The Role of the Transforming Growth Factor-β Signaling Pathway in Gastrointestinal Cancers
Abstract
:1. Introduction
2. TGF-β Cell Biology
3. TGF-β Signaling Pathways
3.1. The Receptor of the TGF-β Family
3.2. Smad Signaling Pathways
4. Role of TGF-β Signaling in the Carcinogenesis and Progression of GI Cancer
5. Role of TGF-β Signaling in Epithelial-Mesenchymal Transition
6. Role of TGF-β Signaling in the Tumor Microenvironment
7. Role of TGF-β Signaling in the Immune System
8. Role of Non-Coding RNAs Involved in TGF-β Signaling
9. Discussion and Future Perspective
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Definition |
TGF-β | transforming growth factor-β |
TME | tumor microenvironment |
GI | gastrointestinal |
EMT | epithelial-to-mesenchymal transition |
IFN-γ | interferon-γ |
IL | interleukin |
VEGF | vascular endothelial growth factor |
ECM | extracellular matrix |
LAP | latency-associated peptide |
LLC | large latent complex |
LTBP | latent TGF-β-binding proteins |
RGD | Arg-Gly-Asp |
Tregs | regulatory T cells |
GARP | glycoprotein-A repetition predominant Tregs |
SMAD | small mothers against decapentaplegic |
PC | pancreatic cancer |
TGFBR2 | TGF-β receptor type 2 |
TGFBR1 | TGF-β receptor type 1 |
TAK1 | TGF-β-activated kinase 1 |
JNK | c-Jun NH2-terminal kinase |
MAPK | mitogen-activated protein kinase |
NF-κB | nuclear factor kappa-B |
SHC | Src homology domain 2-containing protein |
GRB2 | growth factor receptor-binding protein 2 |
SOS | son of sevenless |
ERK | extracellular signal-regulated kinase |
RREB1 | RAS-responsive element-binding rotein 1 |
PDGF | platelet-derived growth factor |
CRC | colorectal cancer |
NGS | next-generation sequencin |
CEACAM5 | carcinoembryonic antigen-associated cell adhesion molecule 5 |
EAC | esophageal adenocarcinoma |
BE | Barrett’s esophagus |
ECC | esophageal squamous cell carcinoma |
NcRNA | non-coding RNA |
LncRNA | long non-coding RNA |
CircRNA | circular RNA |
HCC | hepatocellular carcinoma |
MET | mesenchymal-epithelial transition |
CSC | cancer stem cell |
ID1 | DNA binding 1 |
PDA | pancreatic ductal adenocarcinoma |
ESE1 | ETS transcription factor 1 |
CAFs | cancer-associated fibroblasts |
α-SMA | α-smooth muscle actin |
BCKA | branched chain α-ketoacid |
GC | gastric cancer |
CAFDL | CAF-derived long non-coding RN |
OS | overall survival |
ORR | objective response rate |
References
- Tzavlaki, K.; Moustakas, A. TGF-β Signaling. Biomolecules 2020, 10, 487. [Google Scholar] [CrossRef] [PubMed]
- Korkut, A.; Zaidi, S.; Kanchi, R.S.; Rao, S.; Gough, N.R.; Schultz, A.; Li, X.; Lorenzi, P.L.; Berger, A.C.; Robertson, G.; et al. A Pan-Cancer Analysis Reveals High-Frequency Genetic Alterations in Mediators of Signaling by the TGF-β Superfamily. Cell Syst. 2018, 7, 422–437.e7. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zaidi, S.; Rao, S.; Chen, J.S.; Phan, L.; Farci, P.; Su, X.; Shetty, K.; White, J.; Zamboni, F.; et al. Analysis of Genomes and Transcriptomes of Hepatocellular Carcinomas Identifies Mutations and Gene Expression Changes in the Transforming Growth Factor-β Pathway. Gastroenterology 2018, 154, 195–210. [Google Scholar] [CrossRef] [PubMed]
- Waddell, N.; Pajic, M.; Patch, A.M.; Chang, D.K.; Kassahn, K.S.; Bailey, P.; Johns, A.L.; Miller, D.; Nones, K.; Quek, K.; et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 2015, 518, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Roberts, A.B.; Anzano, M.A.; Lamb, L.C.; Smith, J.M.; Sporn, M.B. New class of transforming growth factors potentiated by epidermal growth factor: Isolation from non-neoplastic tissues. Proc. Natl. Acad. Sci. USA 1981, 78, 5339–5343. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Ling, L.; van Dam, H.; Zhou, F.; Zhang, L. TGF-β signaling in cancer metastasis. Acta Biochim. Biophys. Sin. 2018, 50, 121–132. [Google Scholar] [CrossRef]
- Batlle, E.; Massague, J. Transforming Growth Factor-β Signaling in Immunity and Cancer. Immunity 2019, 50, 924–940. [Google Scholar] [CrossRef]
- Zhou, L.; Lopes, J.E.; Chong, M.M.; Ivanov, I.I.; Min, R.; Victora, G.D.; Shen, Y.; Du, J.; Rubtsov, Y.P.; Rudensky, A.Y.; et al. TGF-β-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature 2008, 453, 236–240. [Google Scholar] [CrossRef]
- Castriconi, R.; Cantoni, C.; Della Chiesa, M.; Vitale, M.; Marcenaro, E.; Conte, R.; Biassoni, R.; Bottino, C.; Moretta, L.; Moretta, A. Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: Consequences for the NK-mediated killing of dendritic cells. Proc. Natl. Acad. Sci. USA 2003, 100, 4120–4125. [Google Scholar] [CrossRef]
- Thomas, D.A.; Massague, J. TGF-β directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 2005, 8, 369–380. [Google Scholar] [CrossRef]
- Trotta, R.; Dal Col, J.; Yu, J.; Ciarlariello, D.; Thomas, B.; Zhang, X.; Allard, J., 2nd; Wei, M.; Mao, H.; Byrd, J.C.; et al. TGF-β utilizes SMAD3 to inhibit CD16-mediated IFN-gamma production and antibody-dependent cellular cytotoxicity in human NK cells. J. Immunol. 2008, 181, 3784–3792. [Google Scholar] [CrossRef]
- Pollari, S.; Leivonen, S.K.; Perala, M.; Fey, V.; Kakonen, S.M.; Kallioniemi, O. Identification of microRNAs inhibiting TGF-β-induced IL-11 production in bone metastatic breast cancer cells. PLoS ONE 2012, 7, e37361. [Google Scholar] [CrossRef] [PubMed]
- Wiercinska, E.; Naber, H.P.; Pardali, E.; van der Pluijm, G.; van Dam, H.; ten Dijke, P. The TGF-β/Smad pathway induces breast cancer cell invasion through the up-regulation of matrix metalloproteinase 2 and 9 in a spheroid invasion model system. Breast Cancer Res. Treat. 2011, 128, 657–666. [Google Scholar] [CrossRef] [PubMed]
- Goumans, M.J.; Liu, Z.; ten Dijke, P. TGF-β signaling in vascular biology and dysfunction. Cell Res. 2009, 19, 116–127. [Google Scholar] [CrossRef] [PubMed]
- Goumans, M.J.; Ten Dijke, P. TGF-β Signaling in Control of Cardiovascular Function. Cold Spring Harb. Perspect. Biol. 2018, 10, a022210. [Google Scholar] [CrossRef] [PubMed]
- Gentry, L.E.; Lioubin, M.N.; Purchio, A.F.; Marquardt, H. Molecular events in the processing of recombinant type 1 pre-pro-transforming growth factor beta to the mature polypeptide. Mol. Cell. Biol. 1988, 8, 4162–4168. [Google Scholar] [CrossRef] [PubMed]
- Derynck, R.; Jarrett, J.A.; Chen, E.Y.; Eaton, D.H.; Bell, J.R.; Assoian, R.K.; Roberts, A.B.; Sporn, M.B.; Goeddel, D.V. Human transforming growth factor-β complementary DNA sequence and expression in normal and transformed cells. Nature 1985, 316, 701–705. [Google Scholar] [CrossRef] [PubMed]
- Gray, A.M.; Mason, A.J. Requirement for activin A and transforming growth factor--β 1 pro-regions in homodimer assembly. Science 1990, 247, 1328–1330. [Google Scholar] [CrossRef] [PubMed]
- Olof Olsson, P.; Gustafsson, R.; Salnikov, A.V.; Gothe, M.; Zeller, K.S.; Friman, T.; Baldetorp, B.; Koopman, L.A.; Weinreb, P.H.; Violette, S.M.; et al. Inhibition of integrin α(V)β(6) changes fibril thickness of stromal collagen in experimental carcinomas. Cell Commun. Signal. 2018, 16, 36. [Google Scholar] [CrossRef]
- Nieberler, M.; Reuning, U.; Reichart, F.; Notni, J.; Wester, H.J.; Schwaiger, M.; Weinmuller, M.; Rader, A.; Steiger, K.; Kessler, H. Exploring the Role of RGD-Recognizing Integrins in Cancer. Cancers 2017, 9, 116. [Google Scholar] [CrossRef]
- Rapisarda, V.; Borghesan, M.; Miguela, V.; Encheva, V.; Snijders, A.P.; Lujambio, A.; O’Loghlen, A. Integrin Beta 3 Regulates Cellular Senescence by Activating the TGF-β Pathway. Cell Rep. 2017, 18, 2480–2493. [Google Scholar] [CrossRef]
- Dong, X.; Zhao, B.; Iacob, R.E.; Zhu, J.; Koksal, A.C.; Lu, C.; Engen, J.R.; Springer, T.A. Force interacts with macromolecular structure in activation of TGF-β. Nature 2017, 542, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Qin, Y.; Chapuy, B.; Lu, C. LRRC33 is a novel binding and potential regulating protein of TGF-β1 function in human acute myeloid leukemia cells. PLoS ONE 2019, 14, e0213482. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Baker, D.; Ten Dijke, P. TGF-β-Mediated Epithelial-Mesenchymal Transition and Cancer Metastasis. Int. J. Mol. Sci. 2019, 20, 2767. [Google Scholar] [CrossRef] [PubMed]
- Morikawa, M.; Derynck, R.; Miyazono, K. TGF-β and the TGF-β Family: Context-Dependent Roles in Cell and Tissue Physiology. Cold Spring Harb. Perspect. Biol. 2016, 8, a021873. [Google Scholar] [CrossRef] [PubMed]
- Flanders, K.C.; Yang, Y.A.; Herrmann, M.; Chen, J.; Mendoza, N.; Mirza, A.M.; Wakefield, L.M. Quantitation of TGF-β proteins in mouse tissues shows reciprocal changes in TGF-β1 and TGF-β3 in normal vs neoplastic mammary epithelium. Oncotarget 2016, 7, 38164–38179. [Google Scholar] [CrossRef] [PubMed]
