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Abstract: Besides respiratory illness, SARS-CoV-2, the causative agent of COVID-19, leads to neuro-
logical symptoms. The molecular mechanisms leading to neuropathology after SARS-CoV-2 infection
are sparsely explored. SARS-CoV-2 enters human cells via different receptors, including ACE-2,
TMPRSS2, and TMEM106B. In this study, we used a human-induced pluripotent stem cell-derived
neuronal model, which expresses ACE-2, TMPRSS2, TMEM106B, and other possible SARS-CoV-2
receptors, to evaluate its susceptibility to SARS-CoV-2 infection. The neurons were exposed to
SARS-CoV-2, followed by RT-qPCR, immunocytochemistry, and proteomic analyses of the infected
neurons. Our findings showed that SARS-CoV-2 infects neurons at a lower rate than other human
cells; however, the virus could not replicate or produce infectious virions in this neuronal model.
Despite the aborted SARS-CoV-2 replication, the infected neuronal nuclei showed irregular mor-
phology compared to other human cells. Since cytokine storm is a significant effect of SARS-CoV-2
infection in COVID-19 patients, in addition to the direct neuronal infection, the neurons were treated
with pre-conditioned media from SARS-CoV-2-infected lung cells, and the neuroproteomic changes
were investigated. The limited SARS-CoV-2 infection in the neurons and the neurons treated with
the pre-conditioned media showed changes in the neuroproteomic profile, particularly affecting
mitochondrial proteins and apoptotic and metabolic pathways, which may lead to the development
of neurological complications. The findings from our study uncover a possible mechanism behind
SARS-CoV-2-mediated neuropathology that might contribute to the lingering effects of the virus on
the human brain.

Keywords: NeuroCOVID; COVID-19; SARS-CoV-2; iPSC-derived human neurons and astrocytes;
proteomics; mass spectrometry; apoptosis; neurodegeneration; metabolism

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as the name suggests,
causes respiratory symptoms that lead to coronavirus disease 2019 (COVID-19) [1]. The
disease was first identified in the Wuhan district in China [1] and, within months, became
a global pandemic, with close to 680 million total cases and over 6.8 million total deaths
so far (COVID-19 Dashboard by the CSSE at JHU, accessed on 11 September 2023). More
prominently, complications after COVID-19 infection remain manifold. Observations at the
onset of the outbreak primarily listed respiratory symptoms like fever, cough, respiratory
distress, and pneumonia. Nonetheless, the list of complications has expanded and gone
well beyond respiratory symptoms. In 2020, one of the initial complications was the
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emergence of neurological symptoms in COVID-19 patients (NeuroCOVID), including
dizziness, disturbed consciousness, headache, loss of smell and taste, seizures, encephalitis,
and increased risk of stroke [2–9]. From the first SARS virus infection in the early 2000s, a
study investigating organ distribution of the related SARS-CoV illustrated the presence
of viral particles in brain autopsy tissue and spinal cord fluid [10]. Fast forward almost
20 years, a transmission electron microscopy of brain sections obtained via post-mortem
examination from a male patient with Parkinson’s disease, who contracted the SARS-CoV-2
virus, showed the presence of the viral particles in frontal lobe brain sections [11]. Moreover,
a 2021 study showed microvascular injury in the brain and olfactory bulb after SARS-CoV-2
infection [12]. With the continuing onslaught of SARS-CoV-2, more detailed studies started
evolving around the virus and its effects on the brain. A 2021 article by Harappan and
Yoo summarised a list of neurological conditions associated with COVID-19 patients until
2020, which included gustatory and olfactory dysfunctions, myalgia, headache, altered
mental status, confusion, delirium, dizziness, stroke, cerebral venous thrombosis, seizures,
meningoencephalitis, Guillain–Barre syndrome, Miller–Fisher syndrome, acute myelitis,
and posterior reversible encephalopathy syndrome [13]. The symptoms were observed in
both adults and children [14], and cortical haemorrhage was reported in the foetal brain [15].
A more extensive study in 2021 assessed neurological and psychiatric co-morbidity in more
than 200,000 patients and found that the risks were more significant in patients with a more
severe form of infection [16].

The UK Biobank reported a change in brain volume of COVID-19 patients in 2022 [17],
which was also reported in patients who recovered from COVID-19 [18,19] and was as-
sociated with cognitive dysfunction [20]. Although conflicting studies have suggested
that the virus does not infiltrate the brain directly [15,21], the changes in brain structure
post-SARS-CoV-2 infection suggest neurological symptoms associated with COVID-19.
Furthermore, a more recent study from September 2022 analysed patient data one year
after SARS-CoV-2 infection and found that in the post-acute phase of COVID-19, the pa-
tients showed an increased risk of stroke, cognition and memory disorders, peripheral
nervous system disorders, migraine, seizure, movement disorders, mental health disorders,
musculoskeletal disorders, sensory disorders, Guillain–Barre syndrome, encephalitis, or
encephalopathy [22]. Assessments of neurological symptoms in COVID-19 patients af-
ter recovery [22–24] have revealed that follow-up neurological assessments are critical to
understanding the long-term effects of the virus, thereby making the virus a significant
contributor to global health challenges. Genetic and molecular analyses followed by gene
ontology analyses have revealed that SARS-CoV-2 infection showed altered cellular path-
ways that overlap with brain diseases such as Alzheimer’s disease, multiple sclerosis, and
brain ageing [25–29].

