and the
BK receptor B2-R and triggering NO synthesis by the endothelium [125]. Other members
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of the BPPs with a common hypotensive effect have been identified in different snake
species, including Bothrops jararaca (BPP-7a) [127], Bothrops insularis [128], Lachesis muta
(Lm-BPP 1–5) [115], Agkistrodon bilineatus [129], Lachesis muta rhombeata (LmrBPP-9) [130],
and Crotalus durissus cascavella (BPP-Cdc) [131]. Different physiological mechanisms under-
lie the hypotensive effect of BPPs. Therefore, these studies contribute to the understanding
of BP regulation and the identification of new therapeutic targets useful in the treatment
of CVDs.

3. Natriuretic Peptides

Venom natriuretic peptides (NPs) are part of the NP family, which is composed of three
mammalian NP isoforms, namely atrial NP (ANP), B-type NP (BNP), C-type NP (CNP) and
an isoform originating from the Dendroaspis snake venom (DNP) [132]. These peptides are
composed of approximately 20 to 50 amino acid residues and contain a conserved 17-residue
disulfide ring [132]. NPs target membrane NP receptors (NPRs) of the reno-cardiovascular
system to induce natriuresis, diuresis and vasorelaxation, thereby reducing blood pressure
and volume [130,131] (Figure 2). NPs isolated from snake venom, although of a wide
variety, nevertheless exhibit the same cardio-renal properties, allowing them to exert a
broad spectrum of physiological effects that can be potentially used to treat CVDs [133].
Various snake venom NPs have been identified, such as Lebetin 2 (L2) from the blunt-
nosed viper (Macrovipera lebetina) [134]; NP2_Casca from the cascavella rattlesnake (Crotalus
durissus cascavella) [135]; PtNP-a from the eastern brown snake (Pseudonaja textilis) [136];
PaNP-c from the king brown snake (Pseudechis australis) [136]; PNP from the Persian horned
viper (Pseudocerastes persicus) [137]; three natriuretic-like peptides, TNP-a, TNP-b, and TNP-
c, from the venom of the inland taipan (Oxyuranus microlepidotus) [138]; KNP from Bungarus
flaviceps [139] and Lm-CNP from Lachesis muta [115]. These venom peptides have been
widely used as a promising basis for the design of cardiovascular drugs with improved
activity, affinity and selectivity as well as longer stability and half-life [140,141].

3.1. Natriuretic Peptides and Cardioprotection in Ischemia–Reperfusion Injury

Recently, a drug developed by Novartis on the basis of its ability to potentiate endoge-
nous NPs was commercialized to reduce the risk of cardiovascular death and hospitalization
after HF [142]. Nesiritide is another drug used as a recombinant human BNP to improve
the hemodynamic status of HF patients. However it induces severe adverse effects, such as
hypotension, which currently limits its clinical use, highlighting the need for developing
NP analogs without these side effects [143]. In this context, venom NPs have been used
to develop analogues with the prospect of clinical application; among these, cenderitide
is the most advanced [141]. It should be noted that NPs have the common property of in-
ducing an NO increase and protein kinase G activation, which mediates their vasorelaxant
effect [138,144]. Cenderitide (formerly CD-NP) was designed to overcome the hypoten-
sive properties of NPs while improving cardiovascular function through the activation of
the particulate guanylyl cyclases NPR-A and -B [141]. The chimeric peptide, composed
of the 15-residue C-terminal tail of DNP and CNP, showed less adverse hypotensive ef-
fects than current NP drugs in preclinical studies as well as in the late phases of clinical
trials [37,38], but the licensing agreement to further develop this peptide was recently
terminated [82]. More recently, L2 from Macrovipera lebetina [134,145] has been proved to
improve cardiac function and reduce necrosis, fibrosis and inflammation in a reperfused
MI model [15,18]. Cardiac effects were shown to be mediated through an NPR-A–cyclic
guanosine monophosphate (cGMP)-dependent pathway, downstream activation of mi-
tochondrial KATP channels, and inhibition of the mitochondrial permeability transition
pore (mPTP) at the time of reperfusion [15,17,18]. These results also showed that L2 can
use a previously undiscovered mechanism involving M2 macrophage polarization and
activation of the NPR-A–cGMP–Interleukin 10 axis to exert its post-MI anti-inflammatory
effects [20]. Other ongoing experiments suggest that L2 could exert at least part of its
preclinical effects via the involvement of the natriuretic receptor NPR-C, classically asso-
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ciated with the clearance of NPs, thus confirming the mechanistic role of NPR-C in NP
cardiovascular effects [17,18]. Thus, these features demonstrate that venom compounds
such as L2 may be of great therapeutic significance, especially in MIs with intense and
prolonged inflammatory responses. These studies also provide novel insights into the
mechanisms of myocardial repair triggered by NPs and could have good prospects for
discovering new therapeutic targets and options in the treatment of IHD.