- Derynck, R.; Zhang, Y.E. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 2003, 425, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Chen, F.; Yu, J.; Xu, Y.; Zhang, S.; Chen, Y.G.; Fang, X. Study of interaction between Smad7 and DNA by single-molecule force spectroscopy. Biochem. Biophys. Res. Commun. 2008, 377, 1284–1287. [Google Scholar] [CrossRef]
- De Ceuninck van Capelle, C.; Spit, M.; Ten Dijke, P. Current perspectives on inhibitory SMAD7 in health and disease. Crit. Rev. Biochem. Mol. Biol. 2020, 55, 691–715. [Google Scholar] [CrossRef]
- Zhang, Y.E. Non-Smad Signaling Pathways of the TGF-β Family. Cold Spring Harb. Perspect. Biol. 2017, 9, 128–139. [Google Scholar] [CrossRef]
- Tie, Y.; Tang, F.; Peng, D.; Zhang, Y.; Shi, H. TGF-β signal transduction: Biology, function and therapy for diseases. Mol. Biomed. 2022, 3, 45. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Morgani, S.M.; David, C.J.; Wang, Q.; Er, E.E.; Huang, Y.H.; Basnet, H.; Zou, Y.; Shu, W.; Soni, R.K.; et al. TGF-β orchestrates fibrogenic and developmental EMTs via the RAS effector RREB1. Nature 2020, 577, 566–571. [Google Scholar] [CrossRef] [PubMed]
- Lemmon, M.A.; Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 2010, 141, 1117–1134. [Google Scholar] [CrossRef] [PubMed]
- Battegay, E.J.; Raines, E.W.; Seifert, R.A.; Bowen-Pope, D.F.; Ross, R. TGF-β induces bimodal proliferation of connective tissue cells via complex control of an autocrine PDGF loop. Cell 1990, 63, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Riggins, G.J.; Kinzler, K.W.; Vogelstein, B.; Thiagalingam, S. Frequency of Smad gene mutations in human cancers. Cancer Res. 1997, 57, 2578–2580. [Google Scholar] [PubMed]
- Mueller, S.; Engleitner, T.; Maresch, R.; Zukowska, M.; Lange, S.; Kaltenbacher, T.; Konukiewitz, B.; Ollinger, R.; Zwiebel, M.; Strong, A.; et al. Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes. Nature 2018, 554, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.H.; Lin, P.C.; Su, W.C.; Chan, R.H.; Chen, P.C.; Lin, B.W.; Shen, M.R.; Chen, S.H.; Yeh, Y.M. Association between Altered Oncogenic Signaling Pathways and Overall Survival of Patients with Metastatic Colorectal Cancer. Diagnostics 2021, 11, 2308. [Google Scholar] [CrossRef] [PubMed]
- Markowitz, S.; Wang, J.; Myeroff, L.; Parsons, R.; Sun, L.; Lutterbaugh, J.; Fan, R.S.; Zborowska, E.; Kinzler, K.W.; Vogelstein, B.; et al. Inactivation of the type II TGF-β receptor in colon cancer cells with microsatellite instability. Science 1995, 268, 1336–1338. [Google Scholar] [CrossRef]
- Bellam, N.; Pasche, B. Tgf-β signaling alterations and colon cancer. Cancer Treat. Res. 2010, 155, 85–103. [Google Scholar] [CrossRef]
- Gu, S.; Zaidi, S.; Hassan, M.I.; Mohammad, T.; Malta, T.M.; Noushmehr, H.; Nguyen, B.; Crandall, K.A.; Srivastav, J.; Obias, V.; et al. Mutated CEACAMs Disrupt Transforming Growth Factor Beta Signaling and Alter the Intestinal Microbiome to Promote Colorectal Carcinogenesis. Gastroenterology 2020, 158, 238–252. [Google Scholar] [CrossRef]
- Ding, N.; Luo, H.; Zhang, T.; Peng, T.; Yao, Y.; He, Y. Correlation between SMADs and Colorectal Cancer Expression, Prognosis, and Immune Infiltrates. Int. J. Anal. Chem. 2023, 2023, 8414040. [Google Scholar] [CrossRef] [PubMed]
- Barrett, M.T.; Schutte, M.; Kern, S.E.; Reid, B.J. Allelic loss and mutational analysis of the DPC4 gene in esophageal adenocarcinoma. Cancer Res. 1996, 56, 4351–4353. [Google Scholar] [PubMed]
- Wu, T.T.; Watanabe, T.; Heitmiller, R.; Zahurak, M.; Forastiere, A.A.; Hamilton, S.R. Genetic alterations in Barrett esophagus and adenocarcinomas of the esophagus and esophagogastric junction region. Am. J. Pathol. 1998, 153, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Onwuegbusi, B.A.; Aitchison, A.; Chin, S.F.; Kranjac, T.; Mills, I.; Huang, Y.; Lao-Sirieix, P.; Caldas, C.; Fitzgerald, R.C. Impaired transforming growth factor beta signalling in Barrett’s carcinogenesis due to frequent SMAD4 inactivation. Gut 2006, 55, 764–774. [Google Scholar] [CrossRef] [PubMed]
- Blum, A.E.; Venkitachalam, S.; Ravillah, D.; Chelluboyina, A.K.; Kieber-Emmons, A.M.; Ravi, L.; Kresak, A.; Chandar, A.K.; Markowitz, S.D.; Canto, M.I.; et al. Systems Biology Analyses Show Hyperactivation of Transforming Growth Factor-β and JNK Signaling Pathways in Esophageal Cancer. Gastroenterology 2019, 156, 1761–1774. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Mishra, L.; Deng, C.X. The role of TGF-β/SMAD4 signaling in cancer. Int. J. Biol. Sci. 2018, 14, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Dai, W.J.; Zhang, M.H.; Wang, H.; Yang, X.Z. Comprehensive Analysis of the Expression of TGF-β Signaling Regulators and Prognosis in Human Esophageal Cancer. Comput. Math. Methods Med. 2021, 2021, 1812227. [Google Scholar] [CrossRef] [PubMed]
- Levy, L.; Hill, C.S. Alterations in components of the TGF-β superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev. 2006, 17, 41–58. [Google Scholar] [CrossRef]
- Samanta, D.; Datta, P.K. Alterations in the Smad pathway in human cancers. Front. Biosci. (Landmark Ed) 2012, 17, 1281–1293. [Google Scholar] [CrossRef]
- Verma, R.; Agarwal, A.K.; Sakhuja, P.; Sharma, P.C. Microsatellite instability in mismatch repair and tumor suppressor genes and their expression profiling provide important targets for the development of biomarkers in gastric cancer. Gene 2019, 710, 48–58. [Google Scholar] [CrossRef]
- Shitara, Y.; Yokozaki, H.; Yasui, W.; Takenoshita, S.; Kuwano, H.; Nagamachi, Y.; Tahara, E. No mutations of the Smad2 gene in human sporadic gastric carcinomas. Jpn. J. Clin. Oncol. 1999, 29, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Fleming, N.I.; Jorissen, R.N.; Mouradov, D.; Christie, M.; Sakthianandeswaren, A.; Palmieri, M.; Day, F.; Li, S.; Tsui, C.; Lipton, L.; et al. SMAD2, SMAD3 and SMAD4 mutations in colorectal cancer. Cancer Res. 2013, 73, 725–735. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Pasche, B. TGF-β signaling alterations and susceptibility to colorectal cancer. Hum. Mol. Genet. 2007, 16, R14–R20. [Google Scholar] [CrossRef] [PubMed]
- Troncone, E.; Monteleone, G. Smad7 and Colorectal Carcinogenesis: A Double-Edged Sword. Cancers 2019, 11, 612. [Google Scholar] [CrossRef] [PubMed]
- Truty, M.J.; Urrutia, R. Basics of TGF-β and pancreatic cancer. Pancreatology 2007, 7, 423–435. [Google Scholar] [CrossRef] [PubMed]
- Nagai, M.; Kawarada, Y.; Watanabe, M.; Iwase, T.; Muneyuki, T.; Yamao, K.; Fukutome, K.; Yatani, R. Analysis of microsatellite instability, TGF-β type II receptor gene mutations and hMSH2 and hMLH1 allele losses in pancreaticobiliary maljunction-associated biliary tract tumors. Anticancer Res. 1999, 19, 1765–1768. [Google Scholar] [PubMed]
- Zou, S.; Li, J.; Zhou, H.; Frech, C.; Jiang, X.; Chu, J.S.; Zhao, X.; Li, Y.; Li, Q.; Wang, H.; et al. Mutational landscape of intrahepatic cholangiocarcinoma. Nat. Commun. 2014, 5, 5696. [Google Scholar] [CrossRef] [PubMed]
- Heldin, C.H.; Vanlandewijck, M.; Moustakas, A. Regulation of EMT by TGFbeta in cancer. FEBS Lett. 2012, 586, 1959–1970. [Google Scholar] [CrossRef]
- Katsuno, Y.; Derynck, R. Epithelial plasticity, epithelial-mesenchymal transition, and the TGF-β family. Dev. Cell 2021, 56, 726–746. [Google Scholar] [CrossRef]
- Zavadil, J.; Bitzer, M.; Liang, D.; Yang, Y.C.; Massimi, A.; Kneitz, S.; Piek, E.; Bottinger, E.P. Genetic programs of epithelial cell plasticity directed by transforming growth factor-β. Proc. Natl. Acad. Sci. USA 2001, 98, 6686–6691. [Google Scholar] [CrossRef]
- Puram, S.V.; Parikh, A.S.; Tirosh, I. Single cell RNA-seq highlights a role for a partial EMT in head and neck cancer. Mol. Cell. Oncol. 2018, 5, e1448244. [Google Scholar] [CrossRef]
- Katsuno, Y.; Meyer, D.S.; Zhang, Z.; Shokat, K.M.; Akhurst, R.J.; Miyazono, K.; Derynck, R. Chronic TGF-β exposure drives stabilized EMT, tumor stemness, and cancer drug resistance with vulnerability to bitopic mTOR inhibition. Sci. Signal. 2019, 12, eaau8544. [Google Scholar] [CrossRef] [PubMed]