In addition to the symptomatic studies over the last two years highlighting what
SARS-CoV-2 seems to be doing to the brain, there has been a plethora of studies investi-
gating how the virus affects the brain, leading to neurological symptoms in COVID-19 (or
NeuroCOVID) patients [25,29–36]. A key finding indicates that the cytokine storm post-
SARS-CoV-2 infection can lead to immune cell infiltration into the olfactory region, which
could be an entry point to the brain [37,38]. Initially, it was described that SARS-CoV-2
uses the receptor protein ACE-2 and a transmembrane protein called TMPRSS2 on the host
cell surface to gain entry to the cell [39]. Later, other receptors, such as ASGR1, BSG, NRP1,
and TMEM106B, were identified, which allow the binding of the virus and entry into the
host cells, sometimes independent of ACE-2 [40,41]. After entry into the host cells, the
virus takes control of the host translation machinery [42], starting a cascade of changes in
cellular pathways and leading to cell death. Multiple omics analyses have been performed
on different human cell types to ascertain the cellular changes after SARS-CoV-2 infec-
tion. However, to our knowledge, less than ten research studies have assessed proteomic
changes directly in brain cells post-SARS-CoV-2 infection [32,36,43–45]. Most studies have
focussed on investigating transcriptomic and proteomic changes in the human body fluids,
and there is a paucity of information on what proteomic changes occur in human brain
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cells, particularly in neurons, when exposed to SARS-CoV-2. The information from the
neuroproteomic analysis can reveal the dysregulated neuronal pathways that may explain
the neurological symptoms in COVID-19 patients.

Ideally, investigating the disturbed cellular and molecular pathways in brain cells
from living patients affected by COVID-19 would reveal the mechanisms behind the
neuropathology and can lead to therapy. However, there is limited access to live human
brain cells, but skin cell-derived induced pluripotent stem cells (iPSCs) offer an excellent
platform to generate human brain cells on a dish to investigate the dysfunctional pathways
after SARS-CoV-2 infection. Our transcriptomic data in our well-established iPSC-derived
human cortical-like glutamatergic neuronal model [46,47] show the expression of ACE2
along with other receptors. These expression data were supported by the publicly available
RNA-sequencing database (https://ineuronrnaseq.shinyapps.io/rnaseq_app/, accessed on
the 20 April 2021) on these iPSC-derived cortical-like glutamatergic neurons (Figure S1) [48].
The presence of these entry points for SARS-CoV-2 seems to make neurons vulnerable
to the virus. Therefore, we aimed to delineate the neuronal pathologies after exposure
to SARS-CoV-2, and in this study, we present unique neuroproteomic signature altering
key neuronal pathways that could explain the neurological complications associated with
COVID-19.

2. Materials and Methods
2.1. Generation of Induced Pluripotent Stem Cell-Derived Human Neurons

For this study, an established protocol to generate pure human cortical-like gluta-
matergic neurons from induced pluripotent stem cells (iPSCs) was used [46]. In short,
using the doxycycline-mediated expression of the transcription factor neurogenin-2, the
iPSCs were differentiated into mature isogenic, integrated, and inducible pure human
cortical-like glutamatergic neurons (i3Ns). The i3Ns express mature neuronal markers
after 2 weeks [46,47] and show electrophysiological activity [47,49]. An early, immature
stage (Day 8) for i3Ns was chosen in addition to a late, mature stage (Day 21) of i3Ns to
test whether the SARS-CoV-2 virus preferentially infects immature versus mature neurons.
The i3Ns were exposed to SARS-CoV-2 at these two different time points (Days 8 and 21,
Section 2.3) and two different multiplicities of infection (MOI) (Figure 1A). 24, 48, and
72 h post-exposure, the i3Ns were harvested for RNA isolation, and the RNA was used
to quantify SARS-CoV-2 replication (Section 2.4). Three-week-old i3Ns were exposed to
SARS-CoV-2 (Section 2.3) for either immunochemistry or proteomic experiments. To test the
effect of hypoxia and SARS-CoV-2 together, the i3Ns were incubated with cobalt chloride
(Sigma-Aldrich, Castle Hill, Australia; cat# 232696) at two different concentrations (100 µM
and 200 µM, hypoxia confirmed by HIF1-α immunocytochemistry) for 24 h, followed by
exposure to SARS-CoV-2 and immunocytochemistry as described above.

https://ineuronrnaseq.shinyapps.io/rnaseq_app/
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Figure 1. SARS-CoV-2 virus infects human iPSC-derived neurons. (A) iPSCs were differentiated into
cortical-like glutamatergic neurons (i3Ns) and infected on Day 21, followed by immunocytochemistry
analysis on Day 22. To assess infection in immature i3Ns, infection was carried out on Day 8 and
immunocytochemistry on Day 9. Finally, for RT-qPCR analysis of viral replication, i3Ns were infected
on Day 21, followed by analysis on Days 22, 23, and 24. (B) i3Ns showed infection 24 h post-infection,
as shown by the white arrows. Inset shows that the infected nucleus (DAPI stain) looked fragmented
compared to the uninfected nucleus. (C) Day 21 i3Ns showed more SARS-CoV-2 infected cells than
Day 8 i3Ns. (D) RT-qPCR analysis of the E gene in infected i3Ns showed no virus replication in
the i3Ns.

2.2. Generation of Induced Pluripotent Stem Cell-Derived Human Astrocytes

Following Canals et al. [50] and Fernandopulle et al. [47], the transcription factor
Nfib was stably integrated into WTC11 iPSCs under a doxycycline-inducible promoter
(Basak, Hughes et al., manuscript in preparation). The Nfib cassette, based on the plasmids
(Addgene 64900 and 105840), consisted of mApple and puromycin selection markers. The
iPSCs with stably integrated Nfib were sorted for mApple via fluorescence-activated cell
sorting and selected for puromycin, yielding a pure iPSC population with integrated Nfib.
The insertion of Nfib was also tested via PCR and sequencing, followed by differentiation of
the Nfib-iPSCs into mature astrocytes (iAs) in 17 days (Figure S2A), following the original
protocol [50]. The Day 17 iAs showed expression of S100β, known to be highly expressed
in mature human astrocytes [51]. Like the neuronal infection, the iAs were exposed to
SARS-CoV-2 (Section 2.3) at 10 MOI (Figure S2A). 24 h post-SARS-CoV-2 exposure, the iAs
were used for immunochemistry to detect SARS-CoV2 infection.
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2.3. SARS-CoV-2 Production and Infection of i3Ns and iAs