3.2. Natriuretic Peptides with Potential in Hypertension Therapy

Snake venom NPs exhibit the same hemodynamic properties as their mammalian
counterparts. They decrease BP by inducing diuresis, natriuresis and vasodilation via
endothelium-dependent vasorelaxation and by inhibiting the renin–angiotensin–aldosterone
system [146]. Although NP hemodynamic properties have been proven, NPs are never-
theless not used clinically for the treatment of hypertension. In fact, potential NP-based
drugs have been synthesized to overcome these hypotensive properties, as was the case
with DNP [141]. However, several preclinical studies have demonstrated the vasorelaxant
and vasodilator effect of natriuretic toxins. Fon instance, venom-derived L2 induces a
dose-dependent decrease in the arterial BP in mice [18] (Figure 2). NP2_Casca was also
shown to induce an endothelium-dependent relaxant effect on the thoracic aortic rings,
likely involving K+ channels, along with a decrease in heart rate (HR) and arterial BP and
an improvement in renal function [135]. Coa_NP, identified in Crotalus oreganus abyssus
venom, also produces endothelium-dependent vasorelaxation in the thoracic aortic rings by
increased NO production but without binding to the natriuretic receptor NPR-A [39]. For
some other snake venom NPs, such as PaNP-c and PtNP-a, a dual mechanism was observed
with ACE inhibition together with an increase in intracellular cGMP concentration [136].

4. Disintegrins

Snake venom disintegrins are small cysteine-rich proteins (4–15 kDa) that have been
demonstrated to be potent inhibitors of various integrins. They can act on platelet inte-
grin αIIbβ3, also known as glycoprotein IIb/IIIa receptors, to inhibit platelet aggregation
in vitro and in vivo by blocking fibrinogen and von Willebrand factor binding to the
GPIIb/GPIIIa complex on the surface of platelets [147] (Figure 3). Thus, antiplatelet drugs
targeting this receptor could be indicated in the case of ACS and in percutaneous coro-
nary interventions [14]. Snake venom disintegrins have RGD or KGD motifs that allow
them to bind integrin and prevent fibrinogen binding to platelets [148,149]. An RGD
tripeptide sequence is the main recognition site for the αIIbβ3 integrin receptor. As such,
RGD disintegrins have been the most studied, and research on these have resulted in
the design and synthesis of novel antiplatelet pharmaceutical compounds [148]. Typical
antiplatelet drugs found in clinics to treat ACS include Integrilin (eptifibatide), a heptapep-
tide derived from barbourin, a protein found in the venom of the American Southeastern
pygmy rattlesnake (Sistrurus miliarius barbourin) and Aggrastat (tirofiban), a small molecule
based on the structure of echistatin that is found in the venom of the saw-scaled viper
(Echis carinatus) [14]. Several other disintegrins with common antiplatelet aggregation
potential have been purified from venoms of snakes such as the common bamboo viper
(Trimeresurus gramineus) [147], the Malayan pit viper (Calloselasma rhodostoma) [150], the
Halys pit viper (Gloydius halys) [151] and the fer-de-lance (Bothrops asper) [152]. These
disintegrins have been described as highly potent and selective GPIIb/IIIa antagonists
in vitro and in vivo [147,153]. In addition to their antiplatelet effect, some disintegrins
have angiogenic properties. For instance, CC5 and CC8, two highly homologous disinte-
grins isolated from the North African viper Cerastes cerastes venom, inhibit angiogenesis
by disrupting αvβ3 and α5β1 binding in vitro in human microvascular endothelial cells
(HMEC-1) and human brain microvascular endothelial cells (HBMEC) [154], ex vivo in a
rat aortic ring assay and in vivo in a chick embryo chorioallantoic membrane model (CAM).
These effects, which require an RGD-loop disintegrin, have been shown to be mediated
by pro-apoptotic pathways involving the downregulation of the FAK/AKT/PI3K axis
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and caspase activation. Similarly, alternagin-C, a disintegrin-like peptide isolated from
Bothrops alternatus snake venom, impairs angiogenesis following binding to α2β1 integrin
and inhibition of VEGF/VEGFR-2 signaling [91].
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Figure 3. Snake-venom toxins with anti-atherogenic properties (highlighted in red). Snake-venom-
derived molecules may exert anti-atherogenic effects by lowering cholesterol levels in the blood
or in the arterial wall (BPPs, fibrinolytic enzymes, PLA2s), or by inhibiting arterial thrombosis
by blocking platelet aggregation (disintegrins, CTLs, 3FTx, fibrinolytic enzymes,) or by activating
fibrinolysis in blood clots (fibrinolytic enzymes: metalloproteases and serine proteases). Members of
the disintegrin and fibrinolytic enzyme families are currently the main toxins used as antithrombotic
drugs. Disintegrins act on the platelet surface via various receptors and glycoproteins, and fibrinolytic
enzymes act by digesting fibrin to inhibit thrombus formation. ADP, adenosine diphosphate; BPPs,
bradykinin-potentiating peptides; CTLs, C-type lectins, GPIb-V-IX, platelet glycoprotein adhesion
receptor; GPIIb/IIIa, platelet-specific integrin receptor (αIIbβ3); P2Y12-R, P2Y1-R, platelet G-protein-
coupled receptors for ADP; PAR1/4-R, protease-activated receptors (G-protein-coupled receptors for
thrombin); PLA2s, phospholipases A2; 3FTx, three-finger toxins; vWF: von Willebrand factor.

