Repetitive Low-Intensity Vestibular Noise Stimulation Partly Reverses Behavioral and Brain Activity Changes following Bilateral Vestibular Loss in Rats
Abstract
:1. Introduction
2. Methods
2.1. Animals and Housing
2.2. Experimental Procedures
2.3. Chemical Bilateral Labyrinthectomy
2.4. Galvanic Vestibular Stimulation
2.5. PET Imaging and Analysis
2.6. Locomotion Analysis
2.7. Statistical Analysis
3. Results
3.1. Regional Brain Activation Patterns
3.2. Locomotor Performance
4. Discussion
4.1. Impact of Bilateral Labyrinthectomy and Post-Surgery Recovery on Brain Activation Patterns and Locomotor Performance
4.2. Vestibular Noise Stimulation Effects on Brain Activity and Locomotor Performance
4.3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Strupp, M.; Kim, J.-S.; Murofushi, T.; Straumann, D.; Jen, J.C.; Rosengren, S.M.; Della Santina, C.C.; Kingma, H. Bilateral vestibulopathy: Diagnostic criteria Consensus document of the Classification Committee of the Barany Society. J. Vestib. Res. 2017, 27, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Zingler, V.C.; Weintz, E.; Jahn, K.; Huppert, D.; Cnyrim, C.; Brandt, T.; Strupp, M. Causative factors, epidemiology, and follow-up of bilateral vestibulopathy. Ann. N. Y. Acad. Sci. 2009, 1164, 505–508. [Google Scholar] [CrossRef] [PubMed]
- Schniepp, R.; Mohwald, K.; Wuehr, M. Gait ataxia in humans: Vestibular and cerebellar control of dynamic stability. J. Neurol. 2017, 264, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Sprenger, A.; Wojak, J.F.; Jandl, N.M.; Helmchen, C. Postural Control in Bilateral Vestibular Failure: Its Relation to Visual, Proprioceptive, Vestibular, and Cognitive Input. Front. Neurol. 2017, 8, 444. [Google Scholar] [CrossRef] [PubMed]
- Gimmon, Y.; Migliaccio, A.A.; Kim, K.J.; Schubert, M.C. VOR adaptation training and retention in a patient with profound bilateral vestibular hypofunction. Laryngoscope 2019, 129, 2568–2573. [Google Scholar] [CrossRef] [PubMed]
- Sulway, S.; Whitney, S.L. Advances in Vestibular Rehabilitation. Adv. Otorhinolaryngol. 2019, 82, 164–169. [Google Scholar] [PubMed]
- van de Berg, R.; Ramos, A.; van Rompaey, V.; Bisdorff, A.; Perez-Fornos, A.; Rubinstein, J.T.; Phillips, J.O.; Strupp, M.; Della Santina, C.C.; Guinand, N. The vestibular implant: Opinion statement on implantation criteria for research. J. Vestib. Res. 2020, 30, 213–223. [Google Scholar] [CrossRef]
- Kingma, H.; Felipe, L.; Gerards, M.C.; Gerits, P.; Guinand, N.; Perez-Fornos, A.; Demkin, V.; van de Berg, R. Vibrotactile feedback improves balance and mobility in patients with severe bilateral vestibular loss. J. Neurol. 2019, 266, 19–26. [Google Scholar] [CrossRef]
- Iwasaki, S.; Yamamoto, Y.; Togo, F.; Kinoshita, M.; Yoshifuji, Y.; Fujimoto, C.; Yamasoba, T. Noisy vestibular stimulation improves body balance in bilateral vestibulopathy. Neurology 2014, 82, 969–975. [Google Scholar] [CrossRef]
- Iwasaki, S.; Fujimoto, C.; Egami, N.; Kinoshita, M.; Togo, F.; Yamamoto, Y.; Yamasoba, T. Noisy vestibular stimulation increases gait speed in normals and in bilateral vestibulopathy. Brain Stimul. 2018, 11, 709–715. [Google Scholar] [CrossRef]
- Wuehr, M.; Nusser, E.; Decker, J.; Krafczyk, S.; Straube, A.; Brandt, T.; Jahn, K.; Schniepp, R. Noisy vestibular stimulation improves dynamic walking stability in bilateral vestibulopathy. Neurology 2016, 86, 2196–2202. [Google Scholar] [CrossRef]
- Collins, J.; Chow, C.C.; Imhoff, T.T. Stochastic resonance without tuning. Nature 1995, 376, 236–238. [Google Scholar] [CrossRef] [PubMed]
- McDonnell, M.D.; Ward, L.M. The benefits of noise in neural systems: Bridging theory and experiment. Nat. Rev. Neurosci. 2011, 12, 415–426. [Google Scholar] [CrossRef]