SARS-CoV-2 isolate hCoV-19/New Zealand/NZ1_patient/2020 was produced in Vero
E6/TMPRSS2 cells as described [52]. The viral stock was titrated by determining tissue
culture dose for 50% infectivity (TCID50) in triplicate with cytopathic effect (CPE) as the
end-point using the Reed and Muench method [53] and expressed as TCID50 per millilitre
(TCID50/mL). The SARS-CoV-2 titre was used to determine the appropriate MOI to be
added to the iPSC-derived i3Ns (Section 2.1) or iAs (Section 2.2). Younger (Day 8) and
mature (Day 21) i3Ns were exposed to SARS-CoV-2 using two different MOIs, i.e., 2 and 10,
for 24 h, followed by fixing the cells with 4% paraformaldehyde and immunocytochemistry
(Figure 1B,C). Similarly, Day 17 iAs were exposed to SARS-CoV-2 at 10 MOI, followed by
24 h infection and immunocytochemistry (Figure S2A).

2.4. Assessment of SARS-CoV-2 Infection and Replication

To test the ability of SARS-CoV-2 to infect i3Ns and/or iAs, cells were fixed 24 h
post-exposure and used for immunocytochemistry as before [46]. Primary antibodies
were used to detect SARS-CoV-2 (mouse anti-SARS-CoV-2 nucleoprotein antibody, Sap-
phire Biosciences, Redfern, Australia, cat# 35-579, dilution—1:500), neurons (guinea pig
anti-MAP2 antibody, Synaptic Systems, Gottingen, Germany, cat# 188004, 1:2000) and astro-
cytes (rabbit anti-S100β antibody, Abcam, Burlingame, CA, USA, cat# ab52642, dilution—
1:400). Secondary antibodies used were similar to [46], followed by counterstaining with
4′, 6-diamidino-2-phenylindole (DAPI) (Sigma-Aldrich, Castle Hill, Australia; cat# D9542,
dilution—1:10,000 from 1 mg/mL stock solution), as previously described [46]. After
immunocytochemistry, the i3Ns and iAs were imaged on a Nikon Ti2 Inverted microscope
(Nikon, Tochigi, Japan).

To test whether SARS-CoV-2 can replicate within post-mitotic i3Ns, three-week-old
i3Ns were exposed to SARS-CoV-2 (Section 2.3) and incubated with the virus for 24, 48,
and 72 h. Post-viral exposure, the i3Ns were washed with PBS (ThermoFisher Scientific,
Auckland, New Zealand, cat#70011044) to rid them of the free-floating SARS-CoV-2 or
non-internalised SARS-CoV-2 and the E gene quantification represented true neuronal
infection. Then, the i3Ns were harvested with Accutase (ThermoFisher Scientific, Auck-
land, New Zealand, cat# A1110501) and total RNA was isolated using the TRIzol RNA
isolation method [54] and PureLink RNA isolation kit (ThermoFisher Scientific, Auckland,
New Zealand, cat# 12183018A), following manufacturer’s instructions. The RNA was
quantified using a NanoDrop One spectrophotometer (ThermoFisher Scientific, Madison,
WI, USA) and treated with DNAseI (ThermoFisher Scientific, Auckland, New Zealand, cat#
18-068-015) following our previously established protocol [55]. RT-qPCR was performed
using a LightCycler 480 Instrument (Roche, Auckland, New Zealand), qScript XLT 1-Step
RT-qPCR ToughMix Low ROX (Quantabio, Beverly, CA, USA, cat# 84385), and primers
designed to detect the E gene (envelope gene) of SARS-CoV-2 (primer sequences as de-
scribed [56]. The expression of the E gene was normalised to GAPDH (primer sequences:
forward primer—5′ CCACTCCTCCACCTTTGAC 3′, reverse primer—5′ ACCCTGTT GCT-
GTAGCCA 3′), and analysis was performed using the Pfaffl method [57].

2.5. Neuroproteomic Analysis of SARS-CoV-2 Infected Human Neurons

The unexposed i3Ns and i3Ns exposed to SARS-CoV-2 (at 10 MOI) were used for the
first set of neuroproteomic analyses (Figure S3). Because of the known effect of cytokines
on neurons from the literature, human lung epithelial Calu-3 cells were infected with
SARS-CoV-2 (10 MOI), and the i3Ns were treated either with pre-conditioned media from
uninfected or infected Calu-3 cells (Figure S3). The SARS-CoV-2 exposure to i3Ns and
treatment of the i3Ns with the pre-conditioned Calu-3 media was carried out for 24 h.
Following SARS-CoV-2 exposure (both direct and with pre-conditioned media), all i3Ns
from four conditions (Figure S3) were used for mass spectrometric analysis. The lists of
differentially expressed proteins were used for (i) identifying protein–protein interaction
using StringDB [58] and (ii) gene ontology analysis using Metascape [59], followed by verifi-
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cation on Enrichr [60] and DAVID [61] and visualisation using Cytoscape [62]. For STRING
analysis, the upregulated or downregulated proteins were compiled into two different lists
(from Tables S1 and S2), and these lists were used to query the protein–protein interactions
on Cytoscape. For Cytoscape visualisation, a full STRING network was investigated with
a confidence (score) cutoff of 0.4 and a maximum additional interactors cutoff of 10 from
the 1st shell. For gene ontology analyses, the upregulated and downregulated protein lists
were used to ascertain the changing molecular functions and biological pathways with a
cutoff of p < 0.05.