4.1. Disintegrins and Cardioprotection in Ischemia–Reperfusion Injury

The snake venom disintegrins-based drugs Integrilin (or eptifibatide) and Aggrastat
(or tirofiban) designed from barbourin and echistatin, respectively, are the most frequently
studied GPIIb/IIIa inhibitors [41]. They were approved by the FDA in 1988 for the treatment
of ACS [14]. Both drugs are specific αIIbβ3 antagonists, designed based on the KGD
pharmacophore for eptifibatide and the RGD pharmacophore for tirofiban. They exert their
actions by preventing the binding of fibrinogen to αIIbβ3 of human platelets and thereby
inhibiting platelet aggregation and thrombus formation (Figure 3). In preclinical studies,
eptifibatide and tirofiban have been shown to improve microvascular flow, reduce the
infarct size and decrease the number of infiltrating platelets and leucocyte recruitment and
accumulation in the ischemic myocardium at the onset of reperfusion [40]. Clinically, these
drugs reduce the risk of IHD and prevent thrombotic complications and major adverse
cardiac events that can occur during and after percutaneous coronary intervention [41,42].
However, despite the beneficial effects of GPIIb/IIIa inhibitors, they are not included in
the current therapeutic protocol for MI patients. Due to the risk of bleeding complications
associated with GPIIb/IIIa inhibitors, only patients with a high risk of thrombosis are
currently treated with GPIIb/IIIa inhibitors [40]. Consequently, numerous preclinical
studies have focused on the therapeutic potential of other snake-venom disintegrins in
IR injury. Some of them are under experimental study and have good prospects for the
treatment of IHD and related diseases, such as alternagin-C from the Bothrops alternatus
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venom, which has been found to protect cardiomyocytes against hypoxia–reoxygenation-
induced negative inotropism [62].

4.2. Disintegrins in Atherosclerosis Therapy

Most cases of acute MI are caused by the rupture of an atherosclerotic plaque associated
with subsequent thrombus formation [155]. Atherosclerosis is a fibroproliferative and
inflammatory process occurring in arterial walls in response to several factors, such as
hypertension and hypercholesterolemia. Low-density-lipoprotein (LDL) cholesterol is an
important causal risk factor for atherosclerotic CVDs. In reperfused MI, elevated LDL
cholesterol promotes thromboinflammation through excess microvascular endothelial von
Willebrand factor and platelet adhesion, resulting in less microvascular reflow and a larger
infarct size [156]. The rupture of an atherosclerotic plaque leads to platelet aggregation,
thrombosis and an increased risk of ACS [155,157]. Thus, in the presence of elevated
LDL cholesterol, therapies that suppress endothelial-associated von Willebrand factor and
platelet aggregation may promote recovery of the left ventricular function and protect
against IR and subsequent remodeling. In this context, chronic treatment with tirofiban
and other antiplatelet drugs has been shown to decrease carotid atherosclerotic plaque
inflammation and reduce serum levels of inflammatory markers such as Hs-CRP, IL-6
and sICAM-1 in ACS patients [43,44]. In addition, the combination of tirofiban and other
drugs has been demonstrated to have a synergistic effect and significantly attenuate the
inflammation response and improve the prognosis of ACS patients [45], which may lead
to stabilization of the plaque, highlighting an anti-atherogenic role of disintegrin-based
antiplatelet drugs.