- Samoudi, G.; Nissbrandt, H.; Dutia, M.B.; Bergquist, F. Noisy galvanic vestibular stimulation promotes GABA release in the substantia nigra and improves locomotion in hemiparkinsonian rats. PLoS ONE 2012, 7, e29308. [Google Scholar] [CrossRef]
- Samoudi, G.; Nilsson, A.; Carlsson, T.; Bergquist, F. c-Fos Expression after Stochastic Vestibular Stimulation and Levodopa in 6-OHDA Hemilesioned Rats. Neuroscience 2020, 424, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.; Nam, G.S.; Han, G.C.; Le, C.; Oh, S.Y. The Effect of Galvanic Vestibular Stimulation on Visuospatial Cognition in an Incomplete Bilateral Vestibular Deafferentation Mouse Model. Front. Neurol. 2022, 13, 857736. [Google Scholar] [CrossRef] [PubMed]
- Wuehr, M.; Nusser, E.; Krafczyk, S.; Straube, A.; Brandt, T.; Jahn, K.; Schniepp, R. Noise-Enhanced Vestibular Input Improves Dynamic Walking Stability in Healthy Subjects. Brain Stimul. 2016, 9, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Eder, J.; Kellerer, S.; Amberger, T.; Keywan, A.; Dlugaiczyk, J.; Wuehr, M.; Jahn, K. Combining vestibular rehabilitation with noisy galvanic vestibular stimulation for treatment of bilateral vestibulopathy. J. Neurol. 2022, 269, 5731–5737. [Google Scholar] [CrossRef]
- Anniko, M.; Wersäll, J. Experimentally (atoxyl) induced ampullar degeneration and damage to the maculae utriculi. Acta Otolaryngol. 1977, 83, 429–440. [Google Scholar] [CrossRef]
- Beck, R.; Günther, L.; Xiong, G.; Potschka, H.; Böning, G.; Bartenstein, P.; Brandt, T.; Jahn, K.; Dieterich, M.; Strupp, M.; et al. The mixed blessing of treating symptoms in acute vestibular failure—Evidence from a 4-aminopyridine experiment. Exp. Neurol. 2014, 261, 638–645. [Google Scholar] [CrossRef]
- Vignaux, G.; Chabbert, C.; Gaboyard-Niay, S.; Travo, C.; Machado, M.L.; Denise, P.; Comoz, F.; Hitier, M.; Landemore, G.; Philoxène, B.; et al. Evaluation of the chemical model of vestibular lesions induced by arsanilate in rats. Toxicol. Appl. Pharmacol. 2012, 258, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Grosch, M.; Lindner, M.; Bartenstein, P.; Brandt, T.; Dieterich, M.; Ziegler, S.; Zwergal, A. Dynamic whole-brain metabolic connectivity during vestibular compensation in the rat. Neuroimage 2021, 226, 117588. [Google Scholar] [CrossRef] [PubMed]
- Zwergal, A.; Schlichtiger, J.; Xiong, G.; Beck, R.; Günther, L.; Schniepp, R.; Schöberl, F.; Jahn, K.; Brandt, T.; Strupp, M.; et al. Sequential [(18)F]FDG microPET whole-brain imaging of central vestibular compensation: A model of deafferentation-induced brain plasticity. Brain Struct. Funct. 2016, 221, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Schiffer, W.K.; Mirrione, M.M.; Biegon, A.; Alexoff, D.L.; Patel, V.; Dewey, S.L. Serial microPET measures of the metabolic reaction to a microdialysis probe implant. J. Neurosci. Methods 2006, 155, 272–284. [Google Scholar] [CrossRef] [PubMed]
- Herold, S.; Kumar, P.; Jung, K.; Graf, I.; Menkhoff, H.; Schulz, X.; Bähr, M.; Hein, K. CatWalk gait analysis in a rat model of multiple sclerosis. BMC Neurosci. 2016, 17, 78. [Google Scholar] [CrossRef] [PubMed]
- Schniepp, R.; Schlick, C.; Schenkel, F.; Pradhan, C.; Jahn, K.; Brandt, T.; Wuehr, M. Clinical and neurophysiological risk factors for falls in patients with bilateral vestibulopathy. J. Neurol. 2017, 264, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, C.; Egami, N.; Kawahara, T.; Uemura, Y.; Yamamoto, Y.; Yamasoba, T.; Iwasaki, S. Noisy Galvanic Vestibular Stimulation Sustainably Improves Posture in Bilateral Vestibulopathy. Front. Neurol. 2018, 9, 900. [Google Scholar] [CrossRef] [PubMed]
- Samoudi, G.; Jivegard, M.; Mulavara, A.P.; Bergquist, F. Effects of Stochastic Vestibular Galvanic Stimulation and LDOPA on Balance and Motor Symptoms in Patients With Parkinson’s Disease. Brain Stimul. 2015, 8, 474–480. [Google Scholar] [CrossRef]
