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Abstract: Researchers have suggested a potential relationship between gamma-glutamyl transferase
(GGT) level and stroke. We investigated a potential causal relationship between GGT level as expo-
sures and stroke and stroke subtypes (cardioembolic, small vessel, and large artery) in a European
population. We performed a two-sample Mendelian randomization (MR) study using the genome-
wide association study (GWAS) data from the UK Biobank as the exposure set. For the outcome set,
we used stroke in the GWAS data from the GIGASTROKE Consortium. We considered alcohol con-
sumption, atrial fibrillation, and body mass index as confounders. We used PhenoScanner searches
for removal of SNPs and multivariable MR analysis for assessing confounders. We observed signifi-
cant causal associations between GGT level and stroke (odds ratio [OR] = 1.23, 95% CI = [1.05–1.44],
and p = 0.012 with IVW; OR = 1.19, 95% CI= [1.02–1.39], and p = 0.031 with MR-PRESSO). These
results were consistent after removing SNPs related to confounding factors. Similarly, in multivari-
able MR, GGT was associated with stroke after adjusting for confounding factors (OR = 1.30, 95%
CI 1.07–1.60), p = 0.010). Because GGT level has a causal relationship with stroke, researchers should
test its significance as a potential risk factor for stroke. Additional research is required to validate
these results.

Keywords: stroke; mendelian randomization; gamma-glutamyl transferase; single-nucleotide
polymorphisms; alcohol; atrial fibrillation; body mass index

1. Introduction

Stroke is a leading cause of death and accounts for the largest proportion of neurologi-
cal disorders that are more often disabling than fatal; it causes both physical and mental
disability [1–3]. With the growing burden of stroke, novel prevention strategies that target
modifiable risk factors are needed. Cardiovascular disease (CVD) risk factors are well
known to be independent risk factors for stroke [4,5], but other risk factors for strokes
should also be considered.

Recently, researchers have shown interest in the potential role of liver function in
the development of CVDs [6]. For example, the gamma-glutamyl transferase (GGT) level
is an indicator of hepatobiliary dysfunction and alcohol abuse. GGT is located on the
cellular membrane and is responsible for regulating the entry of amino acids and peptides
into the cell in the form of γ-glutamyl peptides [7]. It is also involved in maintaining the
physiological concentration of glutathione in cells and reflects the oxidation–antioxidant
balance in the body [8,9]. According to previous studies, GGT level is associated with a
CVD diagnosis [9–11]. After a period of observation, researchers found that individuals
with a higher GGT level were more likely than those with a lower GGT level to experience
stroke [12,13]. Researchers also investigated the relationship between GGT level and
adverse CVD clinical outcomes in stroke patients [14,15]. In addition, a previous study
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reported that an elevated GGT level is related to stroke recurrence and transient ischemic
attack [13]. However, after adjusting for multiple factors, a previous study found that
the association between GGT activity and stroke was no longer significant, suggesting
that GGT activity might not be a good predictor of the severity of cardio-cerebrovascular
diseases [16]. Therefore, whether GGT level has a causal association with stroke remains to
be elucidated.

Mendelian randomization (MR) is a genetic epidemiological technique that uses ge-
netic variants associated with potential exposures as instrumental variables (IVs) to evaluate
their causal effects on disease outcomes [17,18]. Several previous studies have used MR
analyses to find risk factors for stroke [19–22]. An MR study has shown an association be-
tween high level of bilirubin and decreased stroke risk in a Korean population, in agreement
with observational results [23], whereas non-alcoholic fatty liver disease has a causal asso-
ciation with small vessel occlusion [6]. As previously described, increased circulating GGT
activity is an indicator of insufficient antioxidant levels and increased oxidative stress and
indicates a heightened inflammatory state in vivo. The inclusion of several confounding
factors in the study of GGT and stroke, alongside the implementation of MR analysis and
multivariable MR, are anticipated to yield more robust and reliable research findings. The
investigation incorporated multiple factors such as alcohol intake [24], atrial fibrillation [25],
and body mass index [26] as confounders. In this study, we investigated the causal effects
of GGT level on stroke and stroke subtype in a two-sample MR analysis that used summary
statistics from the UK Biobank (UKB) [27] as the exposures and summary statistics from the
Stroke Consortium (GIGASTROKE Consortium) dataset as the outcomes [28]. Furthermore,
to mitigate the impact of allele frequency analysis across racial groups, an analysis was
conducted using data solely from a European population.