5. C-Type Lectin-like Proteins

C-type lectins (CTLs) are Ca2+-dependent carbohydrate-binding proteins that share
structural homology in their carbohydrate-recognition domains (CRDs). CTLs are widely
represented in nature and are classified into several types according to their structure,
cellular target and mode of action [47]. However, those found in snake venom mainly
present a heterodimeric structure, with two subunits α and β that are responsible for
the inhibitory effect on platelet function [47]. Heterodimeric CTLs have been shown to
inhibit platelet aggregation by inhibiting receptor GPIb binding to von Willebrand factor
platelet [47] (Figure 2). Among the toxins interacting with the GPIb receptor, several
molecules have been characterized, such as lebecetin from Macrovipera lebetina [158], CHH-
A and B from Crotalus horridus horridus [159], echicetin from Echis carinatus [160], TSV-
GPIB-BP from Trimeresurus stejnegeri [161], tokaracetin from Trimeresurus tokarensis [162]
and agkistin from Agkistrodon acutus [163]. Other snake CTLs inhibit platelets by binding to
GPIa/IIa platelet receptors (α2β1 integrin), such as EMS16 from Echis multisquamatus [164]
and rhodocetin from Calloselasma rhodostoma [165]. Recently, vipegitide, developed from
CTL derived from Vipera palaestinae venom and targeting the GPIa/IIa receptor, was shown
to be effective in inhibiting platelet adhesion to collagen, but this work is still in the
preclinical stage [14,92]. Overall, despite the supportive role that CTLs play in inhibiting
platelet adhesion, there is relatively poor drug development targeting snake-venom CTLs
with respect to arterial thrombosis [14]. Indeed, due to their interaction with various
integrins, CTLs have been mainly studied in angiogenic pathologies such as cancer and
ocular neovascularization [19,166,167]. This is the case for lebecetin which has, in addition
to its antiplatelet properties [46], anti-integrin (αvβ3, αvβ5 and α5β1) effects [166], and
which is currently patented for the treatment of neovascular disorders such as age-related
macular degeneration (AMD) and diabetic retinopathy [19].

6. Three-Finger Toxins

Three-finger toxins (3FTx) represent one of the most abundant families of snake-venom
toxins. They contain 57–82 amino acid residues, characterized by three β-structural loops
extending from a compact hydrophobic core that is stabilized by 4–5 disulfide bridges [168].
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The pharmacological effects of 3FTx are extremely varied due to the wide range of molecular
targets they recognize, such as L-type calcium channels and nicotinic and muscarinic
acetylcholine receptors, which leads to different biological properties, particularly in the
CVS [51,169]. It has been found that 3FTx may induce cardiac arrest [170] and changes in
BP [52,171] and HR [48], inhibit platelet aggregation [172], blood coagulation [173,174], or
cell adhesion [175]. Currently there are increasingly new sequences of 3FTx being available
in public databases, which should provide new opportunities for the development of
therapeutics or research probes targeting the CVS [51].

6.1. Three-Finger Toxins and Cardioprotection in Ischemia–Reperfusion Injury

Several 3FTx may be of interest in reducing IR injury following MI [51]. Some of
them exert antiplatelet effects, such as the compound KT-6.9, purified from the mono-
cled cobra (Naja kaouthia) and acting via the ADP receptors located at the surface of the
platelets [176]. Other 3FTx include muscarinic toxins (MTα from Dendroaspis polylepis [177]),
β-adrenergic toxins (β-cardiotoxin from the king cobra (Ophiophagus hannah) [48]), cholin-
ergic toxins [178] or acid-sensing ion channel (ASIC)-inhibiting toxins (mambalgins from
mambas (Dendroaspis) [179]) that may be potentially useful in the treatment of chronic HF
and BP disorders, although there is no strong evidence of their applicability in IHD. Certain
3FTx from Naja naja siamensis with high toxicity for heart and vessels, have been found to
induce a positive inotropic response [49]. This group of toxins could be potentially useful
in cardiac conditions with decreased pumping function of the heart, particularly because
there is only one pharmacological class of cardiotonic drugs, i.e., cardiac glycosides, used
in the chronic HF with reduced left ventricular ejection function [180].

6.2. Three-Finger Toxins in Hypertension Therapy

Some 3FTx family members such as calciseptine [52], FS2 [171], C10S2C2 [181] and
S4C8 toxins [182], all purified from mamba snakes, have the property of acting on various
ion channels such as the L-type Ca2+-channel blockade, which leads to a vasorelaxant
effect on smooth muscles, causing vasodilation and a reduction in BP [52,53] (Figure 2). In
humans, L-type Ca2+-channel blockers are used for the treatment of hypertension, angina
and arrhythmia [183]. However, they lack selectivity and are associated with serious
adverse events. In this context, synthetic analogues based on calciseptine and FS2 have
been generated via the identification of the amino acid residues of the toxin acting as a
potential attachment region at the Ca2+-channel-receptor site. These analogues have been
proven to have conformational and molecular properties similar to those of nifedipine,
a 1,4-dihydropyridine L-type Ca2+-channel blocker currently used as antihypertensive
treatment [184].