- Krantz, S.B.; Shields, M.A.; Dangi-Garimella, S.; Munshi, H.G.; Bentrem, D.J. Contribution of epithelial-to-mesenchymal transition and cancer stem cells to pancreatic cancer progression. J. Surg. Res. 2012, 173, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.H.; Hu, J.; Chen, F.; Lecomte, N.; Basnet, H.; David, C.J.; Witkin, M.D.; Allen, P.J.; Leach, S.D.; Hollmann, T.J.; et al. ID1 Mediates Escape from TGFbeta Tumor Suppression in Pancreatic Cancer. Cancer Discov. 2020, 10, 142–157. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, S.; Li, X.; Weng, Y.; Guo, D.; Kong, P.; Cheng, C.; Wang, Y.; Zhang, L.; Cheng, X.; et al. CDCA7 promotes TGF-β-induced epithelial-mesenchymal transition via transcriptionally regulating Smad4/Smad7 in ESCC. Cancer Sci. 2023, 114, 91–104. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.J.; Bai, J.; Tian, Y.; Feng, X.; Chen, A.P.; Wang, J.; Wu, J.; Jin, X.R.; Zhang, F.; Quan, M.Y.; et al. ESE1/AGR2 axis antagonizes TGF-β-induced epithelial-mesenchymal transition in low-grade pancreatic cancer. Cancer Med. 2023, 12, 5979–5993. [Google Scholar] [CrossRef] [PubMed]
- Quan, J.; Cheng, C.; Tan, Y.; Jiang, N.; Liao, C.; Liao, W.; Cao, Y.; Luo, X. Acyl-CoA synthetase long-chain 3-mediated fatty acid oxidation is required for TGFbeta1-induced epithelial-mesenchymal transition and metastasis of colorectal carcinoma. Int. J. Biol. Sci. 2022, 18, 2484–2496. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Zhuang, X.; Lin, L.; Yu, P.; Wang, Y.; Shi, Y.; Hu, G.; Sun, Y. New horizons in tumor microenvironment biology: Challenges and opportunities. BMC Med. 2015, 13, 45. [Google Scholar] [CrossRef]
- Hinshaw, D.C.; Shevde, L.A. The Tumor Microenvironment Innately Modulates Cancer Progression. Cancer Res. 2019, 79, 4557–4566. [Google Scholar] [CrossRef]
- Mao, X.; Xu, J.; Wang, W.; Liang, C.; Hua, J.; Liu, J.; Zhang, B.; Meng, Q.; Yu, X.; Shi, S. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: New findings and future perspectives. Mol. Cancer 2021, 20, 131. [Google Scholar] [CrossRef]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef] [PubMed]
- Wynn, T.A.; Ramalingam, T.R. Mechanisms of fibrosis: Therapeutic translation for fibrotic disease. Nat. Med. 2012, 18, 1028–1040. [Google Scholar] [CrossRef] [PubMed]
- Samarakoon, R.; Overstreet, J.M.; Higgins, P.J. TGF-β signaling in tissue fibrosis: Redox controls, target genes and therapeutic opportunities. Cell. Signal. 2013, 25, 264–268. [Google Scholar] [CrossRef] [PubMed]
- Mazzocca, A.; Fransvea, E.; Dituri, F.; Lupo, L.; Antonaci, S.; Giannelli, G. Down-regulation of connective tissue growth factor by inhibition of transforming growth factor beta blocks the tumor-stroma cross-talk and tumor progression in hepatocellular carcinoma. Hepatology 2010, 51, 523–534. [Google Scholar] [CrossRef] [PubMed]
- Yashiro, M.; Hirakawa, K. Cancer-stromal interactions in scirrhous gastric carcinoma. Cancer Microenviron. 2010, 3, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.; Tan, Z.W.; Zhu, P.; Tan, N.S. Cancer-associated fibroblasts in tumor microenvironment—Accomplices in tumor malignancy. Cell. Immunol. 2019, 343, 103729. [Google Scholar] [CrossRef] [PubMed]
- Pereira, B.A.; Vennin, C.; Papanicolaou, M.; Chambers, C.R.; Herrmann, D.; Morton, J.P.; Cox, T.R.; Timpson, P. CAF Subpopulations: A New Reservoir of Stromal Targets in Pancreatic Cancer. Trends Cancer 2019, 5, 724–741. [Google Scholar] [CrossRef]
- Zhu, Z.; Achreja, A.; Meurs, N.; Animasahun, O.; Owen, S.; Mittal, A.; Parikh, P.; Lo, T.W.; Franco-Barraza, J.; Shi, J.; et al. Tumour-reprogrammed stromal BCAT1 fuels branched-chain ketoacid dependency in stromal-rich PDAC tumours. Nat. Metab. 2020, 2, 775–792. [Google Scholar] [CrossRef]
- Yang, J.; Lu, Y.; Lin, Y.Y.; Zheng, Z.Y.; Fang, J.H.; He, S.; Zhuang, S.M. Vascular mimicry formation is promoted by paracrine TGF-β and SDF1 of cancer-associated fibroblasts and inhibited by miR-101 in hepatocellular carcinoma. Cancer Lett. 2016, 383, 18–27. [Google Scholar] [CrossRef]
- Krzysiek-Maczka, G.; Targosz, A.; Szczyrk, U.; Wrobel, T.; Strzalka, M.; Brzozowski, T.; Czyz, J.; Ptak-Belowska, A. Long-Term Helicobacter pylori Infection Switches Gastric Epithelium Reprogramming Towards Cancer Stem Cell-Related Differentiation Program in Hp-Activated Gastric Fibroblast-TGFbeta Dependent Manner. Microorganisms 2020, 8, 1519. [Google Scholar] [CrossRef]
- Koyama, T.; Yashiro, M.; Inoue, T.; Nishimura, S.; Hirakawa, Y.S.C.K. TGF-β1 secreted by gastric fibroblasts up-regulates CD44H expression and stimulates the peritoneal metastatic ability of scirrhous gastric cancer cells. Int. J. Oncol. 2000, 16, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Fuyuhiro, Y.; Yashiro, M.; Noda, S.; Matsuoka, J.; Hasegawa, T.; Kato, Y.; Sawada, T.; Hirakawa, K. Cancer-associated orthotopic myofibroblasts stimulates the motility of gastric carcinoma cells. Cancer Sci. 2012, 103, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Yashiro, M.; Chung, Y.S.; Inoue, T.; Nishimura, S.; Matsuoka, T.; Fujihara, T.; Sowa, M. Hepatocyte growth factor (HGF) produced by peritoneal fibroblasts may affect mesothelial cell morphology and promote peritoneal dissemination. Int. J. Cancer 1996, 67, 289–293. [Google Scholar] [CrossRef]
- Hasegawa, T.; Yashiro, M.; Nishii, T.; Matsuoka, J.; Fuyuhiro, Y.; Morisaki, T.; Fukuoka, T.; Shimizu, K.; Shimizu, T.; Miwa, A.; et al. Cancer-associated fibroblasts might sustain the stemness of scirrhous gastric cancer cells via transforming growth factor-β signaling. Int. J. Cancer 2014, 134, 1785–1795. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Pan, J.; Wu, J. Development and validation of a cancer-associated fibroblast-derived lncRNA signature for predicting clinical outcomes in colorectal cancer. Front. Immunol. 2022, 13, 934221. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Chen, W.; Cui, X.; Huang, Z.; Wen, D.; Yang, Y.; Yu, W.; Cui, L.; Liu, C.Y. CCBE1 promotes tumor lymphangiogenesis and is negatively regulated by TGFbeta signaling in colorectal cancer. Theranostics 2020, 10, 2327–2341. [Google Scholar] [CrossRef] [PubMed]
- Jeltsch, M.; Jha, S.K.; Tvorogov, D.; Anisimov, A.; Leppanen, V.M.; Holopainen, T.; Kivela, R.; Ortega, S.; Karpanen, T.; Alitalo, K. CCBE1 enhances lymphangiogenesis via A disintegrin and metalloprotease with thrombospondin motifs-3-mediated vascular endothelial growth factor-C activation. Circulation 2014, 129, 1962–1971. [Google Scholar] [CrossRef] [PubMed]
- Miyazono, K.; Katsuno, Y.; Koinuma, D.; Ehata, S.; Morikawa, M. Intracellular and extracellular TGF-β signaling in cancer: Some recent topics. Front. Med. 2018, 12, 387–411. [Google Scholar] [CrossRef]
- Gong, D.; Shi, W.; Yi, S.J.; Chen, H.; Groffen, J.; Heisterkamp, N. TGFbeta signaling plays a critical role in promoting alternative macrophage activation. BMC Immunol. 2012, 13, 31. [Google Scholar] [CrossRef]
- Kelly, A.; Gunaltay, S.; McEntee, C.P.; Shuttleworth, E.E.; Smedley, C.; Houston, S.A.; Fenton, T.M.; Levison, S.; Mann, E.R.; Travis, M.A. Human monocytes and macrophages regulate immune tolerance via integrin alphavbeta8-mediated TGFbeta activation. J. Exp. Med. 2018, 215, 2725–2736. [Google Scholar] [CrossRef]
- Fridlender, Z.G.; Sun, J.; Kim, S.; Kapoor, V.; Cheng, G.; Ling, L.; Worthen, G.S.; Albelda, S.M. Polarization of tumor-associated neutrophil phenotype by TGF-β: “N1” versus “N2” TAN. Cancer Cell 2009, 16, 183–194. [Google Scholar] [CrossRef] [PubMed]
- MaruYama, T.; Chen, W.; Shibata, H. TGF-β and Cancer Immunotherapy. Biol. Pharm. Bull. 2022, 45, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Tamayo, E.; Alvarez, P.; Merino, R. TGFbeta Superfamily Members as Regulators of B Cell Development and Function-Implications for Autoimmunity. Int. J. Mol. Sci. 2018, 19, 3928. [Google Scholar] [CrossRef]
- Jiao, S.; Subudhi, S.K.; Aparicio, A.; Ge, Z.; Guan, B.; Miura, Y.; Sharma, P. Differences in Tumor Microenvironment Dictate T Helper Lineage Polarization and Response to Immune Checkpoint Therapy. Cell 2019, 179, 1177–1190.e13. [Google Scholar] [CrossRef]
- Takeuchi, M.; Kosiewicz, M.M.; Alard, P.; Streilein, J.W. On the mechanisms by which transforming growth factor-β 2 alters antigen-presenting abilities of macrophages on T cell activation. Eur. J. Immunol. 1997, 27, 1648–1656. [Google Scholar] [CrossRef] [PubMed]
- Das, L.; Levine, A.D. TGF-β inhibits IL-2 production and promotes cell cycle arrest in TCR-activated effector/memory T cells in the presence of sustained TCR signal transduction. J. Immunol. 2008, 180, 1490–1498. [Google Scholar] [CrossRef]
- McKarns, S.C.; Schwartz, R.H. Distinct effects of TGF-β 1 on CD4+ and CD8+ T cell survival, division, and IL-2 production: A role for T cell intrinsic Smad3. J. Immunol. 2005, 174, 2071–2083. [Google Scholar] [CrossRef] [PubMed]
- Budhu, S.; Schaer, D.A.; Li, Y.; Toledo-Crow, R.; Panageas, K.; Yang, X.; Zhong, H.; Houghton, A.N.; Silverstein, S.C.; Merghoub, T.; et al. Blockade of surface-bound TGF-β on regulatory T cells abrogates suppression of effector T cell function in the tumor microenvironment. Sci. Signal. 2017, 10, eaak9702. [Google Scholar] [CrossRef]