- Wuehr, M.; Schmidmeier, F.; Katzdobler, S.; Fietzek, U.M.; Levin, J.; Zwergal, A. Effects of Low-Intensity Vestibular Noise Stimulation on Postural Instability in Patients with Parkinson’s Disease. J. Park. Dis. 2022, 12, 1611–1618. [Google Scholar] [CrossRef]
- Lee, S.; Kim, D.J.; Svenkeson, D.; Parras, G.; Oishi, M.M.; McKeown, M.J. Multifaceted effects of noisy galvanic vestibular stimulation on manual tracking behavior in Parkinson’s disease. Front. Syst. Neurosci. 2015, 9, 5. [Google Scholar] [CrossRef]
- Tran, S.; Shafiee, M.; Jones, C.B.; Garg, S.; Lee, S.; Pasman, E.P.; Carpenter, M.G.; McKeown, M.J. Subthreshold stochastic vestibular stimulation induces complex multi-planar effects during standing in Parkinson’s disease. Brain Stimul. 2018, 11, 1180–1182. [Google Scholar] [CrossRef] [PubMed]
- Antons, M.; Lindner, M.; Grosch, M.; Oos, R.; Palumbo, G.; Brendel, M.; Ziegler, S.; Bartenstein, P.; Dieterich, M.; Zwergal, A. Longitudinal [(18)]UCB-H/[(18)F]FDG imaging depicts complex patterns of structural and functional neuroplasticity following bilateral vestibular loss in the rat. Sci. Rep. 2022, 12, 6049. [Google Scholar] [CrossRef] [PubMed]
- Wijesinghe, R.; Protti, D.A.; Camp, A.J. Vestibular Interactions in the Thalamus. Front. Neural Circuits 2015, 9, 79. [Google Scholar] [CrossRef] [PubMed]
- Stiles, L.; Smith, P.F. The vestibular-basal ganglia connection: Balancing motor control. Brain Res. 2015, 1597, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Kreitzer, A.C.; Malenka, R.C. Striatal plasticity and basal ganglia circuit function. Neuron 2008, 60, 543–554. [Google Scholar] [CrossRef] [PubMed]
- Goddard, M.; Zheng, Y.; Darlington, C.L.; Smith, P.F. Locomotor and exploratory behavior in the rat following bilateral vestibular deafferentation. Behav. Neurosci. 2008, 122, 448–459. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, H.; Heidger, F.; Schniepp, R.; MacNeilage, P.R.; Glasauer, S.; Wuehr, M. Head motion predictability explains activity-dependent suppression of vestibular balance control. Sci. Rep. 2020, 10, 668. [Google Scholar] [CrossRef] [PubMed]
- Jahn, K.; Wuehr, M. Postural Control Mechanisms in Mammals, Including Humans. In The Senses: A Comprehensive Reference, 2nd ed.; Fritzsch, B., Ed.; Elsevier: Oxford, UK, 2020; pp. 344–370. [Google Scholar]
- Witts, E.C.; Murray, A.J. Vestibulospinal contributions to mammalian locomotion. Curr. Opin. Physiol. 2019, 8, 56–62. [Google Scholar] [CrossRef]
- Murray, A.J.; Croce, K.; Belton, T.; Akay, T.; Jessell, T.M. Balance Control Mediated by Vestibular Circuits Directing Limb Extension or Antagonist Muscle Co-activation. Cell Rep. 2018, 22, 1325–1338. [Google Scholar] [CrossRef]
- Rancz, E.A.; Moya, J.; Drawitsch, F.; Brichta, A.M.; Canals, S.; Margrie, T.W. Widespread vestibular activation of the rodent cortex. J. Neurosci. 2015, 35, 5926–5934. [Google Scholar] [CrossRef]
- Stiles, L.; Reynolds, J.N.; Napper, R.; Zheng, Y.; Smith, P.F. Single neuron activity and c-Fos expression in the rat striatum following electrical stimulation of the peripheral vestibular system. Physiol. Rep. 2018, 6, e13791. [Google Scholar] [CrossRef] [PubMed]
- Stiles, L.; Zheng, Y.; Smith, P.F. The effects of electrical stimulation of the peripheral vestibular system on neurochemical release in the rat striatum. PLoS ONE 2018, 13, e0205869. [Google Scholar] [CrossRef]
- Dlugaiczyk, J.; Wuehr, M.; Straka, H. Electrical Stimulation of Vestibular Endorgans. In The Senses: A Comprehensive Reference, 2nd ed.; Fritzsch, B., Ed.; Elsevier: Oxford, UK, 2020; pp. 635–671. [Google Scholar]