6.3. Three-Finger Toxins in Atherosclerosis Therapy

Platelets, which are major players in the atherosclerosis process, express receptors
that are molecular targets of many snake toxins, including 3FTx. Several 3FTx that in-
hibit platelet aggregation, such as dendroaspin (also named mambin) [54] and S5C1 [55]
from Dendroaspis jamesoni kaimosae, thrombostatin from Dendroaspis angusticeps [56] and
γ-bungarotoxin from the venom of Bungarus multicinctus, have an RGD tripeptide sequence
in their structure, which is crucial for binding to platelet integrin αIIbβ3 and blocking
platelet aggregation from binding to fibrinogen at a nanomolar level (Figure 3). Changes in
the optimal conformation of the RGD tripeptide have been shown to modify the antiplatelet
activity of 3FTx-related proteins [185]. Recently, other 3FTx, such as TA-bm16 and NTL2
identified from Bungarus multicinctus [51], have also been shown to potentially display a
similar function.

7. Vascular Endothelial Growth Factor

VEGF-like proteins derived from snake venom, svVEGFs or VEGF-F, are a subgroup
of the VEGF family that includes VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E (viral
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VEGF) and placental growth factor (PlGF) [24]. VEGF binds to endothelial tyrosine kinase
cell receptors known as VEGFR-1 and -2 to mediate its angiogenic, mitogenic and anti-
apoptotic activities [186]. Receptor-binding assays demonstrated that svVEGFs are highly
specific ligands [57], selectively interacting with VEGFR-2, as is the case with vammin from
the venom of the sand viper Vipera ammodytes; or with VEGFR-1, as for Tf-svVEGF and
Pm-VEGF from the venoms of Trimeresurus flavoviridis and Protobothrops mucrosquamatus,
respectively [187]. After an acute MI, VEGF induces angiogenesis by initiating the reactive
oxygen species–endoplasmic reticulum stress–autophagy axis in the vascular endothelial
cells [188]. Therapeutic angiogenesis has shown promising results in preclinical studies
in acute MI models by inducing safe, effective and sustained myocardial angiogenesis,
increasing perfusion of the infarct border zone and the ventricular ejection fraction [189].
Since after MI, endogenous angiogenesis cannot maintain normal capillary density [190].
Thus, VEGF-based treatment strategies may help restore adequate vasculogenesis and be
useful as a pro-angiogenic therapy in IHD. In mice IR experiments, svVEGF purified from
Macrovipera lebetina venom and called Increasing Capillary Permeability Protein (ICPP), was
found to exert cardioprotective effects by reducing the infarct size through the activation of
VEGFR-2 receptors and the ERK pathway, and the subsequent inhibition of mPTP opening
at the onset of reperfusion [16]. This protein and others, such as vammin and VR-1 [57], also
induce endothelium-dependent vasorelaxation via the release of NO and PGI2 [191] thus
leading to hypotension, higher than that induced by natural VEGF (Figure 2) [16,57]. Other
VEGF-like proteins such as heparin-binding dimeric hypotensive factor (HF) purified from
Aspic viper (Vipera aspis aspis) venom have also been demonstrated to induce hypotensive
effects [192].

8. Sarafotoxins

Sarafotoxins (SRTXs) are a family of small 2.5 kDa peptides that are overproduced in
Atractaspis venoms. They have a common structural pattern consisting of 21 amino acids
and two invariant disulfide bridges between cysteines 1 and 15 and cysteines 3 and 11.
A longer isoform, SRTX-m of 24 amino acids with three additional C-terminal residues,
has, however, been isolated from the venom of Atractaspis microlepidota microlepidota and
shows high sequence homology to SRTX-b [193]. SRTXs are potent vasoconstrictor peptides
with approximately 60% sequence homology and functional identity to the mammalian
vasoconstrictor hormones endothelins [194,195]. Several isoforms of SRTXs can coexist
within the same venom with different effects, such as SRTX-a, -b, and -c that are all purified
from the snake venom Atractaspis engaddensis and that present different vasoactive effects
linked to their primary structure [196]. SRTXs also exhibit opposite cardioprotective effects.
For example, unlike other SRTX isoforms, SRTX-6c, a specific agonist of the ETB endothelin
receptor, exerts vasorelaxant and vasodilatory effects [60,61]. Administration of SRTX-
6c prior to coronary occlusion has been shown to significantly reduce infarct size and
the incidence of arrhythmias in several experimental models [58–61] through the selective
activation of ETB receptors, NO release and subsequent cardiomyocyte mitochondrial KATP-
channel opening during IR [59]. Conversely, SRTX-b, whose effects are mainly associated
with extracellular calcium input via L-type Ca2+ channels, causes cardiac arrest and death in
mice within minutes of intravenous administration [197]. Despite their overall detrimental
effects on the CVS related to their vasoconstrictor and arrhythmogenic properties, SRTXs
are used in basic research for endothelin receptor labeling and in the development of
vasospasm models [198].