2.6. Label-Free Proteomic Analysis of SARS-CoV-2 Infected Neurons

The neuron samples were lysed in an SDS containing lysis buffer (5% SDS, 50 mM
TEAB). Genomic DNA was degraded with a nuclease, Denarase (c-LEcta, Leipzig, Ger-
many). A BCA protein estimation assay (ThermoFisher Scientific, Auckland, New Zealand,
cat# 23225) was used to normalise the protein amount to 100 µg in all samples. Further,
reduction and alkylation were carried out using 5 mM Tris(2-carboxyethyl)phosphine
hydrochloride (TCEP) (Sigma-Aldrich, Castle Hill, Australia; cat# C4706) and 10 mM
iodoacetamide (Sigma-Aldrich, Castle Hill, Australia; cat# GERPN6302), respectively. Sam-
ples were then processed using the S-trap micro spin trap column (ProtiFi, Fairport, NY,
USA) according to the manufacturer’s protocol. The proteins on the column were tryptically
digested, and cleaved peptides were eluted from the column for the proteomics analysis
(protifi.com/pages/protocols, accessed on 11 September 2023).

The peptides were chromatographically separated on a 20 cm emitter-tip column
(75 µm ID fused silica tubing (CoAnn Technologies, Richland, WA, USA) in-house packed
with 3 µM C-18 Luna material (Phenomenex, Torrance, CA, USA) using an Ultimate
3000 uHPLC system (ThermoFisher Scientific, Waltham, MA, USA). The peptides were
eluted from the column using a two-hour method with a reverse phase acetonitrile (ACN)
gradient. The gradient consisted of the following steps: 5% to 25% ACN in 84 min, 25% to
40% in 10 min, and 40% to 99% ACN in 5 min. Peptides were measured by an LTQ Orbitrap
XL (ThermoFisher Scientific, Waltham, MA, USA) mass spectrometer at a resolution of
60,000 @ m/z 400. The 10 strongest precursor ions between 400–2000 m/z were selected for
collision-induced dissociation (CID) fragmentation in the ion trap. A normalised collision
energy was set at 35% with an AGC target of 2 × 105. Dynamic exclusion was enabled with
2 repeat counts during 90 s and an exclusion period of 120 s. MS raw data were analysed
with the Proteome Discoverer software (version: 2.5, ThermoFisher Scientific, Waltham,
MA, USA). Spectra were searched against the human proteome (Uniprot.org) sequence
database using the Sequest search engine node. The search was set up to look for the
semi-tryptic peptides. In further search settings, carbamidomethyl cysteine was included
as static modification, and deamidation of asparagines and glutamines were included as
variable modifications. The precursor mass tolerance and the maximum fragment mass
error threshold were set at 10 ppm and 0.6 Da, respectively. The false discovery rate (FDR)
threshold was set at 1% within the percolator node. The resulting quantitative data was
normalised on the sum of abundances from all peptides detected from all samples. The
relative abundance of the proteins was calculated with the top 3 approaches [63], where
the average abundance of the three most abundant peptides for a particular protein was
used. The resulting abundance values were used to calculate the protein abundance ratio
between infected vs. non-infected neurons to obtain the list of regulated proteins. The data
were exported to Excel for further statistical analysis.

2.7. Statistical Analysis

All experiments were performed in experimental triplicate and analysed on GraphPad
Prism (GraphPad, San Diego, CA, USA). For RT-qPCR analysis to test viral replication, two-
way ANOVA was used to assess statistical significance between days post-infection and the
measured number of E gene copies. To measure the increase in E gene copies in infected
i3Ns versus uninfected i3Ns, a paired student’s t-test was used. For the proteomic analysis,

protifi.com/pages/protocols
Uniprot.org
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a two-tailed student’s t-test was used to identify statistically significant differentially ex-
pressed up- and downregulated proteins. For all the analyses and determining significantly
upregulated and downregulated pathways, biological processes, and molecular functions
from the proteomic analysis, p-value < 0.05 was considered statistically significant. Data
are presented as mean ± standard error of mean (SEM). * p < 0.05, ** p < 0.01, *** p < 0.001.

3. Results
3.1. SARS-CoV-2 Infects iPSC-Derived Human Neurons and Astrocytes

To test whether SARS-CoV-2 is able to infect iPSC-derived human neuronal cells,
mature i3Ns were exposed to SARS-CoV-2 at two different MOIs. Cells exposed to an
MOI of 2 failed to show signs of SARS-CoV-2 infection; however, using a higher MOI of
10, infection in i3Ns was detected (Figure 1B), albeit low compared to other cells highly
susceptible to SARS-CoV-2 infection, such as Vero and VeroE6/TMPRSS2 [52]. Next, to
test whether susceptibility to SARS-CoV-2 changes between immature (Day 8) and mature
(Day 21) i3Ns, 10 MOI SARS-CoV-2 was added to immature and mature i3Ns. The mature
neurons showed higher infectivity than the immature neurons (Figure 1C). To evaluate the
role of hypoxia in neuron susceptibility to SARS-CoV-2 infection, the i3Ns were incubated
with cobalt chloride to induce hypoxia, which was confirmed via HIF1-α staining, followed
by exposing the i3Ns to SARS-CoV-2 to 10 MOI. The hypoxia treatment did not increase
the ability of SARS-CoV-2 to infect i3Ns (data not shown).

As an alternative model to test SARS-CoV-2 infection, human iPSC-derived astrocytes
(iAs) were exposed to SARS-CoV-2 at 10 MOI. Similar to the i3Ns, the iAs also showed low
infection via SARS-CoV-2, contrary to what has been previously described [31]. However,
unlike neuronal nuclei, astrocyte nuclei looked intact (Figure S2B). This phenotype suggests
that although SARS-CoV-2 infects both neurons and astrocytes, perhaps neurons are more
vulnerable to apoptosis upon SARS-CoV-2 infection than the astrocytes.