- Zhang, X.L.; Hu, L.P.; Yang, Q.; Qin, W.T.; Wang, X.; Xu, C.J.; Tian, G.A.; Yang, X.M.; Yao, L.L.; Zhu, L.; et al. CTHRC1 promotes liver metastasis by reshaping infiltrated macrophages through physical interactions with TGF-β receptors in colorectal cancer. Oncogene 2021, 40, 3959–3973. [Google Scholar] [CrossRef]
- Erdman, S.E.; Rao, V.P.; Poutahidis, T.; Ihrig, M.M.; Ge, Z.; Feng, Y.; Tomczak, M.; Rogers, A.B.; Horwitz, B.H.; Fox, J.G. CD4+CD25+ regulatory lymphocytes require interleukin 10 to interrupt colon carcinogenesis in mice. Cancer Res. 2003, 63, 6042–6050. [Google Scholar]
- Xiong, C.; Zhu, Y.; Xue, M.; Jiang, Y.; Zhong, Y.; Jiang, L.; Shi, M.; Chen, H. Tumor-associated macrophages promote pancreatic ductal adenocarcinoma progression by inducing epithelial-to-mesenchymal transition. Aging 2021, 13, 3386–3404. [Google Scholar] [CrossRef] [PubMed]
- Samiei, H.; Sadighi-Moghaddam, B.; Mohammadi, S.; Gharavi, A.; Abdolmaleki, S.; Khosravi, A.; Kokhaei, P.; Bazzazi, H.; Memarian, A. Dysregulation of helper T lymphocytes in esophageal squamous cell carcinoma (ESCC) patients is highly associated with aberrant production of miR-21. Immunol. Res. 2019, 67, 212–222. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Bu, P. Non-coding RNA in cancer. Essays Biochem. 2021, 65, 625–639. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Jiang, M.; Liu, H.; Chu, Y.; Wang, D.; Cao, J.; Wang, Z.; Xie, X.; Han, Y.; Xu, B. LINC00941 promotes CRC metastasis through preventing SMAD4 protein degradation and activating the TGF-β/SMAD2/3 signaling pathway. Cell Death Differ. 2021, 28, 219–232. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, G.; Li, X.; Dong, H.; Xiao, W.; Lu, S. Long non-coding RNA SBF2-AS1 promotes hepatocellular carcinoma progression through regulation of miR-140-5p-TGFBR1 pathway. Biochem. Biophys. Res. Commun. 2018, 503, 2826–2832. [Google Scholar] [CrossRef]
- Su, J.; Chen, D.; Ruan, Y.; Tian, Y.; Lv, K.; Zhou, X.; Ying, D.; Lu, Y. LncRNA MBNL1-AS1 represses gastric cancer progression via the TGF-β pathway by modulating miR-424-5p/Smad7 axis. Bioengineered 2022, 13, 6978–6995. [Google Scholar] [CrossRef] [PubMed]
- Lv, S.; Li, Y.; Ning, H.; Zhang, M.; Jia, Q.; Wang, X. CircRNA GFRA1 promotes hepatocellular carcinoma progression by modulating the miR-498/NAP1L3 axis. Sci. Rep. 2021, 11, 386. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Guo, W.; Sun, C.; Zhang, B.; Zheng, F. Linc00462 promotes pancreatic cancer invasiveness through the miR-665/TGFBR1-TGFBR2/SMAD2/3 pathway. Cell Death Dis. 2018, 9, 706. [Google Scholar] [CrossRef]
- Liu, S.; He, X.; Di, Y.; Li, Q.; Li, F.; Ma, Y.; Chen, L.; Gao, Y.; Xu, J.; Yang, S.; et al. NamiRNA-enhancer network of miR-492 activates the NR2C1-TGF-β/Smad3 pathway to promote epithelial-mesenchymal transition of pancreatic cancer. Carcinogenesis 2023, 44, 153–165. [Google Scholar] [CrossRef]
- Wang, D.; Wang, X.; Song, Y.; Si, M.; Sun, Y.; Liu, X.; Cui, S.; Qu, X.; Yu, X. Exosomal miR-146a-5p and miR-155-5p promote CXCL12/CXCR7-induced metastasis of colorectal cancer by crosstalk with cancer-associated fibroblasts. Cell Death Dis. 2022, 13, 380. [Google Scholar] [CrossRef]
- Yin, Z.; Ma, T.; Huang, B.; Lin, L.; Zhou, Y.; Yan, J.; Zou, Y.; Chen, S. Macrophage-derived exosomal microRNA-501-3p promotes progression of pancreatic ductal adenocarcinoma through the TGFBR3-mediated TGF-β signaling pathway. J. Exp. Clin. Cancer Res. 2019, 38, 310. [Google Scholar] [CrossRef]
- Tian, X.; Fei, Q.; Du, M.; Zhu, H.; Ye, J.; Qian, L.; Lu, Z.; Zhang, W.; Wang, Y.; Peng, F.; et al. miR-130a-3p regulated TGF-β1-induced epithelial-mesenchymal transition depends on SMAD4 in EC-1 cells. Cancer Med. 2019, 8, 1197–1208. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Ruan, W.; Ding, J.; Wei, N.; Wang, J.; Zhang, H.; Ma, N.; Weng, G.; Su, W.K.; Lin, Y.; et al. miR-93-5p regulates the occurrence and development of esophageal carcinoma epithelial cells by targeting TGFbetaR2. Int. J. Mol. Med. 2021, 47, 3. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Yang, P.; Li, X.; Zhu, X.; Liu, M.; Duan, X.; Liu, R. Esophageal Cancer-Derived Extracellular Vesicle miR-21-5p Contributes to EMT of ESCC Cells by Disorganizing Macrophage Polarization. Cancers 2021, 13, 4122. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Zhou, X.M.; Li, Y.S.; Ren, L.; He, X.R. MicroRNA-181a promotes epithelial-mesenchymal transition in esophageal squamous cell carcinoma via the TGF-β/Smad pathway. Mol. Med. Rep. 2021, 23, 316. [Google Scholar] [CrossRef] [PubMed]
- Samiei, H.; Ajam, F.; Gharavi, A.; Abdolmaleki, S.; Kokhaei, P.; Mohammadi, S.; Memarian, A. Simultaneous disruption of circulating miR-21 and cytotoxic T lymphocytes (CTLs): Prospective diagnostic and prognostic markers for esophageal squamous cell carcinoma (ESCC). J. Clin. Lab. Anal. 2022, 36, e24125. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Wu, J.; Wu, Q.; Li, X.; Wu, J.; Zhang, J.; Rong, X.; Rao, J.; Liao, Y.; Bin, J.; et al. miR-577 Regulates TGF-β Induced Cancer Progression through a SDPR-Modulated Positive-Feedback Loop with ERK-NF-kappaB in Gastric Cancer. Mol. Ther. 2019, 27, 1166–1182. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.L.; Li, Z.; Lv, C.M.; Wang, W. MiR-187 influences cisplatin-resistance of gastric cancer cells through regulating the TGF-β/Smad signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 9907–9914. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.; Wang, P.; Yang, J.; Zuo, M.; Ba, Y. Identification of miR-135b as a novel regulator of TGFbeta pathway in gastric cancer. J. Physiol. Biochem. 2020, 76, 549–560. [Google Scholar] [CrossRef]
- Hu, W.; Zheng, X.; Liu, J.; Zhang, M.; Liang, Y.; Song, M. MicroRNA MiR-130a-3p promotes gastric cancer by targeting Glucosaminyl N-acetyl transferase 4 (GCNT4) to regulate the TGF-β1/SMAD3 pathway. Bioengineered 2021, 12, 11634–11647. [Google Scholar] [CrossRef]
- Zhu, M.; Zhang, N.; Ma, J.; He, S. Integration of exosomal miR-106a and mesothelial cells facilitates gastric cancer peritoneal dissemination. Cell Signal. 2022, 91, 110230. [Google Scholar] [CrossRef] [PubMed]
- Shichiri, K.; Oshi, M.; Ziazadeh, D.; Endo, I.; Takabe, K. High miR-200c expression is associated with suppressed epithelial-mesenchymal transition, TGF-β signaling and better survival despite enhanced cell proliferation in gastric cancer patients. Am. J. Cancer Res. 2023, 13, 3027–3040. [Google Scholar] [PubMed]
- Gao, S.; Zhang, Z.; Wang, X.; Ma, Y.; Li, C.; Liu, H.; Jing, C.; Li, L.; Guo, X. hsa-miR-875-5p inhibits tumorigenesis and suppresses TGF-β signalling by targeting USF2 in gastric cancer. J. Transl. Med. 2022, 20, 115. [Google Scholar] [CrossRef] [PubMed]
- Fricke, F.; Mussack, V.; Buschmann, D.; Hausser, I.; Pfaffl, M.W.; Kopitz, J.; Gebert, J. TGFBR2-dependent alterations of microRNA profiles in extracellular vesicles and parental colorectal cancer cells. Int. J. Oncol. 2019, 55, 925–937. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Lei, J.; Fang, Q.; Shen, Y.; Xia, W.; Hu, X.; Xu, Q.; Yuan, H.; Huang, J.; Ni, C. miR-4666-3p and miR-329 Synergistically Suppress the Stemness of Colorectal Cancer Cells via Targeting TGF-β/Smad Pathway. Front. Oncol. 2019, 9, 1251. [Google Scholar] [CrossRef] [PubMed]
- Bayat, Z.; Ghaemi, Z.; Behmanesh, M.; Soltani, B.M. Hsa-miR-186-5p regulates TGFbeta signaling pathway through expression suppression of SMAD6 and SMAD7 genes in colorectal cancer. Biol. Chem. 2021, 402, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, B.; Gao, Z.; Schukking, M.; Menor, M.; Khadka, V.S.; Fabbri, M.; Fei, P.; Deng, Y. The miRNA Profile of Inflammatory Colorectal Tumors Identify TGF-β as a Companion Target for Checkpoint Blockade Immunotherapy. Front. Cell Dev. Biol. 2021, 9, 754507. [Google Scholar] [CrossRef]
- Bhome, R.; Emaduddin, M.; James, V.; House, L.M.; Thirdborough, S.M.; Mellone, M.; Tulkens, J.; Primrose, J.N.; Thomas, G.J.; De Wever, O.; et al. Epithelial to mesenchymal transition influences fibroblast phenotype in colorectal cancer by altering miR-200 levels in extracellular vesicles. J. Extracell. Vesicles 2022, 11, e12226. [Google Scholar] [CrossRef]
- Abkenar, B.R.; Mohammadi, A.; Amoli, H.A.; Soleimani, A.A.; Korani, M.; Mahmoodi, H.; Najafi, M. Non-coding RNAs are correlated to TGF-β receptor type 2 in patients with colorectal cancer. J. Gene Med. 2023, 25, e3472. [Google Scholar] [CrossRef]
- Zhao, P.; Ma, Y.G.; Zhao, Y.; Liu, D.; Dai, Z.J.; Yan, C.Y.; Guan, H.T. MicroRNA-552 deficiency mediates 5-fluorouracil resistance by targeting SMAD2 signaling in DNA-mismatch-repair-deficient colorectal cancer. Cancer Chemother. Pharmacol. 2019, 84, 427–439. [Google Scholar] [CrossRef]