9. Cysteine-Rich Secretory Proteins

Snake venom cysteine-rich secretory proteins (CRISPs) are a family of 23–25 kDa
proteins containing eight disulfide bonds and are characterized by a single polypeptide
protein with a molecular weight between 20 and 30 kDa [199]. CRISPs are present in the
venoms of viperids, elapids and colubrids and absent in the venoms of atractaspidids
and those of certain elapids such as coral snakes [22]. The first CRISP group to have
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been characterized includes ablomin from Gloydius blomhoffii, triflin from Protobothrops
flavoviridis, latisemin from Laticauda semifasciata and tigrin from Rhabdophis tigrinus, which
have the non-enzymatic inhibitory activity of various membrane channels involved in
the regulation of vascular tone, such as voltage-gated L-type Ca2+ channels and high-
conductance calcium-activated potassium (BKCa) [63,64]. Other members of the CRISP
family, such as natrin, block the skeletal isoform of the ryanodine receptor [67] and KV1.3
voltage-gated potassium channels [65]. Other CRISP toxins have been shown to act on other
cellular targets, such as inhibiting angiogenesis [200,201] and increasing blood vascular
permeability in vivo and in vitro [202]; however in most cases, these proteins have not
been experimentally isolated or characterized, and their targets and biological roles remain
poorly understood.

10. Fibrinolytic Enzymes

Apart from antiplatelet compounds that have antithrombotic activity, snake venom
also includes important thrombolysis molecules such as fibrinolytic enzymes involved
in fibrinolysis, which is the process of dissolving blood clots (Figure 3). These enzymes
break down fibrin-rich clots and help prevent additional clot formation by their action on
fibrinogen (Figure 3). Given that these enzymes should not be inactivated by mammalian
blood inhibitors, a significant number of studies have focused on their identification and
characterization from snake venom, particularly for the development of thrombolytic
enzymes to treat occlusive thrombi [203]. Two classes of venom fibrinolytic enzymes have
been identified, the metalloproteinases and serine proteinases, with the same biological
effects but different mechanisms of action by targeting different amino acid sequences
of fibrinogen. Several fibrinolytic enzymes have been isolated and purified from snake
venom and show potential use in thrombolytic therapy, including fibrolase, a fibrinolytic
metalloproteinase isolated from Agkistrodon contortrix venom. Fibrolase possesses three
disulfide bonds, is non-glycosylated and binds an intrinsic zinc atom that is essential
for activity and structural integrity. It acts directly on fibrinogen/fibrin in both arteries
and veins by cleaving the α- and β-chains of fibrinogen but not the γ-chain [87–89]. The
recombinant fibrolase alfimeprase has been shown to have the same in vivo and in vitro
activities as native fibrolase and to be much more potent than plasminogen activators [83].
Hence, treatment with alfimeprase would be more beneficial, as systemic plasminogen
activation can lead to serious side effects, such as intra-cranial hemorrhaging [204]. Since
then, other fibrinolytic enzymes have been identified and purified from other species such
as lebetase, a serine beta-fibrinolytic proteinase from Macrovipera lebetina [205], basiliscus
fibrases from the venom of the Mexican West Coast rattlesnake (Crotalus basiliscus) [72] and
graminelysin I from Trimeresurus gramineus [205].