3.2. SARS-CoV-2 Does Not Replicate within Human Neurons

SARS-CoV-2 infects and replicates in different human cell types by hijacking the
cellular machinery [42,64]. The amplification of the E gene, which encodes for the envelope
protein of SARS-CoV-2, was tested using RT-qPCR at different time points post-infection to
determine whether SARS-CoV-2 can replicate in the i3Ns. Our RT-qPCR results showed
near significant (p-value = 0.0515) increased expression of the E gene in infected i3Ns
versus the uninfected i3Ns (Figure 1D). We also noticed a significant decrease in E gene
copies between 48 and 72 h post-infection versus 0 h post-infection (p-value 0.031 and
0.007, respectively) in i3Ns, most likely indicating initial SARS-CoV-2 infection with no
viral production (Figure 1D). These data suggest that the neurons do not support SARS-
CoV-2 replication, demonstrating the low infection rate observed in our neuronal model
(Figure 1B,C). Perhaps the post-mitotic nature of the i3Ns could make them resistant to
viral replication. A similar observation was made by Ramani et al. [65] when they exposed
human brain organoids to SARS-CoV-2.

3.3. SARS-CoV-2 Infection in Neurons Shows Distinct Changes in Neuronal Proteome

A mass spectrometric analysis of i3Ns exposed to SARS-CoV-2 compared to uninfected
i3Ns was performed. With neuroinflammation being a major symptom in neurological cases
of COVID-19 and our results showing low SARS-CoV-2 infection in the neuronal model, a
second set of mass spectrometric analyses comparing SARS-CoV-2-infected vs. uninfected
i3Ns was performed, where the i3Ns were treated with pre-conditioned media from infected
and uninfected human lung epithelial Calu-3 cells (Figure S3). Calu-3 cells are much more
readily infected by SARS-CoV-2 than neurons [66]. The pre-conditioned media from
infected Calu-3 cells presumably contains inflammatory molecules that could potentially
impact neuronal health and cause molecular changes leading to neuropathology. Therefore,
for the second part of the proteomic analysis, i3Ns were treated with pre-conditioned media
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from infected Calu-3 cells compared to i3Ns treated with media from uninfected Calu-3
cells (Figure S3).

The i3N lysates from the four groups, i.e., (i) uninfected i3Ns, (ii) i3Ns infected directly
with SARS-CoV-2 at 10 MOI, (iii) i3Ns treated with media from uninfected Calu-3 cells,
and (iv) i3Ns treated with pre-conditioned media from SARS-CoV-2 infected Calu-3 cells
were subjected to mass spectrometric analysis. Using mass spectrometry, we identified
more than 1700 proteins from all the conditions mentioned above, and each group clustered
and segregated from each other on a PCA plot (Figure 2A), particularly the uninfected
versus infected i3Ns. With a fold change cutoff of ± 1.5 and a p-value cutoff of <0.05,
13 upregulated and 10 downregulated proteins were identified as differentially expressed
in i3Ns infected with SARS-CoV-2 compared to uninfected i3Ns (Figure 2B,C, Table S1).
With more stringent criteria, i.e., a fold change cut-off of 2, only three upregulated and
six downregulated proteins were found to be differentially expressed in i3Ns infected
with the virus compared to uninfected i3Ns (Figure S4A). Applying the same initial cutoff,
14 upregulated and 7 downregulated proteins were identified to be differentially expressed
in i3Ns with pre-conditioned infected Calu-3 media compared to i3Ns with uninfected
Calu-3 media (Figure 2D,E, Table S2). More stringent criteria of fold change > 2 showed that
only three upregulated and two downregulated proteins were found to be differentially
expressed in i3Ns with pre-conditioned infected Calu-3 media compared to i3Ns with
uninfected Calu-3 media (Figure S4B). Interestingly, only one protein (VGF nerve growth
factor) overlapped between the two datasets (Figure 2F).

Figure 2. Proteomic analysis of SARS-CoV-2 infected human iPSC-derived neurons. (A) PCA
plot shows the infected i3Ns segregated and clustered away from the uninfected i3Ns. (B) Mass
spectrometric analysis of i3Ns infected directly with SARS-CoV-2 showed 13 upregulated and
10 downregulated proteins compared to uninfected i3Ns. (C) Heatmap showing differentially
expressed proteins in infected (3 left columns) versus uninfected (3 right columns) i3Ns. Each
column represents experimental replicates. Green text indicates downregulated proteins with
> 2-fold change, while red text indicates upregulated proteins with > 2-fold change. (D) Mass
spectrometric analysis of i3Ns treated with pre-conditioned SARS-CoV-2 infected Calu-3 media
showed 14 upregulated and 7 downregulated proteins compared to i3Ns treated with uninfected
Calu-3 media. (E) Heatmap showing differentially expressed proteins in i3Ns with infected (3 left
columns) versus uninfected Calu-3 media (3 right columns). Each column represents experimental
replicates. Green text indicates downregulated proteins with > 2-fold change, while red text indicates
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upregulated proteins with > 2-fold change. (F) Overlap of the two datasets (i3Ns directly infected
versus i3Ns treated with pre-conditioned media compared to their respective controls) shows 1 protein
(VGF) upregulated in both datasets.

3.4. SARS-CoV-2 Infection Affects Apoptotic and Metabolic Pathways in Neurons

As the number of differentially expressed proteins was smaller than in other proteomic
studies, all the upregulated (26 in total) and all the downregulated (17 in total) proteins
were combined in two lists. Upon further investigation of the localisation of the two lists of
differentially expressed proteins, 27 proteins were found to be associated with the synapto-
some, while 9 mitochondrial and 2 lysosomal proteins showed changes in the i3Ns either
infected with SARS-CoV-2 directly or treated with the pre-conditioned infected Calu-3 me-
dia (Figure 3A). Association with the synaptosome indicates that neuronal communication
might have been affected post-SARS-CoV-2 infection, while changes in mitochondrial and
lysosomal proteins indicate an alteration in neuronal energy homeostasis, metabolism, and
waste clearance activities in the neurons.