- Courjon, J.H.; Precht, W.; Sirkin, D.W. Vestibular nerve and nuclei unit responses and eye movement responses to repetitive galvanic stimulation of the labyrinth in the rat. Exp. Brain Res. 1987, 66, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Wuehr, M.; Boerner, J.C.; Pradhan, C.; Decker, J.; Jahn, K.; Brandt, T.; Schniepp, R. Stochastic resonance in the human vestibular system—Noise-induced facilitation of vestibulospinal reflexes. Brain Stimul. 2018, 11, 261–263. [Google Scholar] [CrossRef] [PubMed]
- Schniepp, R.; Boerner, J.C.; Decker, J.; Jahn, K.; Brandt, T.; Wuehr, M. Noisy vestibular stimulation improves vestibulospinal function in patients with bilateral vestibulopathy. J. Neurol. 2018, 265, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Devinsky, O.; Morrell, M.J.; Vogt, B.A. Contributions of anterior cingulate cortex to behaviour. Brain 1995, 118, 279–306. [Google Scholar] [CrossRef]
- Cho, J.; Sharp, P.E. Head direction, place, and movement correlates for cells in the rat retrosplenial cortex. Behav. Neurosci. 2001, 115, 3–25. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, C.; Yamamoto, Y.; Kamogashira, T.; Kinoshita, M.; Egami, N.; Uemura, Y.; Togo, F.; Yamasoba, T.; Iwasaki, S. Noisy galvanic vestibular stimulation induces a sustained improvement in body balance in elderly adults. Sci. Rep. 2016, 6, 37575. [Google Scholar] [CrossRef]
- Keywan, A.; Badarna, H.; Jahn, K.; Wuehr, M. No evidence for after-effects of noisy galvanic vestibular stimulation on motion perception. Sci. Rep. 2020, 10, 2545. [Google Scholar] [CrossRef]
- Nooristani, M.; Maheu, M.; Houde, M.-S.; Bacon, B.-A.; Champoux, F. Questioning the lasting effect of galvanic vestibular stimulation on postural control. PLoS ONE 2019, 14, e0224619. [Google Scholar] [CrossRef]
- Galvan-Garza, R.C.; Clark, T.K.; Mulavara, A.P.; Oman, C.M. Exhibition of stochastic resonance in vestibular tilt motion perception. Brain Stimul. 2018, 11, 716–722. [Google Scholar] [CrossRef]
- Assländer, L.; Giboin, L.S.; Gruber, M.; Schniepp, R.; Wuehr, M. No evidence for stochastic resonance effects on standing balance when applying noisy galvanic vestibular stimulation in young healthy adults. Sci. Rep. 2021, 11, 12327. [Google Scholar] [CrossRef]
- Wuehr, M.; Decker, J.; Schniepp, R. Noisy galvanic vestibular stimulation: An emerging treatment option for bilateral vestibulopathy. J. Neurol. 2017, 264, 81–86. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wuehr, M.; Eilles, E.; Lindner, M.; Grosch, M.; Beck, R.; Ziegler, S.; Zwergal, A. Repetitive Low-Intensity Vestibular Noise Stimulation Partly Reverses Behavioral and Brain Activity Changes following Bilateral Vestibular Loss in Rats. Biomolecules 2023, 13, 1580. https://doi.org/10.3390/biom13111580
Wuehr M, Eilles E, Lindner M, Grosch M, Beck R, Ziegler S, Zwergal A. Repetitive Low-Intensity Vestibular Noise Stimulation Partly Reverses Behavioral and Brain Activity Changes following Bilateral Vestibular Loss in Rats. Biomolecules. 2023; 13(11):1580. https://doi.org/10.3390/biom13111580
Chicago/Turabian StyleWuehr, Max, Eva Eilles, Magdalena Lindner, Maximilian Grosch, Roswitha Beck, Sibylle Ziegler, and Andreas Zwergal. 2023. "Repetitive Low-Intensity Vestibular Noise Stimulation Partly Reverses Behavioral and Brain Activity Changes following Bilateral Vestibular Loss in Rats" Biomolecules 13, no. 11: 1580. https://doi.org/10.3390/biom13111580
APA StyleWuehr, M., Eilles, E., Lindner, M., Grosch, M., Beck, R., Ziegler, S., & Zwergal, A. (2023). Repetitive Low-Intensity Vestibular Noise Stimulation Partly Reverses Behavioral and Brain Activity Changes following Bilateral Vestibular Loss in Rats. Biomolecules, 13(11), 1580. https://doi.org/10.3390/biom13111580