10.1. Fibrinolytic Enzymes and Cardioprotection in Ischemia–Reperfusion Injury

Following MI, thrombolytic therapy is the primary approach used for reperfusion to
restore blood flow in the thrombus-obstructed coronary artery. The fibrinolytic enzyme-
based drug for the treatment of thrombotic diseases is Defibrase, which has thrombin-
like activity and is developed from batroxobin, derived from the venom of the Brazilian
lancehead snake (Bothrops moojeni) [85]. It exhibits anticoagulant properties by converting
fibrinogen into fibrin through the cleavage of the α-chain [86]. In clinical trials in MI
patients, Defibrase was effective in inducing significant clot thrombolysis and coronary
artery recanalization, with a low risk of recurrence and bleeding complications [69]. In
preclinical studies, batroxobin was shown to reduce the mortality rate after IR, improve
cardiac contractility and decrease myocardial injury and levels of ACS biomarkers [68].
Since Defibrase, other snake defibrinogenating agents have been identified. Reptilase
is another trade name for a thrombin-like serine protease that was similarly developed
from the common lancehead (Bothrops atrox), tested in animals, and used in patients
to achieve coronary reperfusion [206]. In contrast, fibrolase (Alfimeprase) and ancrod
(Viprinex) reached phase III clinical trials but failed to have marketing approval, since
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they did not meet the expected therapeutic endpoints, which led to the termination of
their development [90]. However, experimental studies carried out previously on these
molecules have shown the beneficial effects of fibrolase in the canine model of carotid artery
thrombosis [88]. In this model, the occlusive thrombus was lysed within 6 min of initiating
fibrolase infusion. Treatment with ancrod, however, had no effect on infarct size in the
rabbit coronary ligation model [207] and did not protect the myocardium from reperfusion
injury after acute MI in dogs [208].

10.2. Fibrinolytic Enzymes in Atherosclerosis Therapy

Snake-venom-derived fibrinolytic enzymes such as batroxobin and the batroxobin
based-drug Defibrase may have an effect on atherosclerotic lesions. The first was found to
possess the action of stabilizing the atherosclerotic plaque in a rabbit model of atheroscle-
rosis [70]. From these results, the atherosclerotic plaque in the batroxobin-treated groups
tended to be static four weeks after treatment. For the batroxobin-based drug Defibrase,
experimental data have shown that treatment with Defibrase can significantly inhibit
atherosclerosis in rabbits [71]. In this study, Defibrase decreased the mean aortic plaque
area in the thoracic and abdominal aorta as well as the total cholesterol content compared
with control animals. In addition, Defibrase treatment reduced the number of plaques
at the small artery openings in the thoracic aorta and the abdominal aorta. Cross sec-
tions performed at the upper third of all hearts showed that Defibrase administration
reduced the degree of stenosis of coronary artery branches in the heart wall compared with
untreated animals.

11. Phospholipases A2

PLA2s are the most abundant proteins found in Viperidae snake venom and one of the
major toxic components with a broad spectrum of pharmacological effects [209]. There are
at least 15 distinct PLA2s groups, clustered into four major enzyme types: cytosolic PLA2s
(cPLA2), Ca2+-independent PLA2s (iPLA2), secreted PLA2s (sPLA2) and platelet-activating
factor acetylhydrolases (PAF-AH) [210]. Snake venom phospholipases belong to the sPLA2
family and exhibit diverse effects, including neurotoxicity, cardiotoxicity, myotoxicity,
inhibition of blood coagulation, modulation of platelet function, as well as antiangiogenic
activity independent of their enzymatic function [211]. In the CVS, snake venom PLA2 can
cause myocardial structural and functional alterations [73–76]. This cardiotoxic activity
can differ considerably between PLA2s of different venoms, e.g., PLA2s from Ophiophagus
hannah and Naja nigricollis cause myocardial damage [74,76,77], in contrast to the PLA2
from the venom of Naja atra, which lacks cardiotoxicity [77]. PLA2s from certain snake
species, such as the Elapinae and Viperinae subfamilies can also decrease BP through the
hydrolysis of membrane glycerophospholipids and the subsequent release of arachidonic
acid [212], a precursor of cyclooxygenase metabolites (prostaglandins or prostacyclin
(PGI2)) (Figure 2). PLA2 fractions from Vipera russelli venom injected intravenously into
animals induced marked vasodilation and a decrease in the mean arterial pressure and
renal vascular resistance, partly due to increased plasma PGI2 and thromboxane A2 levels
and a decrease in plasma renin activity [78,79]. The hypotensive and vascular relaxing
effects of PLA2s have also been reported with toxins from the Australasian elapid Papuan
taipan (Oxyuranus scutellatus) venom, such as the OSC3 peptide, whose antihypertensive
activity is mediated by cyclooxygenase metabolites, BK and H1-receptors [93]. Some reports
also suggested anti-atherogenic activity of snake PLA2s such as crotoxin from the South
American rattlesnake (Crotalus durissus terrificus) [80]. In human umbilical vein endothelial
cells (HUVEC), crotoxin has been found to downregulate the increased levels of adhesion
molecules, inflammatory cytokines and oxidative stress, which are characteristic features
of the early stages of atherosclerosis [80]. Another work also reported that Vipera palaestinae
venom could potentially have anti-atherosclerotic action, as it rapidly decreases serum
cholesterol levels in humans, with changes in lipoprotein transport and metabolism likely
caused by the PLA2 component of this snake [81] (Figure 3).
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Overall, due to their cytotoxic and inflammatory potential [79], pharmacological
applications of snake venom PLA2s remain limited and are instead used in basic research
to help elucidate mechanisms of action of PLA2s. However, the growing interest in the
design of therapeutic drugs based on low-mass peptides has encouraged the design of
small synthetic peptides from PLA2s. In particular, the identification of regions of PLA2,
mainly in the C-terminal domain, with toxic or therapeutic functions, has contributed to
the development of PLA2 analogues that may have high therapeutic potential [213]. Other
work has also demonstrated that small subunits of venom PLA2s, such as Hemilipin2,
derived from the Hemiscorpius lepturus scorpion, can mediate the biological effects of
the entire protein without inducing cytotoxic effects [214]. These findings could serve
as a starting point for the design of a new generation of low-molecular-mass PLA2s for
the treatment of IHD without the adverse effects associated with high-molecular-mass
native molecules.