Figure 3. Analysis of upregulated proteins in infected i3Ns. (A) Combining all the up and down-
regulated proteins in SARS-CoV-2 infected i3Ns (direct and treated with pre-conditioned media),
29 proteins were found to be associated with the synaptosome, while 9 mitochondrial and 2 lysosomal
proteins were observed to be altered. (B) Protein–protein interaction of all upregulated proteins
in infected i3Ns showed some interactions related to apoptosis, neurodegeneration pathways, and
chemical carcinogenesis—reactive oxygen species. (C) Changes in biological processes for upregu-
lated proteins in infected i3Ns. * indicates the top statistically significant processes. (D) Changes in
molecular functions for upregulated proteins in infected i3Ns.

The upregulated proteins showed clustering and interactions (Figure 3B); however,
gene ontology analysis did not reveal many significant pathways to be differentially regu-
lated. Among the upregulated pathways (from Metascape [59]), chemical carcinogenesis—
reactive oxygen species, apoptosis, neurodegeneration pathways, and membrane organisa-
tion, particularly mitochondrion organisation) (Table S3) are noteworthy. After running
the same analysis with all the upregulated proteins on DAVID and Enrichr, the pathways
mentioned above were confirmed, in addition to the intellectual disability pathway being
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enriched with the proteins upregulated in infected i3Ns. An extended STRING analysis by
including 10 interactors from the first shell (differentially expressed upregulated proteins)
revealed a more extensive protein–protein interaction network (Figure S5A). Most of the
proteins in the network (Figure S5A) seemed to be involved in apoptosis (Figure S5B), recon-
firming our observation of the upregulated apoptosis-related proteins in neurons infected
with the SARS-CoV-2 virus. The upregulated protein VGF from directly and indirectly
infected i3Ns was found to be involved in synaptic transmission (Table S3). Assessments of
the biological processes changing with the upregulated proteins in SARS-CoV-2-infected
i3Ns revealed protein localisation and membrane organisation to be affected (Figure 3C,
Table S4). Finally, ATPase binding and kinase activity were upregulated molecular functions
among other functions in infected i3Ns (Figure 3D, Table S5).

The downregulated proteins showed almost no clustering and fewer interactions
(Figure 4A) than the upregulated protein group. However, gene ontology analysis revealed
metabolic pathways to be a significantly downregulated pathway (from Metascape) in
infected i3Ns (Figure 4B, Table S6). DAVID and Enrichr analyses confirmed metabolism, par-
ticularly lipid metabolism, as the most significantly downregulated pathway in the infected
i3Ns. Extended STRING analysis to include 10 interactors from the 1st shell (differentially
expressed upregulated proteins) showed better clustering (Figure S6A) compared to what
was observed in Figure 4A. Furthermore, STRING analysis with the extended interactors
followed by Cytoscape visualisation also revealed clusters of downregulated proteins in the
infected neurons that are involved in metabolism (Figure S6B), axon guidance (Figure S6C),
cholesterol biosynthesis (Figure S6D) and cell response to stress (Figure S6E). Assessments
of the biological processes changing with the downregulated proteins in infected i3Ns
revealed cholesterol biosynthesis to be affected (Figure 4C, Table S7). Finally, Cadherin
binding was one of the downregulated molecular functions in infected i3Ns (Figure 4D,
Table S8).

Figure 4. Analysis of downregulated proteins in infected i3Ns. (A) Protein–protein interaction of all
downregulated proteins in infected i3Ns showed nominal interactions. (B) Metabolic processes were
the most significant pathway to show change associated with downregulated proteins. (C) Changes
in biological processes for downregulated proteins in infected i3Ns. * indicates the top statistically
significant processes. (D) Changes in molecular functions for downregulated proteins in infected i3Ns.
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4. Discussion

The main goal of our study was to understand the pathological mechanisms underly-
ing the adverse neurological symptoms after SARS-CoV-2 infection. To achieve this, we
used a model based on iPSC-derived human cortical-like glutamatergic neurons, which
were exposed to the COVID-19-causing SARS-CoV-2 virus prior to assessing potential
neuronal damage. Molecular and immunocytochemistry experiments showed that our
neuron model had limited susceptibility to SARS-CoV-2 infection, with no virus production
compared to multiple other cell types, including human respiratory epithelial cells [66].
Interestingly, the neurons that got infected with SARS-CoV-2 did not survive, evident
from the fragmented DAPI-stained DNA (Figure 1B, second inset) and supported by the
upregulation of apoptosis-related proteins from the proteomic analysis of infected neurons
(Table S3). One caveat to this SARS-CoV-2 infection of i3N experiment was that the number
of neurons being infected by the virus could not be quantified, as the neuronal nucleus
(DAPI staining) looked fragmented after the viral infection (Figure 1B, second inset). A 2021
paper [65] also observed a low infection rate and similar disintegrated nucleus phenotype in
brain organoid neurons when infected with 10 MOI SARS-CoV-2. Another 2023 paper [34]
also reported a similar low infection rate in neurons. However, a study in iPSC-derived
sensory neurons showed a higher SARS-CoV-2 infection rate at 1 MOI [67], possibly because
of the differences in the model, neuronal culture conditions, and the molecular and cellular
architecture of sensory neurons versus cortical neurons. An increase in apoptotic pathways
has also been described in other studies investigating changes in plasma proteins from
COVID-19 patients [33,43].