2. Materials and Methods
2.1. Study Design

The Institutional Review Board of the Veterans Health Service Medical Center ap-
proved this study protocol (IRB No. 2023-03-004) and waived the need for informed consent
because of its retrospective design. This study was conducted in compliance with the tenets
of the Helsinki Declaration.

2.2. Data Sources

Figure 1 is a schematic of the analytical study design. To investigate the causal
effects of GGT level on the risk of stroke and stroke subtypes, we selected the following
datasets. (1) As exposure data, we used the summary statistics from the UKB genome-
wide association study (GWAS) (n = 437,194 for GGT) [27]. (2) As outcome data, we
used the summary statistics from the stroke GWAS (2,036,031 (136,047 cases + 1,899,984
controls)) and stroke subtype GWAS [1,245,612 (10,804 cases + 1,234,808 controls) for
cardioembolic stroke, 1,241,619 (6811 cases + 1,234,808 controls) for small vessel stroke,
1,241,207 (6399 cases + 1,234,808 controls) for large artery stroke] of European samples from
the GIGASTROKE Consortium [28]. In addition, alcohol consumption, atrial fibrillation,
and body mass index were considered as confounding factors. Table 1 describes the datasets
whose summary statistics we used.

Table 1. Data sources for the summary statistics.

Traits Data Source No. of Participants Population No. of Variants Reference

Serum
gamma-glutamyl

transferase
UK Biobank (UKB) 437,194 European (U.K.) 16,901,631 [27]

Alcohol
consumption UKB 64,001 (31,460 cases +

32,541 controls) European (U.K.) 11,831,323 [29]
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Table 1. Cont.

Traits Data Source No. of Participants Population No. of Variants Reference

Atrial fibrillation

The Nord-Trøndelag
HealthStudy (HUNT),

deCODE, the
Michigan Genomics

Initiative (MGI),
DiscovEHR, UKB, and

the AFGen
Consortium

1,030,836 (60,620 cases
+ 970,216 controls)

European (U.S.,
Iceland, Norway, U.K.) 34,740,186 [30]

Body mass index UKB 532,396 European (U.K.) 12,007,571 [31]

Stroke
The GIGASTROKE

Consortium

2,036,031 (136,047
cases + 1,899,984

controls)
European (Iceland,

Spain, Canada,
Sweden, Netherlands,

U.S., Finland,
Denmark, U.K.,

France, Austrailia,
Germany, Estonia)

7,511,476

[28]Cardioembolic
stroke

1,245,612 (10,804 cases
+ 1,234,808 controls) 6,659,793

Small vessel stroke 1,241,619 (6811 cases +
1,234,808 controls) 5,974,028

Large artery stroke 1,241,207 (6399 cases +
1,234,808 controls) 5,784,788Biomolecules 2023, 13, x FOR PEER REVIEW 3 of 16 
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Figure 1. Diagram of two-sample Mendelian randomization analysis. SNP, single-nucleotide poly-
morphism.