- Kabiri, F.; Medlej, A.; Saleh, A.J.; Aghdami, N.; Khani, M.; Soltani, B.M. Downregulated miR-495-3p in colorectal cancer targets TGFbetaR1, TGFbetaR2, SMAD4 and BUB1 genes and induces cell cycle arrest. Cancer Treat. Res. Commun. 2023, 35, 100702. [Google Scholar] [CrossRef]
- Takahashi, K.; Koyama, K.; Ota, Y.; Iwamoto, H.; Yamakita, K.; Fujii, S.; Kitano, Y. The Interaction Between Long Non-coding RNA HULC and MicroRNA-622 via Transfer by Extracellular Vesicles Regulates Cell Invasion and Migration in Human Pancreatic Cancer. Front. Oncol. 2020, 10, 1013. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Guo, Z.; Sun, J.; Li, J.; Dong, Z.; Zhang, Y.; Chen, J.; Kan, Q.; Yu, Z. MiR-133a acts as an anti-oncogene in Hepatocellular carcinoma by inhibiting FOSL2 through TGF-β/Smad3 signaling pathway. Biomed. Pharmacother. 2018, 107, 168–176. [Google Scholar] [CrossRef]
- Zhang, Q.; Huang, F.; Yao, Y.; Wang, J.; Wei, J.; Wu, Q.; Xiang, S.; Xu, L. Interaction of transforming growth factor-β-Smads/microRNA-362-3p/CD82 mediated by M2 macrophages promotes the process of epithelial-mesenchymal transition in hepatocellular carcinoma cells. Cancer Sci. 2019, 110, 2507–2519. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhu, Y.; Hu, L.; Yan, F.; Chen, J. miR-494 induces EndMT and promotes the development of HCC (Hepatocellular Carcinoma) by targeting SIRT3/TGF-β/SMAD signaling pathway. Sci. Rep. 2019, 9, 7213. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Xu, Z.; Zhou, J.; Yang, H. miR-141 inhibits proliferation, migration and invasion in human hepatocellular carcinoma cells by directly downregulating TGFbetaR1. Oncol. Rep. 2019, 42, 1656–1666. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Han, D.; Wang, Y.; Gu, J.; Wang, X.; Jiang, Y.; Yang, Y.; Liu, J. Phospho-Smad3L promotes progression of hepatocellular carcinoma through decreasing miR-140-5p level and stimulating epithelial-mesenchymal transition. Dig. Liver Dis. 2021, 53, 1343–1351. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.T.; Luo, C.P.; Jiang, M.J.; Deng, Z.J.; Teng, Y.X.; Su, J.Y.; Pan, L.X.; Ma, L.; Guo, P.P.; Zhong, J.H. miR-17-5p slows progression of hepatocellular carcinoma by downregulating TGFbetaR2. Clin. Transl. Oncol. 2023, 25, 2960–2971. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Chen, M.; Liu, D. miR-324-5p inhibits gallbladder carcinoma cell metastatic behaviours by downregulation of transforming growth factor beta 2 expression. Artif. Cells Nanomed. Biotechnol. 2020, 48, 315–324. [Google Scholar] [CrossRef]
- Fu, X.; Chen, X.; Si, Y.; Yao, Y.; Jiang, Z.; Chen, K. Long non-coding RNA NCK1-AS1 is overexpressed in esophageal squamous cell carcinoma and predicts survival. Bioengineered 2022, 13, 8302–8310. [Google Scholar] [CrossRef]
- Feng, B.; Wang, G.; Liang, X.; Wu, Z.; Wang, X.; Dong, Z.; Guo, Y.; Shen, S.; Liang, J.; Guo, W. LncRNA FAM83H-AS1 promotes oesophageal squamous cell carcinoma progression via miR-10a-5p/Girdin axis. J. Cell. Mol. Med. 2020, 24, 8962–8976. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, J. LINC00665 promotes cell proliferation, invasion, and metastasis by activating the TGF-β pathway in gastric cancer. Pathol. Res. Pract. 2021, 224, 153492. [Google Scholar] [CrossRef]
- Huang, D.; Zhang, K.; Zheng, W.; Zhang, R.; Chen, J.; Du, N.; Xia, Y.; Long, Y.; Gu, Y.; Xu, J.; et al. Long noncoding RNA SGO1-AS1 inactivates TGFbeta signaling by facilitating TGFB1/2 mRNA decay and inhibits gastric carcinoma metastasis. J. Exp. Clin. Cancer Res. 2021, 40, 342. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Xu, M.; Wang, Z.; Huang, P.; Huang, C.; Chen, Z.; Tang, G.; Zhu, X.; Cai, M.; Qin, S. The EMT-induced lncRNA NR2F1-AS1 positively modulates NR2F1 expression and drives gastric cancer via miR-29a-3p/VAMP7 axis. Cell Death Dis. 2022, 13, 84. [Google Scholar] [CrossRef] [PubMed]
- Miao, R.; Yao, Z.; Hu, B.; Jin, T.; Zhu, D.; Shi, Y.; Gong, Y.; Shao, S.; Shao, C. A novel long non-coding RNA XLOC_004787, is associated with migration and promotes cancer cell proliferation by downregulating mir-203a-3p in gastric cancer. BMC Gastroenterol. 2023, 23, 280. [Google Scholar] [CrossRef] [PubMed]
- Javanmard, A.R.; Dokanehiifard, S.; Bohlooli, M.; Soltani, B.M. LOC646329 long non-coding RNA sponges miR-29b-1 and regulates TGFbeta signaling in colorectal cancer. J Cancer Res. Clin. Oncol. 2020, 146, 1205–1215. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lai, Q.; He, J.; Li, Q.; Ding, J.; Lan, Z.; Gu, C.; Yan, Q.; Fang, Y.; Zhao, X.; et al. LncRNA SNHG6 promotes proliferation, invasion and migration in colorectal cancer cells by activating TGF-β/Smad signaling pathway via targeting UPF1 and inducing EMT via regulation of ZEB1. Int. J. Med. Sci. 2019, 16, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Luo, K.; Geng, J.; Zhang, Q.; Xu, Y.; Zhou, X.; Huang, Z.; Shi, K.Q.; Pan, C.; Wu, J. LncRNA CASC9 interacts with CPSF3 to regulate TGF-β signaling in colorectal cancer. J. Exp. Clin. Cancer Res. 2019, 38, 249. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Shao, T.; Song, M.; Xie, Y.; Zhou, J.; Yin, J.; Ding, N.; Zou, H.; Li, Y.; Zhang, J. MIR22HG acts as a tumor suppressor via TGFbeta/SMAD signaling and facilitates immunotherapy in colorectal cancer. Mol. Cancer 2020, 19, 51. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Hu, X.; Mao, J.; Wu, Y.; Liu, H.; Shen, J.; Yu, J.; Chen, W. The long noncoding RNA TUG1 is required for TGF-β/TWIST1/EMT-mediated metastasis in colorectal cancer cells. Cell Death Dis. 2020, 11, 65. [Google Scholar] [CrossRef]
- Li, Q.; Yue, W.; Li, M.; Jiang, Z.; Hou, Z.; Liu, W.; Ma, N.; Gan, W.; Li, Y.; Zhou, T.; et al. Downregulating Long Non-coding RNAs CTBP1-AS2 Inhibits Colorectal Cancer Development by Modulating the miR-93-5p/TGF-β/SMAD2/3 Pathway. Front. Oncol. 2021, 11, 626620. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Dong, X.; Liu, Z.; Tan, J.; Huang, X.; Wen, T.; Qu, H.; Wang, Z. VPS9D1-AS1 overexpression amplifies intratumoral TGF-β signaling and promotes tumor cell escape from CD8+ T cell killing in colorectal cancer. Elife 2022, 11, e79811. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, W.; Zhang, J.; Ge, L.; Zhang, Y.; Jiang, X.; Peng, W.; Wang, D.; Gong, A.; Xu, M. Long non-coding RNA PVT1 promotes epithelial-mesenchymal transition via the TGF-β/Smad pathway in pancreatic cancer cells. Oncol. Rep. 2018, 40, 1093–1102. [Google Scholar] [CrossRef] [PubMed]
- Papoutsoglou, P.; Rodrigues-Junior, D.M.; Moren, A.; Bergman, A.; Ponten, F.; Coulouarn, C.; Caja, L.; Heldin, C.H.; Moustakas, A. The noncoding MIR100HG RNA enhances the autocrine function of transforming growth factor beta signaling. Oncogene 2021, 40, 3748–3765. [Google Scholar] [CrossRef] [PubMed]
- Ko, C.C.; Hsieh, Y.Y.; Yang, P.M. Long Non-Coding RNA MIR31HG Promotes the Transforming Growth Factor beta-Induced Epithelial-Mesenchymal Transition in Pancreatic Ductal Adenocarcinoma Cells. Int. J. Mol. Sci. 2022, 23, 6559. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.L.; Wang, X.Y.; Chen, W.M. TGF-β1 upregulates the expression of lncRNA UCA1 and its downstream HXK2 to promote the growth of hepatocellular carcinoma. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 4846–4854. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Guo, D.; Ren, M.; Zhao, Y.; Wang, X.; Chen, Y.; Liu, Y.; Lu, G.; He, S. Long non-coding RNA SNAI3-AS1 promotes the proliferation and metastasis of hepatocellular carcinoma by regulating the UPF1/Smad7 signalling pathway. J. Cell. Mol. Med. 2019, 23, 6271–6282. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Cai, J.B.; Peng, R.; Wei, C.Y.; Lu, J.C.; Gao, C.; Shen, Z.Z.; Zhang, P.F.; Huang, X.Y.; Ke, A.W.; et al. The long noncoding RNA NORAD enhances the TGF-β pathway to promote hepatocellular carcinoma progression by targeting miR-202-5p. J. Cell. Physiol. 2019, 234, 12051–12060. [Google Scholar] [CrossRef]
- Dong, H.; Zhang, Y.; Xu, Y.; Ma, R.; Liu, L.; Luo, C.; Jiang, W. Downregulation of long non-coding RNA MEG3 promotes proliferation, migration, and invasion of human hepatocellular carcinoma cells by upregulating TGF-β1. Acta Biochim. Biophys. Sin. 2019, 51, 645–652. [Google Scholar] [CrossRef]
- Zhang, L.; Niu, H.; Ma, J.; Yuan, B.Y.; Chen, Y.H.; Zhuang, Y.; Chen, G.W.; Zeng, Z.C.; Xiang, Z.L. The molecular mechanism of LncRNA34a-mediated regulation of bone metastasis in hepatocellular carcinoma. Mol. Cancer 2019, 18, 120. [Google Scholar] [CrossRef]