SARS-CoV-2 did not replicate in our neuronal model, also shown by [65,67], perhaps
due to the post-mitotic nature or other evading mechanisms in the neurons. With sys-
temic hypoxia associated with COVID-19 disease, a study showed that brain hypoxia has
been observed in a smaller set of COVID-19 patients [68]. The neurons may be evading
the viral infection, and the presence of hypoxia does not make the neurons vulnerable,
suggesting that there are other molecular mechanisms responsible for neuropathology
after SARS-CoV-2 infection. Similarly, iPSC-derived astrocytes showed low SARS-CoV-2
infection compared to other cells like VeroE6 or VeroE6/TMPRSS2 [52]. Previous research
involving glial cells and SARS-CoV-2 has shown differential infection and contradictory
results. A study involving 52 COVID-19 patients from the First Polish Brain Bank showed
imminent effects on astroglial proliferation [69]. Two iPSC-derived organoid studies re-
vealed that SARS-CoV-2 uses the Neuropilin-1 receptor to infect astrocytes at a rate more
than we have observed, and SARS-CoV-2 infection enhances astrocyte reactivity [70,71].
Both studies used iPSC-derived organoids hosting other brain cells compared to our iPSC-
derived model representing a pure culture of human astrocytes, which may be the reason
behind the different infection rates observed in our study. However, two other studies
showed that SARS-CoV-2 hardly infects iPSC-derived astrocytes [72] and does not replicate
over time in primary human brain-extracted astrocytes [73]. These studies, along with
our observation in iPSC-derived astrocytes, indicate a contradicting astrocyte infection
pattern of SARS-CoV-2. However, there is a unanimous consensus that human neurons
are barely infected by SARS-CoV-2 [65,67,72], as observed in our study. Another type of
brain cells, microglia, are readily infected by SARS-CoV-2, as shown in multiple studies,
which could lead to inflammatory responses detrimental to the neurons [74–77]. Mild
respiratory COVID-19 can cause microglial activation-mediated neuroinflammation and
impair neurogenesis [76]. Furthermore, COVID-19 patients with no neurological symptoms
can also show neuronal and glial degeneration [74]. Another study used immunohis-
tochemical analyses of post-mortem brain slices from COVID-19 patients to show that
SARS-CoV-2 infection was associated with active ramified microglia, which may influence
neurogenesis [78]. A more in-depth analysis of neurogenesis and microglial activation
after SARS-CoV-2 infection revealed that an elevated level of a particular cytokine, CCL11,
enhances microglial reactivity and impairs neurogenesis [76]. This differential infection of
brain cells via SARS-CoV-2 brings us back to the neurotropism question of SARS-CoV-2,
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which is still underexplored. Perhaps the different cellular and molecular architecture is
responsible for making the brain cells differentially vulnerable to the SARS-CoV-2 virus,
and therefore, determines which cells are more affected in COVID-19 patients.

With thousands of studies dissecting the molecular mechanisms leading to neuro-
logical complications after COVID-19, it is surprising how few studies have investigated
proteomic changes in brain cells. The majority of the proteomic studies involved in Neu-
roCOVID research have been conducted in serum [79], plasma [33,80], or cerebrospinal
fluid (CSF) [35,36,81] from COVID-19 patients. One of these studies [36] showed decreased
VGF (VGF nerve growth factor) expression in CSF from COVID-19 patients. This obser-
vation contradicts our finding, i.e., the upregulation of VGF in neurons exposed directly
or indirectly to SARS-CoV-2 (Figure 2C,E,F). Albeit Reinhold et al. [36] used CSF, while
our study was performed on human neurons, a GEO dataset (GSE37827) also revealed the
identification of VGF mRNA alteration after SARS-CoV infection in Calu-3 cells. VGF is
known to be upregulated in HIV-associated neuropathy [82] and can lead to weakness.
In our case, another RNA virus (SARS-CoV-2) seems to increase VGF, which could con-
tribute to weakness and fatigue symptoms observed in COVID-19 patients [14,24,31,68,83].
Furthermore, VGF is associated with synaptic transmission (Table S3), and a study in two
different brain regions from COVID-19 patients showed enriched synaptic neurotransmitter
release [44].

Similarly, another NeuroCOVID proteomic study on patient CSF showed AHSG (a
glycoprotein) to be downregulated in COVID-19 patients, contrary to our upregulation
of AHSG in the infected neurons (Figure 2E). AHSG is required for brain development
and is associated with alopecia and mental retardation syndrome [84] and Alzheimer’s
disease [85]. As discussed earlier, SARS-CoV-2 infection shares cellular mechanisms with
Alzheimer’s disease [29]. It is possible that an increase in AHSG post-infection in neurons
may predispose the neurons to apoptotic pathways, as seen in neurodegenerative diseases.
A 2021 study [86] showed that COVID-19 patients were associated with impaired amyloid
processing measured in CSF and serum, and this phenomenon might contribute to neu-
rological symptoms post-SARS-CoV-2 infection. Additional studies have also explored a
possible link between COVID-19 and Alzheimer’s disease [25,29]. Similar to these studies,
our proteomic dataset revealed upregulated proteins associated with neurodegenerative
pathways, including Alzheimer’s disease (Table S3). The increased expression of MT-CO1
(mitochondrial COX1) has been reported in blood samples from Alzheimer’s disease [87].
Another mitochondrial protein, DNAJA3 (also known as TID1 or HSP40), is upregulated
in the infected neurons, and an increase in DNAJA3 expression is not only associated
with increased neuronal apoptosis but also has been shown to be increased in Alzheimer’s
disease [88]. MAP2K2 (MAP kinase) upregulation is associated with the hyperphosphory-
lation of tau, contributing to the development of Alzheimer’s disease [89]. The reduced
expression of PPP1CA also contributes to tau hyperphosphorylation, and Alzheimer’s
disease brain samples show reduced PPP1CA expression [90]. Therefore, our observation
of the increased expression of MT-CO1 and MAP2K2 and decreased expression of PPP1CA
(Figure 2C,E) in infected neurons seems to support the theory that SARS-CoV-2 infected
neurons may be predisposed to neurodegeneration.