2.3. Selection of the Genetic Instrumental Variables

Single-nucleotide polymorphisms (SNPs) associated with GGT at the GWAS thresh-
old (p < 5.0 × 10−8) were extracted. We pruned theses SNPs by linkage disequilibrium
(LD; r2 = 0.001, clumping distance = 10,000 kb) to ensure that each IV was independent
from the others. The linkage disequilibrium between the SNPs was calculated using the
1000 Genome Phase III European data as a reference. The MR analysis was conducted
using the selected SNPs as IVs. We also checked the PhenoScanner GWAS database
(http://phenoscanner.medschl.cam.ac.uk (accessed on 7 July 2023)) for each SNP and its
proxy (LD: r2 > 0.8) to determine whether it was associated with alcohol consumption,
atrial fibrillation, or body mass index (p < 1.0 × 10−5) as confounding factors [24–26,32,33].
We conducted an additional MR analysis after eliminating confounding factor-related SNPs.
We used the 1000 Genomes Phase III dataset (European population) as the reference panel
to compute the LD. We assessed the F-statistics for each individual genetic instrument to
ensure the reliability of the method. F-value > 10 indicated that the causal estimation was
unlikely to be biased due to weak instruments [34].

http://phenoscanner.medschl.cam.ac.uk
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2.4. Mendelian Randomization

The MR analysis was conducted based on the following assumptions for the IVs:
(1) should demonstrate a substantial relationship with the exposure; (2) should have no
connection to confounders of the exposure–outcome relationship; and (3) should influence
the outcomes only through exposure, with no directional horizontal pleiotropy effect.
As the primary analysis method, we used inverse variance-weighted (IVW) MR with
multiplicative random effects [34–36]. Additionally, we used the weighted median [37],
MR-Egger (with and without adjustment via the simulation extrapolation [SIMEX] method)
regression [38,39], and MR polyhedral sum of residuals and outliers (MR-PRESSO) [40]. As
a sensitivity analysis, we calculated MR estimates while excluding SNPs associated with
confounding factors (alcohol consumption, atrial fibrillation, and body mass index). The
IVW method is most effective when all genetic variations satisfy the three assumptions
for IVs listed above [41]. If one or more of the variants is invalid, the IVW estimate can be
biased [37]. The weighted median approach produces accurate estimates of causality even
if 50% of the instruments are incorrect [37]. The MR-Egger technique allows estimation of
appropriate causal effects even in the presence of pleiotropic effects, permitting a non-zero
intercept that clearly demonstrates the average horizontal pleiotropic effects [38]. The MR-
Egger with SIMEX can be used to rectify the bias when no measurement error assumption
is broken [39]. The MR-PRESSO test, which identifies outliers, adjusts the results of
the IVW analysis for horizontal pleiotropy by deleting the outliers [40]. Heterogeneity
for IVW and MR-Egger was evaluated using Cochran’s Q and Rücker’s Q’ statistics,
respectively [35,42]. We assessed directional horizontal pleiotropy using the MR-PRESSO
global test. Therefore, we interpret the results according to the appropriate MR analysis
method [43]. p-value < 0.05 for Cochran’s Q statistic, Rücker’s Q’ statistic, and the MR-
PRESSO global test indicate possible pleiotropy in the genetic variations. We also performed
multivariable IVW MR analysis to assess confounders. All analyses were performed using
the TwoSampleMR and simex packages in R version 3.6.3 (R Core Team, Vienna, Austria).