12. Discussion

Despite the significant decrease in coronary mortality over the past 20 years, IHD
is still the leading cause of death, reaching 9 million deaths worldwide [1,2,215]. This
mortality decrease is mainly linked to considerable progress in medical therapies, far ahead
of the effects of revascularization [215]; this, in particular, is thanks to the use of four major
therapeutic classes with clinically proven benefits: platelet aggregation inhibitors, beta
blockers, ACE inhibitors and statins. To further reduce the high mortality rate induced by
IHD, new therapeutic alternatives are still needed, particularly through the exploration
of snake venom, which is one of the main natural sources of therapeutic peptides and
proteins. The advent of new technologies in the field of biomedical research, such as
“omics” (genomics, transcriptomics, proteomics, metabolomics) and bioinformatics [17], has
demonstrated promising new prospects for the use of snake venom toxins as a basis for drug
discovery. This has led to the marketing of several approved drugs designed or inspired by
the chemical structure of snake venom bioactive molecules, as well as a plethora of other
toxins of pharmacological, biomedical and biotechnological interest (Table 2). However,
despite these promising venomic advances, there are still challenges as well as limitations
in the development of therapeutic drugs from snake venom toxins, due to the significant
gap between the increased number of venom compounds with relevant pharmacological
properties and the few compounds approved and used in human therapeutics. The main
limitation lies in the development of drugs from high-molecular-weight toxins generally
being considered more immunogenic than their low-molecular-weight counterparts and
more difficult to produce and synthesize [216]. In this respect, in recent years, research
has increasingly focused on peptide-based drugs as therapeutics for the management of
several diseases.

Technological advances in venom toxin purification and characterization as well as
new chemical synthesis methodologies have opened up new opportunities in the discovery
of low-mass venom components that could not previously be detected or identified, and in
the development of peptidomimetics for therapeutic purposes [217]. Small toxins can be
easily produced and engineered to develop peptidomimetics through the introduction of
structural modifications that may improve their therapeutic potency or confer resistance to
proteolytic degradation, key factors that need to be optimized prior to clinical trials [218].
In turn, the use of synthetic peptides has challenged the design and development of
small peptidomimetics from high-molecular-weight proteins [213]. Considering that large
molecules represent the majority of the snake venom protein content (i.e., 90 to 95%) [219],
it is therefore worth developing low-mass peptides to overcome the deleterious effects of
native proteins while preserving their beneficial pharmacological properties [213].

13. Conclusions

Despite the complex challenges in the field of toxinology, snake-venom-derived
molecules remain a highly promising source of lead compounds and novel drugs due
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to their high selectivity toward cellular targets, stability and efficacy compared with their
human counterparts. Since the successful discovery in 1981 of the snake venom drug,
captopril, several examples from venomic research, as reported in this review, have proven
the benefit of using venom molecules rather than their human counterparts. In certain
cases, venom molecules are developed to counter unexpected adverse effects found with
human components such as the venom DNP-based cenderitide developed to overcome
the deleterious hypotensive effects of nesiritide, the recombinant human BNP used as a
drug for the treatment of HF. Another example is that of L2, a snake venom BNP-like
peptide that has been shown to be more potent than the human counterpart, with addi-
tional effects and a novel mechanism of action not observed with human NPs [15,17,18,20].
The venom-derived CTL, lebecetin, approved in preclinical studies, has been patented
for its high selectivity and potent ability, compared with other synthetic family members,
to simultaneously induce multiple cellular targets for the treatment of neovascular eye
diseases [19]. Other toxins have the ability to escape human enzyme systems, thus being
useful as diagnostic tools, e.g., for the assay of coagulation factors and for the study of
hemostasis [220].
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