- Sakai, S.; Ohhata, T.; Kitagawa, K.; Uchida, C.; Aoshima, T.; Niida, H.; Suzuki, T.; Inoue, Y.; Miyazawa, K.; Kitagawa, M. Long Noncoding RNA ELIT-1 Acts as a Smad3 Cofactor to Facilitate TGFbeta/Smad Signaling and Promote Epithelial-Mesenchymal Transition. Cancer Res. 2019, 79, 2821–2838. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Liao, J.; Liu, T.; Wang, Y.; Wen, J.; Cai, N.; Huang, Z.; Xu, W.; Li, G.; Ding, Z.; et al. Comprehensive analysis of TGF-β-induced mRNAs and ncRNAs in hepatocellular carcinoma. Aging 2020, 12, 19399–19420. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.J.; Tian, X.P.; Bi, S.X.; Zhang, S.R.; He, T.S.; Song, L.Y.; Yun, J.P.; Zhou, Z.G.; Yu, R.M.; Li, M. The beta-catenin/TCF-4-LINC01278-miR-1258-Smad2/3 axis promotes hepatocellular carcinoma metastasis. Oncogene 2020, 39, 4538–4550. [Google Scholar] [CrossRef] [PubMed]
- Chen, E.; Zhou, B.; Bian, S.; Ni, W.; Chen, Z. The lncRNA B3GALT5-AS1 Functions as an HCC Suppressor by Regulating the miR-934/UFM1 Axis. J. Oncol. 2021, 2021, 1776432. [Google Scholar] [CrossRef]
- Chen, Z.; Xiang, L.; Li, L.; Ou, H.; Fang, Y.; Xu, Y.; Liu, Q.; Hu, Z.; Huang, Y.; Li, X.; et al. TGF-β1 induced deficiency of linc00261 promotes epithelial-mesenchymal-transition and stemness of hepatocellular carcinoma via modulating SMAD3. J. Transl. Med. 2022, 20, 75. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhou, Y.; Jia, Y.; Wang, C.; Zhang, M.; Xu, Z. PRR34-AS1 promotes exosome secretion of VEGF and TGF-β via recruiting DDX3X to stabilize Rab27a mRNA in hepatocellular carcinoma. J. Transl. Med. 2022, 20, 491. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Song, X.; Chen, X.; Wang, Q.; Zheng, X.; Wu, C.; Jiang, J. Circular RNA CircCACTIN Promotes Gastric Cancer Progression by Sponging MiR-331-3p and Regulating TGFBR1 Expression. Int. J. Biol. Sci. 2019, 15, 1091–1103. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Li, B.; Xia, Y.; Xuan, Z.; Li, Z.; Xie, L.; Gu, C.; Lv, J.; Lu, C.; Jiang, T.; et al. CircTHBS1 drives gastric cancer progression by increasing INHBA mRNA expression and stability in a ceRNA- and RBP-dependent manner. Cell Death Dis. 2022, 13, 266. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Q.; Liao, B.; Qiu, X.; Hu, S.; Xu, Q. circ_0006089 promotes gastric cancer growth, metastasis, glycolysis, and angiogenesis by regulating miR-361-3p/TGFB1. Cancer Sci. 2022, 113, 2044–2055. [Google Scholar] [CrossRef]
- Li, F.; Tang, H.; Zhao, S.; Gao, X.; Yang, L.; Xu, J. Circ-E-Cad encodes a protein that promotes the proliferation and migration of gastric cancer via the TGF-β/Smad/C-E-Cad/PI3K/AKT pathway. Mol. Carcinog. 2023, 62, 360–368. [Google Scholar] [CrossRef]
- Shang, A.; Gu, C.; Wang, W.; Wang, X.; Sun, J.; Zeng, B.; Chen, C.; Chang, W.; Ping, Y.; Ji, P.; et al. Exosomal circPACRGL promotes progression of colorectal cancer via the miR-142-3p/miR-506-3p- TGF-β1 axis. Mol. Cancer 2020, 19, 117. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Liang, H.; Zhang, Q.; Shen, Z.; Sun, Y.; Zhao, X.; Gong, J.; Hou, Z.; Jiang, K.; Wang, Q.; et al. circPTEN1, a circular RNA generated from PTEN, suppresses cancer progression through inhibition of TGF-β/Smad signaling. Mol. Cancer 2022, 21, 41. [Google Scholar] [CrossRef]
- Shi, X.; Yang, J.; Liu, M.; Zhang, Y.; Zhou, Z.; Luo, W.; Fung, K.M.; Xu, C.; Bronze, M.S.; Houchen, C.W.; et al. Circular RNA ANAPC7 Inhibits Tumor Growth and Muscle Wasting via PHLPP2-AKT-TGF-β Signaling Axis in Pancreatic Cancer. Gastroenterology 2022, 162, 2004–2017.e2. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Liu, Z.; Cao, K.; Shan, W.; Liu, J.; Wen, Q.; Wang, R. Circ-SPECC1 modulates TGFbeta2 and autophagy under oxidative stress by sponging miR-33a to promote hepatocellular carcinoma tumorigenesis. Cancer Med. 2020, 9, 5999–6008. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Peery, A.F.; Crockett, S.D.; Murphy, C.C.; Lund, J.L.; Dellon, E.S.; Williams, J.L.; Jensen, E.T.; Shaheen, N.J.; Barritt, A.S.; Lieber, S.R.; et al. Burden and Cost of Gastrointestinal, Liver, and Pancreatic Diseases in the United States: Update 2018. Gastroenterology 2019, 156, 254–272.e11. [Google Scholar] [CrossRef] [PubMed]
- Japanese Gastric Cancer Association. Japanese gastric cancer treatment guidelines 2014 (ver. 4). Gastric Cancer 2017, 20, 1–19. [Google Scholar] [CrossRef]
- McFarland, E.G.; Levin, B.; Lieberman, D.A.; Pickhardt, P.J.; Johnson, C.D.; Glick, S.N.; Brooks, D.; Smith, R.A. Revised colorectal screening guidelines: Joint effort of the American Cancer Society, U.S. Multisociety Task Force on Colorectal Cancer, and American College of Radiology. Radiology 2008, 248, 717–720. [Google Scholar] [CrossRef]
- Teixeira, A.F.; Ten Dijke, P.; Zhu, H.J. On-Target Anti-TGF-β Therapies Are Not Succeeding in Clinical Cancer Treatments: What Are Remaining Challenges? Front. Cell Dev. Biol. 2020, 8, 605. [Google Scholar] [CrossRef]
- Morris, J.C.; Tan, A.R.; Olencki, T.E.; Shapiro, G.I.; Dezube, B.J.; Reiss, M.; Hsu, F.J.; Berzofsky, J.A.; Lawrence, D.P. Phase I study of GC1008 (fresolimumab): A human anti-transforming growth factor-β (TGFbeta) monoclonal antibody in patients with advanced malignant melanoma or renal cell carcinoma. PLoS ONE 2014, 9, e90353. [Google Scholar] [CrossRef]
- Papageorgis, P.; Stylianopoulos, T. Role of TGFbeta in regulation of the tumor microenvironment and drug delivery (review). Int. J. Oncol. 2015, 46, 933–943. [Google Scholar] [CrossRef]
- Melisi, D.; Garcia-Carbonero, R.; Macarulla, T.; Pezet, D.; Deplanque, G.; Fuchs, M.; Trojan, J.; Oettle, H.; Kozloff, M.; Cleverly, A.; et al. Galunisertib plus gemcitabine vs. gemcitabine for first-line treatment of patients with unresectable pancreatic cancer. Br. J. Cancer 2018, 119, 1208–1214. [Google Scholar] [CrossRef] [PubMed]
- Kelley, R.K.; Gane, E.; Assenat, E.; Siebler, J.; Galle, P.R.; Merle, P.; Hourmand, I.O.; Cleverly, A.; Zhao, Y.; Gueorguieva, I.; et al. A Phase 2 Study of Galunisertib (TGF-β1 Receptor Type I Inhibitor) and Sorafenib in Patients with Advanced Hepatocellular Carcinoma. Clin. Transl. Gastroenterol. 2019, 10, e00056. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, T.; Gunderson, A.J.; Gilchrist, M.; Whiteford, M.; Kiely, M.X.; Hayman, A.; O’Brien, D.; Ahmad, R.; Manchio, J.V.; Fox, N.; et al. Galunisertib plus neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer: A single-arm, phase 2 trial. Lancet Oncol. 2022, 23, 1189–1200. [Google Scholar] [CrossRef]
- Bai, X.; Yi, M.; Jiao, Y.; Chu, Q.; Wu, K. Blocking TGF-β Signaling to Enhance the Efficacy of Immune Checkpoint Inhibitor. OncoTargets Ther. 2019, 12, 9527–9538. [Google Scholar] [CrossRef]
- Singh, A.; Settleman, J. EMT, cancer stem cells and drug resistance: An emerging axis of evil in the war on cancer. Oncogene 2010, 29, 4741–4751. [Google Scholar] [CrossRef] [PubMed]
- Knudson, K.M.; Hicks, K.C.; Luo, X.; Chen, J.Q.; Schlom, J.; Gameiro, S.R. M7824, a novel bifunctional anti-PD-L1/TGFbeta Trap fusion protein, promotes anti-tumor efficacy as monotherapy and in combination with vaccine. Oncoimmunology 2018, 7, e1426519. [Google Scholar] [CrossRef] [PubMed]
- Paz-Ares, L.; Kim, T.M.; Vicente, D.; Felip, E.; Lee, D.H.; Lee, K.H.; Lin, C.C.; Flor, M.J.; Di Nicola, M.; Alvarez, R.M.; et al. Bintrafusp Alfa, a Bifunctional Fusion Protein Targeting TGF-β and PD-L1, in Second-Line Treatment of Patients With NSCLC: Results From an Expansion Cohort of a Phase 1 Trial. J. Thorac. Oncol. 2020, 15, 1210–1222. [Google Scholar] [CrossRef]
- Kang, Y.K.; Bang, Y.J.; Kondo, S.; Chung, H.C.; Muro, K.; Dussault, I.; Helwig, C.; Osada, M.; Doi, T. Safety and Tolerability of Bintrafusp Alfa, a Bifunctional Fusion Protein Targeting TGFbeta and PD-L1, in Asian Patients with Pretreated Recurrent or Refractory Gastric Cancer. Clin. Cancer Res. 2020, 26, 3202–3210. [Google Scholar] [CrossRef]
- Liu, D.; Zhou, J.; Wang, Y.; Li, M.; Jiang, H.; Liu, Y.; Yin, X.; Ge, M.; Xiang, X.; Ying, J.; et al. Bifunctional anti-PD-L1/TGF-βRII agent SHR-1701 in advanced solid tumors: A dose-escalation, dose-expansion, and clinical-expansion phase 1 trial. BMC Med. 2022, 20, 408. [Google Scholar] [CrossRef]
- Kim, B.G.; Malek, E.; Choi, S.H.; Ignatz-Hoover, J.J.; Driscoll, J.J. Novel therapies emerging in oncology to target the TGF-β pathway. J. Hematol. Oncol. 2021, 14, 55. [Google Scholar] [CrossRef]