3. Results
3.1. Heterogeneity and Horizontal Pleiotropy of the Instrumental Variables

Among the 16,901,631 genetic variants in the exposure GWAS data, 68,949 were
significant for GGT (p < 5.0 × 10−8), and the IVs finally selected after combining each
outcome GWAS dataset and clumping numbered 321 for stroke, 319 for cardioembolic
stroke, 315 for small vessel stroke, and 317 for large artery stroke. After removal of
confounding factor-related SNPs, there were 272 IVs for stroke, 271 for cardioembolic
stroke, 268 for small vessel stroke, and 268 for large artery stroke. The F values for all the
SNPs selected as IVs are larger than 10, indicating a low probability of weak instrument
bias, and the mean F values are greater than 130 (Table 2 and Supplementary Table S1).
The premise of no measurement error was not broken in any of the outcomes (I2 > 90 in
Table 2). Supplementary Table S1 contains detailed information about each IV, such as
whether it is an MR-PRESSO outlier and whether it is known to be related to confounding
factors. A pleiotropic effect was observed in stroke, small vessel stroke, and large artery
stroke through the Cochran’s Q test (p < 0.05) from IVW, Rücker’s Q′ test (p < 0.05) from
MR-Egger, and from the MR-PRESSO global test (p < 0.05) before removing SNPs related
to confounding factors (Table 2). Therefore, the MR-PRESSO results were regarded as
the key outcomes [43]. When confounding factor-related SNPs were eliminated, IV for
large artery stroke satisfied assumptions (Q, p > 0.05; Q’, p > 0.05; MR-PRESSO global
test, p > 0.05), at which point IVW was recommended (Table 2) [43]. For cardioembolic
stroke, the IVs satisfied the assumptions (Q, p > 0.05; Q’, p > 0.05; MR-PRESSO global test,
p > 0.05) regardless of whether confounding factor-related SNPs are removed, and IVW
was recommended for MR analyses (Table 2) [43].
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Table 2. Heterogeneity and horizontal pleiotropy of the instrumental variables.

Outcome Heterogeneity Horizontal Pleiotropy

Cochran’s Q
Test from

IVW

Rucker’s Q’
Test from
MR-Egger

MR-
PRESSO

Global Test
MR-Egger MR-Egger

(SIMEX)

N F I2

(%)
p-Value p-Value p-Value Intercept,

β (SE)
p-

Value
Intercept,
β (SE)

p-
Value

Before removing SNPs related to confounding factors *

Stroke 321 134.18 97.46 <0.001 <0.001 <0.001 0.000
(0.001) 0.764 0.000

(0.001) 0.776

Cardioembolic
stroke 319 134.11 97.48 0.894 0.896 0.902 −0.002

(0.002) 0.272 −0.002
(0.002) 0.230

Small vessel
stroke 315 134.82 97.50 0.038 0.041 0.035 −0.003

(0.003) 0.208 −0.003
(0.003) 0.202

Large artery
stroke 317 134.27 97.51 0.006 0.005 0.005 −0.001

(0.003) 0.639 −0.002
(0.003) 0.614

After removing SNPs related to confounding factors *

Stroke 272 131.77 97.48 <0.001 <0.001 <0.001 −0.001
(0.001) 0.650 −0.001

(0.001) 0.627

Cardioembolic
stroke 271 131.36 97.50 0.681 0.674 0.683 −0.002

(0.002) 0.449 −0.002
(0.002) 0.414

Small vessel
stroke 268 132.07 97.51 0.036 0.042 0.038 −0.005

(0.003) 0.106 −0.005
(0.003) 0.099

Large artery
stroke 268 131.77 97.55 0.063 0.069 0.069 −0.004

(0.003) 0.171 −0.004
(0.003) 0.168

* Alcohol consumption, atrial fibrillation, and body mass index were considered as confounding factors. N,
number of instruments; F, mean F statistic; IVW, inverse-variance weight; MR, Mendelian randomization; PRESSO,
polyhedral sum of residuals and outliers; SIMEX, simulation extrapolation; β, beta coefficient; SE, standard error;
SNP, single-nucleotide polymorphism.

3.2. Mendelian Randomization for the Causal Association between Gamma-Glutamyl Transferase
and Stroke

In the single-variable conventional MR analysis, GGT level had a significant causal
association with stroke when the analysis used 321 SNPs (IVW MR OR = 1.23, 95% CI:
1.05–1.44, p = 0.012; MR-PRESSO OR = 1.19, 95% CI: 1.02–1.39, p = 0.031, three SNPs
excluded) (Figure 2). The MR results after removing confounding factor-related SNPs were
similar (MR-PRESSO OR = 1.19, 95% CI: 1.01–1.40, p = 0.034, with 269 SNPs) (Figure 2).
The scatterplot (Figure 3) also indicates that the risk of stroke increases with the GGT
level. In the multivariable MR analysis, the relationship between GGT and stroke was still
significant after adjustment of alcohol consumption, atrial fibrillation, and body mass index
(OR = 1.30, 95% CI: 1.07–1.60, p = 0.010) (Table 3).