- Sheen, Y.Y.; Kim, M.J.; Park, S.A.; Park, S.Y.; Nam, J.S. Targeting the Transforming Growth Factor-β Signaling in Cancer Therapy. Biomol. Ther. 2013, 21, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Leight, J.L.; Wozniak, M.A.; Chen, S.; Lynch, M.L.; Chen, C.S. Matrix rigidity regulates a switch between TGF-β1-induced apoptosis and epithelial-mesenchymal transition. Mol. Biol. Cell 2012, 23, 781–791. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.; Taguchi, A.; Hanash, S. Switching Roles of TGF-β in Cancer Development: Implications for Therapeutic Target and Biomarker Studies. J. Clin. Med. 2016, 5, 109. [Google Scholar] [CrossRef] [PubMed]
- Busch, S.; Acar, A.; Magnusson, Y.; Gregersson, P.; Ryden, L.; Landberg, G. TGF-β receptor type-2 expression in cancer-associated fibroblasts regulates breast cancer cell growth and survival and is a prognostic marker in pre-menopausal breast cancer. Oncogene 2015, 34, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, R.; Fukui, T.; Kishimoto, M.; Miyamoto, S.; Takahashi, Y.; Takeo, M.; Mitsuyama, T.; Sakaguchi, Y.; Uchida, K.; Nishio, A.; et al. Smad2/3 linker phosphorylation is a possible marker of cancer stem cells and correlates with carcinogenesis in a mouse model of colitis-associated colorectal cancer. J. Crohns Colitis 2015, 9, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Voorneveld, P.W.; Jacobs, R.J.; Kodach, L.L.; Hardwick, J.C. A Meta-Analysis of SMAD4 Immunohistochemistry as a Prognostic Marker in Colorectal Cancer. Transl. Oncol. 2015, 8, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Mu, S.; Mu, L.; Zhang, X.; Pang, R.; Gao, S. Transforming growth factor-β-1 is a serum biomarker of radiation-induced pneumonitis in esophageal cancer patients treated with thoracic radiotherapy: Preliminary results of a prospective study. OncoTargets Ther. 2015, 8, 1129–1136. [Google Scholar] [CrossRef]
- Hosseini, R.; Hosseinzadeh, N.; Asef-Kabiri, L.; Akbari, A.; Ghezelbash, B.; Sarvnaz, H.; Akbari, M.E. Small extracellular vesicle TGF-β in cancer progression and immune evasion. Cancer Gene Ther. 2023, 30, 1309–1322. [Google Scholar] [CrossRef]
- de Miguel-Perez, D.; Russo, A.; Gunasekaran, M.; Buemi, F.; Hester, L.; Fan, X.; Carter-Cooper, B.A.; Lapidus, R.G.; Peleg, A.; Arroyo-Hernandez, M.; et al. Baseline extracellular vesicle TGF-β is a predictive biomarker for response to immune checkpoint inhibitors and survival in non-small cell lung cancer. Cancer 2023, 129, 521–530. [Google Scholar] [CrossRef]
- Mitra, M.S.; Lancaster, K.; Adedeji, A.O.; Palanisamy, G.S.; Dave, R.A.; Zhong, F.; Holdren, M.S.; Turley, S.J.; Liang, W.C.; Wu, Y.; et al. A Potent Pan-TGFbeta Neutralizing Monoclonal Antibody Elicits Cardiovascular Toxicity in Mice and Cynomolgus Monkeys. Toxicol. Sci. 2020, 175, 24–34. [Google Scholar] [CrossRef]
- Rak, G.D.; White, M.R.; Augustine-Rauch, K.; Newsome, C.; Graziano, M.J.; Schulze, G.E. Intermittent dosing of the transforming growth factor beta receptor 1 inhibitor, BMS-986260, mitigates class-based cardiovascular toxicity in dogs but not rats. J. Appl. Toxicol. 2020, 40, 931–946. [Google Scholar] [CrossRef]
- Mortensen, R.E.J.; Holmstrom, M.O.; Lisle, T.L.; Hasselby, J.P.; Willemoe, G.L.; Met, O.; Marie Svane, I.; Johansen, J.; Nielsen, D.L.; Chen, I.M.; et al. Pre-existing TGF-β-specific T-cell immunity in patients with pancreatic cancer predicts survival after checkpoint inhibitors combined with radiotherapy. J. Immunother. Cancer 2023, 11, e006432. [Google Scholar] [CrossRef]
- Rahavi, H.; Alizadeh-Navaei, R.; Tehrani, M. Efficacy of therapies targeting TGF-β in solid tumors: A systematic review and meta-analysis of clinical trials. Immunotherapy 2023, 15, 283–292. [Google Scholar] [CrossRef]
Cancer Type | TGF-β 1/2/3 | TGFBR1 | TGFBR2 | SMAD1 | SMAD2 | SMAD4 | Ref |
---|---|---|---|---|---|---|---|
EC | Mutation 4% Down-regulated 20% | Mutation 1% Down-regulated 5% | Mutation 1% Down-regulated 7% | Mutation 1% Down-regulated 8% | Mutation 1% Down-regulated 20% | Mutation 6–22% Complete deletion 9.8% | [46,47,48] |
GC | Mutation 4–13% Up-regulated 22.8% | Mutation 1% Loss 7% | Down-regulated 45% | N.A. | Mutation 0% | Mutation 6.0% Up-regulated 0.2% Complete deletion 3.7% LOH 61% | [48,49,50,51] |
CRC | Mutation 1% Loss 8% Up-regulated 58.8/26.4/23.5% | Mutation 1% Down-regulated 8% | Mutation 11–30% | Mutation 8.6% | Mutation 2.3–10.3% | Mutation 12–38% Complete deletion 0.9% LOH 61% | [39,48,49,52,53,54] |
PC | Mutation 1% Loss 20% Up-regulated 47% | Mutation 1–5% Down-regulated 20% | Mutation 4–7% Somatic alteration 4.1% | N.A. | N.A. | Mutation 20.4% Deletion 13% LOH 90% | [49,55] |
HCC | TGF-β 1/2/3 | Mutation 1% | Mutation 3.0% | Mutation 3.0% | Mutation 0.8–6% Complete deletion 0.2% | [48,49] | |
Biliary tract cancer | Mutation 1% Down-regulated 4% | N.A. | Mutation 50% | N.A. | N.A. | Mutation 3.9–16% | [48,56,57] |
Cancer Type | Alterations | Interaction | Comments | Ref | |
---|---|---|---|---|---|
miRNA | |||||
miR-130a-3p | EC | Down | Suppression | TGF-β/miR-130a-3p/SMAD4 pathway mediated by EMT. | [112] |
miR-93-5p | EC | Up | Activation | Prompts the migration and inhibits the apoptosis by targeting TGFβR2. | [113] |
miR-21-5p | EC | Up | Activation | Activates M2 macrophages and, in turn, EMT through TGF-β/Smad2 signaling. | [114] |
miR-181a | EC | Up | Activation | Promotes EMT through the TGF-β/SMAD pathway. | [115] |
miR-21 | EC | Up | Activation | TGF-βin CTLs may serve as an excellent biomarker. | [116] |
miR-577 | GC | Up | Activation | TGF-β-miR-577-SDPR axis enhances metastasis via the NF-κB pathway. | [117] |
miR-187 | GC | Up | Suppression | Suppresses CDDP resistance. | [118] |
miR-135b | GC | Up | Activation | Prompts growth and migration by negatively modulating the expression of TGFBR2. | [119] |
miR-130a-3p | GC | Up | Activation | TGF-β1/SMAD3 signaling via miR-130a-3p increased proliferation. | [120] |
miR-106a | GC | Up | Activation | Cancer-derived exosomes transport miR-106a to peritoneal mesothelial cells. | [121] |
miR-200c | GC | Up | Suppression | Negatively associated with EMT, angiogenesis, and hypoxia. | [122] |
miR-875-5p | GC | Up | Suppression | Downregulates USF2, leading to repression of TGF-β signaling. | [123] |
miR-31-3p | CRC | Up | Activation | Positively related to TGFBR2 deficiency in MSI CRC. | [124] |
miR-4666-3p and miR-329 | CRC | Down | Suppression | Regulate CRC stemness. | [125] |
miR-186-5p | CRC | Up | Suppression | Suppresses cell cycle via inhibition of SMAD6/7. | [126] |
miRNA-146b, miRNA-155, and miRNA-22 | CRC | N.A. | N.A. | Three miRNAs identify SMAD2, SMAD4, and TGFBR2 as companions for ICB. | [127] |
miR-200 | CRC | Up | Activation | EV-encapsulated miR-200 regulates tumor-stroma crosstalk in CRC. | [128] |
miR-20a-5p | CRC | Down | Suppression | Negatively correlated with LAMTOR5-AS and TGFBR2. | [129] |
miR-552 | CRC | Down | Suppression | Suppresses 5-FU resistance. | [130] |
miR-495-3p | CRC | Up | Suppression | Negatively mediates TGFβR1, TGFβR2, and SMAD4 genes. | [131] |
miR-501-3p | PC | Up | Activation | M2 macrophage-derived exosomal miR-501-3p suppresses the TGFBR3 gene pathway. | [111] |
miR-21 | PC | Up | Activation | M2 macrophage-derived exosomal miR-501-3p suppresses the TGFBR3 gene pathway. | [111] |
miR-622, | PC | Up | Suppression | Targets HULC and suppresses invasion by blocking EMT signaling through EV transfer. | [132] |
miR-492 | PC | Up | Activation | Promotes malignant behavior through the NR2C1-TGF-β/Smad3 pathway. | [109] |
miR-133a | HCC | Up | Suppression | Repressed malignant behavior of HCC via TGF-β/Smad3 signaling. | [133] |
miR-362-3p | HCC | Up | Activation | Regulates EMT by modulating CD82 and TAM. | [134] |
miR-494 | HCC | Up | Activation | Regulates EndMT via SIRT3/TGF-β/SMAD signaling. | [135] |
miR-141 | HCC | Up | Suppression | Blocks growth and invasion by directly downregulating TGFβR1. | [136] |
miR-140-5p | HCC | Down | Suppression | Serves as an EMT inhibitor. | [137] |
miR-17-5p | HCC | Down | Suppression | Inhibits TGFβR2 expression and EMT. | [138] |
miR-324-5p | Gallbladder cancer | Down | Suppression | Targets TGFB2 expression to inhibit GBC cell metastatic behaviors. | [139] |
lnc RNAs | |||||
NCK1-AS1 | EC | Up | Activation | Prompts migration and invasion. | [140] |
FAM83H-AS1 | EC | Up | Activation | Induced by TGF-β and increased migration and invasion. | [141] |
LINC00665 | GC | Up | Activation | Increases growth, invasion, and metastasis. | [142] |
SGO1-AS1 | GC | Up | Suppression | Suppresses the TGF-β pathway and impaired gastric carcinoma metastasis. | [143] |
Nr2F1-AS1 | GC | Up | Activation | Promotes progression by regulating the miR-29a-3p/VAMP7 axis induced by EMT | [144] |
MBNL1-AS1 | GC | Down | Suppression | Regulates the miR-424-5p/Smad7 axis and prompts TGF-β/EMT pathways. | [106] |
XLOC_004787 | GC | Up | Activation | Enhances growth and migration via TGF-signaling and blockade of mir-203a-3p. | [145] |