Table 3. Multivariable IVW MR results of gamma-glutamyl transferase, alcohol consumption, atrial
fibrillation, and body mass index on stroke and stroke subtypes.

Stroke Cardioembolic Stroke Small Vessel Stroke Large Artery Stroke

MR Exposures N OR (95%
CI)

p-
Value N OR (95%

CI)
p-

Value N OR (95% CI) p-
Value N OR (95% CI) p-

Value

Serum
gamma-glutamyl
transferase

409 1.30
(1.07, 1.60) 0.010 397 1.15

(0.75, 1.77) 0.531 384 1.79
(1.01, 3.16) 0.046 384 1.94

(1.06, 3.56) 0.032

Alcohol
consumption 409 0.96

(0.90, 1.03) 0.238 397 0.97
(0.84, 1.12) 0.665 384 0.88

(0.73, 1.07) 0.205 384 0.96
(0.78, 1.17) 0.663

Atrial fibrillation 409 1.13
(1.09, 1.17) <0.001 397 1.86

(1.73, 2.01) <0.001 384 1.02
(0.93, 1.13) 0.630 384 1.03

(0.92, 1.14) 0.616

Body mass index 409 1.10
(1.02, 1.18) 0.009 397 0.97

(0.83, 1.13) 0.677 384 1.16
(0.95, 1.41) 0.149 384 1.20

(0.97, 1.48) 0.100

N, number of instruments; IVW, inverse-variance weight; MR, Mendelian randomization; OR, odds ratio; CI,
confidence interval.
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Figure 2. Forest plot of causal associations between gamma-glutamyl transferase and stroke.
(A) Before removing SNPs related to confounding factors; (B) After removing SNPs related to con-
founding factors. Alcohol consumption, atrial fibrillation, and body mass index were considered as
confounding factors. MR, Mendelian randomization; SNP, single-nucleotide polymorphism; IVW,
inverse-variance weighted; SIMEX, simulation extrapolation; MR–PRESSO, MR-pleiotropy residual
sum and outlier test; OR, odds ratio; CI, confidence interval.
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factors. Alcohol consumption, atrial fibrillation, and body mass index were considered as con-
founding factors. Light blue, dark blue, light green, and dark green regression lines represent the
IVW, MR–Egger, MR–Egger (SIMEX), and weighted median estimates, respectively. Red dots in-
dicate outliers found in the MR–PRESSO analysis. SNP, single-nucleotide polymorphism; GGT,
gamma-glutamyl transferase; IVW, inverse-variance weighted; SIMEX, simulation extrapolation; MR,
Mendelian randomization; MR–PRESSO, MR-pleiotropy residual sum and outlier test.

3.3. Mendelian Randomization for the Causal Association between Gamma-Glutamyl Transferase
and Stroke Subtype

GGT appears to significantly increase the risk of cardioembolic stroke according to
IVW in the single-variable conventional MR analysis regardless of whether confounding
factor-related SNPs are removed (IVW MR OR = 1.38, 95% CI: 1.03–1.84, p = 0.030; IVW MR
OR = 1.45, 95% CI: 1.05–2.01, p = 0.026 with 48 confounding factor-related SNPs excluded)
(Figures 4 and 5). However, after adjusting for alcohol consumption, atrial fibrillation,
and body mass index, the relationship between GGT and cardioembolic stroke (OR = 1.15,
95% CI: 0.75–1.77, p = 0.531) was not significant in the multivariable MR analysis (Table 3).
GGT was not significantly associated with small vessel stroke and large artery stroke
according to IVW method in the single-variable conventional MR analysis regardless of
whether confounding factor-related SNPs are removed (Figures 4 and 5). Although MR-
PRESSO was recommended for small vessel stroke (with or without removal of SNPs
related to confounding factors) and large artery stroke (before removing SNPs related
to confounding factors) but found no outliers. In multivariable MR analysis, GGT was
significantly associated with small vessel stroke (OR = 1.79, 95% CI: 1.01–3.16, p = 0.046)
and large artery stroke (OR = 1.94, 95% CI: 1.06–3.56, p = 0.032) after adjusting for alcohol
consumption, atrial fibrillation, and body mass index. Scatterplots show the genetic
association of GGT level against the genetic association with stroke subtypes for each SNP
(Figure 6).