LOC646329 | CRC | Up | Activation | Suppresses CRC development via sponging miR-29b and modulates TGFB signaling. | [146] |
SNHG6 | CRC | Up | Activation | Stimulates TGF-β/Smad signaling via targeting UPF1 and inducing EMT. | [147] |
CASC9 | CRC | Up | Activation | Predicts the prognostis for patients with CRC. | [148] |
MIR-22HG | CRC | Down | Suppression | Related to CD8A and induced T cell infiltration. | [149] |
TUG1 | CRC | Up | Activation | TUG1/TWIST1/EMT signaling is associated with CRC metastasis prompted by TGF-β. | [150] |
CTBP1-AS2 | CRC | Up | Activation | Stimulates the TGF-β/SMAD2/3 pathway by blocking miR-93-5p. | [151] |
LINC00941 | CRC | Up | Activation | Stimulates the TGF-β/SMAD2/3 axis. | [104] |
VPS9D1-AS1 | CRC | Up | Activation | VPS9D1-AS1/TGF-β signaling enhances tumor proliferation and immune evasion. | [152] |
PVT1 | PC | Up | Activation | Serves as an oncogene via EMT via the TGF-β/Smad pathway. | [153] |
Linc00462 | PC | Up | Activation | Enhances TGFBR1/2 expression and activates the SMAD2/3 pathway. | [108] |
MIR100HG | PC | Up | Activation | Regulates TGFβ signaling through TGFβ1 production. | [154] |
MIR31HG | PC | Up | Activation | MIR31HG inhibits TGFβ-induced EMT and cancer cell migration. | [155] |
SBF2-AS1 | HCC | Up | Activation | Regulates TGFBR1 via sponging miR-140-5p. | [105] |
UCA1 | HCC | Up | Activation | TGF-β1 prompts the growth of HCC via the upregulation of UCA1 and HXK2. | [156] |
SNAI3-AS1 | HCC | Up | Activation | Regulates UPF1 and activates the TGF-β/Smad pathway, leading to HCC progression. | [157] |
NORAD | HCC | Up | Activation | Regulates the TGF-β pathway to stimulate HCC development by miR-202-5p. | [158] |
MEG3 | HCC | Up | Suppression | Increase growth, migration, and invasion. | [159] |
LncRNA34a | HCC | Up | Activation | LncRNA34a is positively associated with bone metastasis. | [160] |
ELIT-1 | HCC | Up | Activation | Positively regulates TGFβ/Smad3 signaling and EMT. | [161] |
SLC7A11-AS1 | HCC | Up | Activation | SLC7A11-AS1 and hsa_circ_0006123 are implicated in the EMT induced by TGF-β. | [162] |
LINC01278 | HCC | Up | Activation | β-catenin/TCF-4-LINC01278-miR-1258-Smad2/3 feedback loop is associated with HCC metastasis. | [163] |
B3GALT5-AS1 | HCC | Up | Activation | Suppresses CD4 T cell invasion through TGF-β signaling. | [164] |
LINC00261 | HCC | Up | Suppression | Represses EMT and stem-like change by blocking TGF-β1/SMAD3 signaling. | [165] |
PRR34-AS1 | HCC | Up | Activation | Prompts the exosome secretion of VEGF and TGF-β. | [166] |
circ RNAs | |||||
circCACTIN | GC | Up | Activation | The circCACTIN/miR-331-3p/TGFBR1 axis promotes migration, invasion, and EMT. | [167] |
circTHBS1 | GC | Up | Activation | Promotes malignant behavior and EMT. | [168] |
circ_0006089 | GC | Up | Activation | Prompts glycolysis and angiogenesis via the miR-361-3p/TGFB1 pathway. | [169] |
Circ-E-Cad | GC | Up | Activation | Regulates growth, migration, and EMT via PI3K/AKT signaling. | [170] |
circPACRGL | CRC | Up | Activation | Exosomal circPACRGL enhanced malignant behavior via the miR-142-3p/miR-506-3p-TGF-β1 axis. | [171] |
circPTEN1 | CRC | Down | Suppression | Disordered SMAD4 interaction with SMAD2/associated with EMT upon TGF-β activation. | [172] |
circANAPC7 | PC | Down | Suppression | Represses tumor proliferation via the CREB-miR-373-PHLPP2 axis and TGF-β down-regulation. | [173] |
circSPECC1 | HCC | Up | Activation | Mediates TGFβ2 and autophagy via miR-33a under oxidative stress. | [174] |
circGFRA1 | HCC | Up | Activation | Regulates the miR-498/NAP1L3 axis, which led to HCC development. | [107] |
Strategy | Agents | Target | Cancer Type | Identifier | Status | Results | Comments |
---|---|---|---|---|---|---|---|
Antibody | |||||||
SAR439459 | TGF-β 1/2/3 | CRC, HCC | NCT03192345 | Ib | Termninated | Monotherapy +Cemiplimab | |
NIS793 | TGF-β 1/2/3 | PC | NCT04390763 | II | Active | Monotherapy +spartalizumab | |
NIS793 | TGF-β 1/2/3 | PC | NCT04935359 | III | Active, not-recruiting | Gemcitabine and nab-paclitaxel ± NIS793 | |
NIS793 | TGF-β 1/2/3 | PC | NCT05417386 | I | Recruiting | +FOLFIRINOX | |
NIS793 | TGF-β 1/2/3 | CRC | NCT04952753 | II | Active, not-recruiting | +bevacizumab with mFOLFOX6 or FOLFIRI | |
ABBV151 | GARP:TGF-β1 | PC HCC | NCT03821935 | I | Recruiting | Monotherapy +ABBV151 | |
GT90001 | ALK-1 | GC, EC, HCC | NCT04984668 | I/II | Recruiting | +KN046 | |
ALK-1 | HCC | NCT05178043 | II | Recruiting | +Nivolumab | GT90001 | |
Ligand trap | |||||||
M7824 | TGF-β/PD-L1 | CCC/gallbladder cancer | NCT03833661 | II | Active | Monotherepy | |
M7824 | TGF-β/PD-L1 | Biliary tract cancer | NCT04066491 | II | Recruiting | +gemcitabine and cisplatin | |
M7824 | TGF-β/PD-L1 | PC | NCT03451773 | II | Completed | +gemcitabine | |
M7824 | TGF-β/PD-L1 | PC | NCT04327986 | I | Terminated | +M9241 and radiotherapy | |
M7824 | TGF-β/PD-L1 | CRC | NCT03436563 | II | Active, not recruiting | Monotherapy | |
M7824 | TGF-β/PD-L1 | Small bowel cancer, CRC | NCT04491955 | II | Active | +N-803, M9241, and CV301 | |
M7824 | TGF-β/PD-L1 | Small bowel cancer, CRC | NCT04708470 | I/II | Recruiting | Entinostat and NHS-IL12 ± M7824 | |
M7824 | TGF-β/PD-L1 | EC | NCT04595149 | II | Recruiting | +paclitaxel, carboplatin, and radiotherapy | |
M7824 | TGF-β/PD-L1 | Intrahepatic cholangiocarcinoma | NCT04708067 | I | Recruiting | +Hypofractionated radiation | |
Small- molecule inhibitors | |||||||
Galunisertib | TGFBR1 | HCC | NCT02906397 | I | Active | +radiotherapy | |
Galunisertib | TGFBR1 | Rectal cancer | NCT02688712 | II | Active, not recruiting | +fluorouracil/capecitabine and radiotherapy | |
Galunisertib | TGFBR1 | PC | NCT02734160 | II | Terminated | +durvalumab | |
Galunisertib | TGFBR1 | HCC | NCT01246986 | II | Active | +sorafenib/ramucirumab | |
Galunisertib | TGFBR1 | PC | NCT01373164 | II | Completed | +gemcitabine | |
Vactosertib | TGFBR1 | HCC | NCT02160106 | I | Completed | Monotherapy | |
Vactosertib | TGFBR1 | CRC | NCT03844750 | I | Recruiting | +pembrolizumab | |
Vactosertib | TGFBR1 | GC | NCT03698825 | II | Recruiting | +paclitaxel | |
Vactosertib | TGFBR1 | GC | NCT04656002 | II | Not yet recruiting | +paclitaxel and ramucirumab | |
Vactosertib | TGFBR1 | GC | NCT04893252 | II | Recruiting | +durvalumab | |
Vactosertib | TGFBR1 | PC | NCT04258072 | II | Active | +irinotecan, fluorouracil and leucovorin | |
LY3200882 | TGFBR1 | CRC | NCT04031872 | II | Active | +capecitabine | |
PF06952229 | TGFBR1 (ALK1) | CRC | NCT02116894 | I | Completed | +regorafenib | |
PF06952229 | TGFBR1 (ALK1) | PC, CRC, HCC | NCT03685591 | I | Recruiting | Monotherapy | |
GFH018 | TGFBR1 | PC, EC, CRC, HCC, Biliary tract cancer | NCT04914286 | I/II | Recruiting | +Toripalimab | |
TEW-7197 | ALK4/5 | PC | NCT03666832 | I/II | Recruiting | +FOLFOX | |
SHR-1701 | TGFBR2/PD-L1 | CRC | NCT04856787 | II/III | Recruiting | +BP102 and capecitabine/oxaliplatin | |
SHR-1701 | TGFBR2/PD-L1 | Rectal cancer | NCT05300269 | II | Recruiting | +capecitabine/oxaliplatin | |
SHR-1701 | TGFBR2/PD-L1 | GC | NCT05149807 | I | Enrolling by invitation | Monotherapy | |
SHR-1701 | TGFBR2PD-L1 | HCC | NCT04679038 | I/II | Recruiting | +Famitinib | |
SHR-1701 | TGFBR2/PD-L1 | GC/GEJC | NCT04950322 | III | Recruiting | +capecitabine/oxaliplatin | |
Antisense oligonucleotide | |||||||
STP705 | TGF-β/COX-2 | HCC, CCC | NCT04676633 | I | Active, not recruiting | Monotherapy | |
Trabedersen | TGF-β mRNA/TGFBR2 | CRC | NCT00844064 | I | Completed | Monotherapy | |
Vaccine | |||||||
vigil | TGFβI/TGFβII | Liver cancer | NCT01061840 | I | Completed | Monotherapy | |
STP705 | TGF-β/COX-2 | HCC, CCC | NCT04676633 | I | Active, not recruiting | Monotherapy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsuoka, T.; Yashiro, M. The Role of the Transforming Growth Factor-β Signaling Pathway in Gastrointestinal Cancers. Biomolecules 2023, 13, 1551. https://doi.org/10.3390/biom13101551
Matsuoka T, Yashiro M. The Role of the Transforming Growth Factor-β Signaling Pathway in Gastrointestinal Cancers. Biomolecules. 2023; 13(10):1551. https://doi.org/10.3390/biom13101551
Chicago/Turabian StyleMatsuoka, Tasuku, and Masakazu Yashiro. 2023. "The Role of the Transforming Growth Factor-β Signaling Pathway in Gastrointestinal Cancers" Biomolecules 13, no. 10: 1551. https://doi.org/10.3390/biom13101551
APA StyleMatsuoka, T., & Yashiro, M. (2023). The Role of the Transforming Growth Factor-β Signaling Pathway in Gastrointestinal Cancers. Biomolecules, 13(10), 1551. https://doi.org/10.3390/biom13101551