Biomolecules 2023, 13, x FOR PEER REVIEW 8 of 16 
 

 
Figure 4. Forest plot of causal associations between gamma-glutamyl transferase and stroke-sub-
types before removing SNPs related to confounding factors. (A) Cardioembolic stroke; (B) Small 
vessel stroke; (C) Large artery stroke. Alcohol consumption, atrial fibrillation, and body mass index 
were considered as confounding factors. SNP, single-nucleotide polymorphism; IVW, inverse-vari-
ance weighted; MR, Mendelian randomization; SIMEX, simulation extrapolation; OR, odds ratio; 
CI, confidence interval. 

Figure 4. Cont.



Biomolecules 2023, 13, 1592 8 of 14

Biomolecules 2023, 13, x FOR PEER REVIEW 8 of 16 
 

 
Figure 4. Forest plot of causal associations between gamma-glutamyl transferase and stroke-sub-
types before removing SNPs related to confounding factors. (A) Cardioembolic stroke; (B) Small 
vessel stroke; (C) Large artery stroke. Alcohol consumption, atrial fibrillation, and body mass index 
were considered as confounding factors. SNP, single-nucleotide polymorphism; IVW, inverse-vari-
ance weighted; MR, Mendelian randomization; SIMEX, simulation extrapolation; OR, odds ratio; 
CI, confidence interval. 

Figure 4. Forest plot of causal associations between gamma-glutamyl transferase and stroke-subtypes
before removing SNPs related to confounding factors. (A) Cardioembolic stroke; (B) Small vessel stroke;
(C) Large artery stroke. Alcohol consumption, atrial fibrillation, and body mass index were considered
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Mendelian randomization; SIMEX, simulation extrapolation; OR, odds ratio; CI, confidence interval.



Biomolecules 2023, 13, 1592 9 of 14
Biomolecules 2023, 13, x FOR PEER REVIEW 10 of 16 
 

 
Figure 6. Scatterplots of MR tests assessing the effects of gamma-glutamyl transferase on stroke-
subtypes. (A) Cardioembolic stroke before removing SNPs related to confounding factors; (B) Car-
dioembolic stroke after removing SNPs related to confounding factors; (C) Small vessel stroke be-
fore removing SNPs related to confounding factors; (D) Small vessel stroke before removing SNPs 
related to confounding factors; (E) Large artery stroke before removing SNPs related to confounding 
factors; (F) Large artery stroke before removing SNPs related to confounding factors. Alcohol con-
sumption, atrial fibrillation, and body mass index were considered as confounding factors. Light 
blue, dark blue, light green, and dark green regression lines represent the IVW, MR–Egger, MR–

Figure 6. Scatterplots of MR tests assessing the effects of gamma-glutamyl transferase on
stroke-subtypes. (A) Cardioembolic stroke before removing SNPs related to confounding factors;
(B) Cardioembolic stroke after removing SNPs related to confounding factors; (C) Small vessel stroke
before removing SNPs related to confounding factors; (D) Small vessel stroke before removing SNPs
related to confounding factors; (E) Large artery stroke before removing SNPs related to confounding
factors; (F) Large artery stroke before removing SNPs related to confounding factors. Alcohol con-
sumption, atrial fibrillation, and body mass index were considered as confounding factors. Light
blue, dark blue, light green, and dark green regression lines represent the IVW, MR–Egger, MR–Egger
(SIMEX), and weighted median estimates, respectively. SNP, single-nucleotide polymorphism; GGT,
gamma-glutamyl transferase; IVW, inverse-variance weighted; SIMEX, simulation extrapolation; MR,
Mendelian randomization.
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4. Discussion

Our study demonstrated a possible causal association between high GGT level and
stroke. Moreover, GGT level demonstrated a causal association with stroke subtypes of
cardioembolic stroke, small vessel stroke, and large artery stroke. Alcohol consumption
has an impact on liver function tests, particularly the level of GGT [24]. Atrial fibrillation
is reported to be linked to both stroke and GGT level [25]. Additionally, body mass
index is a popular index for obesity, which is a risk factor for stroke [26], we performed
a further analysis with the confounding factor-related SNPs (alcohol consumption, atrial
fibrillation, and body mass index) removed, and the GGT level still had a causal effect
on stroke. To address the limitations of the SNP elimination strategy, a multivariate MR
analysis was conducted and revealed a significant causal association between GGT level
and stroke subtype.

Serum GGT has been widely used as an index of liver dysfunction and a marker of
alcohol intake. Conditions that increase serum GGT, such as obstructive liver disease,
excessive alcohol use, and the use of enzyme-inducing medications, result in increased
free-radical generation and the risk of glutathione depletion. Important advances have been
made in defining associations between serum GGT and risk of coronary heart disease, type
2 diabetes, and stroke [44]. Several studies on the relationship between GGT and stroke
have revealed GGT’s potential as a novel biomarker for stroke prediction [16,25,45–47].
Nevertheless, it remains unclear why GGT is associated with stroke. Several studies
have suggested that GGT is associated with atrial fibrillation [25,48,49], and half of the
association between GGT and cardioembolic stroke was mediated by atrial fibrillation. A
mediation study revealed that the potential causal effect was mediated by GGT as well
as atrial fibrillation [25]. Our MR analysis confirmed a causal relationship between GGT
and stroke, as well as stroke subtype, but our inability to demonstrate a mechanism is a
limitation. Nonetheless, it is a crucial discovery that GGT is an independent risk factor
for stroke, as previously demonstrated by a large-scale study of 456,100 representative
Koreans [33]. A recently meta-analysis on the association between GGT level and stroke
risk showed that high GGT level was positively associated with increased risk of stroke
(relative risk = 1.28; 95% CI, 1.61–1.43) [11], and that also supports our study. Our study
has significant insights beyond those previous results because we demonstrated that GGT
is a causal risk factor for stroke using European genetic data with the MR method. The
observed variations in learning disabilities among racial groups present challenges in
generalizing the findings of our study to other ethnic populations.

Stroke is widely recognized as a prominent contributor to both mortality and disability
on a global scale [12]. The identification of individuals at risk of stroke at an early stage can
effectively decrease the rates of mortality and morbidity associated with this condition. This
early identification enables physicians to swiftly implement primary prevention methods.
The primary modifiable risk factors are hypertension, diabetes mellitus, tobacco smoking,
and hyperlipidemia, with lifestyle variables including obesity, inadequate diet/nutrition,
and physical inactivity [50]. The enzyme GGT expedites the progression of atherosclerosis
by means of oxidative and inflammatory processes. The potential link between GGT and
atrial fibrillation has been postulated to be attributed to oxidative stress, chronic low-grade
inflammation, and metabolic syndrome [51]. When an excessive amount of oxidative
stress is present, there is a greater need for antioxidants, such as glutathione, to resolve
it. In the present scenario, the necessity for GGT may also have been increased due to
its role in the recycling of glutathione. In this regard, the examination of risk factors can
encompass the influence of nutrition and inflammation. A recent study showed that diet
was a substantial mitigating factor in the impact of obesity on the ratio of pro-inflammatory
and anti-inflammatory interleukins, as well as on the levels of TGFβ-1 and GGT [52]. When
examined through the lens of inflammation and oxidative stress, it may be inferred that
there is a commonality between high GGT level and risk factors for stroke. Nevertheless,
the absence of empirical support for a direct association between GGT and the progression
of atrial fibrillation implies the necessity for an alternate hypothesis.
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Understanding the causes of stroke is essential to creating successful preventive mea-
sures. The MR method uses genetic variations associated with a particular exposure to
examine how changing that exposure affects disease risk. The advantages of MR research
are that, when a set of genomic data and clinical information are available, the design
is cross-sectional, but it can be rigorously verified by randomization, as in a prospective
study [53,54]. In addition, unlike animal experiments, the MR method reduces the burden
of random verification on humans and can demonstrate causality without putting partici-
pants at risk [55]. Several MR studies on stroke were previously performed with various
results [19,56–59]. Smoking behavior was a causal factor for ischemic stroke in an MR
analysis [20], and another MR study showed that smoking, body mass index, and waist/hip
ratio were causally associated with stroke [21]. In the literature we reviewed, we found
no MR analysis results about a causal association between GGT level and stroke. We did
find studies that used MR analyses to link stroke with another indication of liver function,
such as non-alcoholic fatty liver disease or bilirubin level [6,23,60–62]; in those studies
non-alcoholic fatty liver disease had a limited effect on stroke and showed controversial
results. Although we used two-sample MR as a research method to reduce bias, we deemed
alcohol to be a confounding factor because it has a substantial effect on GGT level. Thus,
we eliminated all drinking-associated SNPs. Several reports indicate that GGT level can
serve as a biomarker for alcohol intake [63,64], and we deemed it necessary to eliminate
and revaluate variables that could influence GGT level. Furthermore, the presence of
atrial fibrillation was considered as a potential confounding variable due to its known
impact on stroke incidence. Additionally, obesity was included in the analysis. However,
because the results of a previous meta-analysis indicated that GGT is a risk factor for stroke
independent of alcohol consumption [11], we suggest the reliability of our results prior to
exclusion of SNPs related to alcohol. To address this issue, a multivariable MR analysis
was conducted, revealing a noteworthy causal relationship with stroke subtype.

The chief strength of our study is our use of a relatively large cohort dataset in
finding a possible causal association between GGT level and stroke. However, this study
also has a few limitations. First, we did not have access to individual-level data, so we
could not explore any potential nonlinear relationships or stratification effects. Second,
the test procedures used to validate MR hypotheses do not provide complete validation.
Violations of the MR assumptions can lead to invalid conclusions, so our results should be
interpreted cautiously. Third, the summary GWAS data used in this study were collected
from individuals of European ancestry, which may restrict the generalizability of our
findings to non-European populations. Fourth, although the two-sample MR method
requires the use of GWAS results from independent data, we were unable to obtain exposure
and outcome results from completely independent sources because we used consortium
data. The exposure data were obtained from GWAS of UKB samples, and the stroke GWAS,
conducted using GIGASTROKE, includes UKB samples, resulting in substantial overlap
between the exposure and outcome data. However, in previous research using the large-
cohort MR analysis methodology [65], the IVW and weighted median results remained
unaffected, and they influenced the bias of the MR-Egger results.

5. Conclusions

Our study using the MR method demonstrated a causal association between GGT and
stroke and stroke subtype (small vessel stroke, and large artery stroke) in multivariable
results. In addition, after removal of confounding factor-related SNPs, GGT continued
to show a causal relationship with stroke. Considering the significance of GGT and liver
function, researchers should further clarify and investigate the association between GGT
level and stroke.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biom13111592/s1, Supplementary Table S1: List of single-nucleotide
polymorphisms used as instrumental variables in the single-variable MR analysis.
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