A recent study involving proteomics of human tissue showed the effect of inflamma-
tion post-infection on the basal ganglia and the brain stem [44] and suggested changes
in trafficking in AMPA receptors via inflammation, along with increased abundance of
protein kinases PRKCG, PRKCB, and CAMK2A/B. Protein kinases regulate AMPA receptor
signalling and trafficking [91]. Although our analysis did not identify AMPA receptors,
a protein kinase PRKCE was upregulated in infected neurons (Figure 2C), and PRKCE
is involved in the regulation of trans-synaptic signalling, particularly AMPA receptor
signalling [92]. PRKCE was also upregulated in nasopharyngeal swabs from COVID-19
patients [93]. SARS-CoV-2 is known to hijack the cellular kinase system to facilitate viral
RNA synthesis [94,95], and our study showed increased PRKCE expression (Figure 2C)
and kinase activity to be an overrepresented molecular function in the infected neurons
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(Figure 3D), suggesting that the neuronal kinase activity was affected either via direct
infection or via indirect infection. In our analysis, one of the overrepresented pathways
was mitochondrion organisation (Table S3), whereas Schweizer et al. showed increased
mitochondrial protein translation [44]. Although both pathways consist of distinct proteins,
it is known that SARS-CoV-2 can hijack the host cell mitochondria to viral advantage [96]
as well as induce host mitochondrial dysfunction [97]. In fact, in our analysis, eight (out
of nine) mitochondrial proteins identified were upregulated in the SARS-CoV-2 infected
neurons (Figure 3A), suggesting a possible hijacking of the host mitochondrial machinery
and mitochondrial dysfunction in the infected host neurons, which could predispose the
neurons to neurodegenerative diseases like Alzheimer’s disease, as seen in Table S3.

From analyses of the downregulated pathways, biological processes, and molecular
functions altered in the infected neurons, metabolism was the major depleted compo-
nent in the infected neurons (Figure 4B,C). Although we are not the first group to show
hypometabolism following SARS-CoV-2 infection [32,98–100], which can be associated
with cognitive decline [98], to our knowledge, this is the first study reporting neuronal
metabolism, particularly lipid metabolism, being dysregulated after SARS-CoV-2 infection.
A 2021 study performed proteomic and metabolomic profiling of COVID-19 patient plasma
complemented with cell culture data and showed that the host metabolism pathways are hi-
jacked by the SARS-CoV-2 virus [101]. The authors also showed that fatty acid metabolism
was downregulated in the human lung epithelial Calu-3 cells after SARS-CoV-2 infection,
which supports our observation. Another serum proteomic study in COVID-19 patients,
both disease and recovery stage, showed disturbances in cholesterol metabolism [30],
once again supporting our observation of disrupted cholesterol metabolism (Figure 4B).
ELOVL1 (fatty acid elongase) has been associated with viral replication, as decreased
ELOVL1 indicates disrupted viral replication [102]. The lack of replications of SARS-CoV-2
in the neurons is perhaps due to the decreased expression of ELOVL1 in infected neurons
(Figure 2C) as a compensatory mechanism to evade the virus. Furthermore, ELOVL1 defi-
ciency can lead to neurological defects such as hypomyelination [103] that would render the
neuronal firing slow and less efficient and, therefore, could explain the fatigue experienced
by COVID-19 patients, particularly in long COVID. Our proteomic profiling of infected
neurons also revealed downregulation of HMGCS1 (Hydroxy-Methylglutaryl-CoA Syn-
thase), which is involved in cholesterol biosynthesis and was noted to be downregulated
in multiple cell lines infected with SARS-CoV-2 [104]. In fact, as a regulator of cholesterol
synthesis/metabolism, HMGCS1 shows reduced expression in Alzheimer’s disease [105].
Therefore, the alteration of these metabolism-linked proteins in infected neurons indicates
that the virus may disrupt neuronal metabolism, thereby predisposing the neurons to
future neurological pathologies.

We acknowledge that there are a few limitations to our study. Although our iPSC-
derived neuronal model has unique advantages in studying brain-related pathologies and
associated diseases, in the human brain, other support cells, such as the astrocytes and the
microglia, contribute to the health of the neurons. Therefore, our study reveals neuronal
pathologies after SARS-CoV-2 infection, but our findings do not cover the significance of
the interplay between these different types of brain cells and their impact on regulating
neuronal health in the presence of SARS-CoV-2. With studies showing astrocytes are more
vulnerable than neurons, including both astrocytes and neurons in the proteomic analysis,
would have revealed more significant pathological pathways induced after COVID-19. Due
to limited time and resources, we could not pursue the astrocyte infection or astrocyte–
neuron co-culture and the following proteomic analyses post-infection. Further phenotypic
analyses of the neurons with the pre-conditioned media from either Calu-3 cells or astro-
cytes perhaps would have revealed lysosomal and mitochondrial changes in more detail.
Finally, the pre-conditioned media from Calu-3 cells or astrocytes/neurons could have
been used for a cytokine array or lipidomic/metabolomic analysis. Despite the existing
limitations, our study displays unique neuroproteomic changes after SARS-CoV-2 infec-
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tion that may answer some questions raised from the neurological symptoms in patients
suffering from long COVID.

5. Conclusions

Although there is some overlap between the findings from our study and already
published NeuroCOVID studies involving other cell types or body fluids, a limited number
of studies have focussed on proteomic changes in neurons after exposure to SARS-CoV-2.
Here, we report some unique protein changes in the neuroproteome post-SARS-CoV-2 infec-
tion. We confirmed that the limited viral infection was sufficient to drive the neurons toward
apoptosis; however, the most striking finding was the disrupted lipid metabolism in the in-
fected neurons. Long-term detrimental effects on the human brain due to lipid metabolism
disruption are evident from the numerous studies in neurodegenerative diseases like
Alzheimer’s disease and ageing (reviewed in [106]). Furthermore, altered mitochondrial
function in the infected neurons, as suggested by our study, could also predispose neurons
to neurodegeneration. Therefore, the death of the neurons post-SARS-CoV-2 infection could
be due to a combined effect of mitochondrial dysfunction and disruption of metabolism.
To summarise, our study displays unique neuroproteomic changes after SARS-CoV-2 infec-
tion that may answer some questions raised from the neurological symptoms in patients
suffering from long COVID.

Supplementary Materials: The following supporting information can be downloaded at: https:
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Figure S2: (A) iPSCs were differentiated into astrocytes (i3As) and infected on Day 17 followed by
immunocytochemistry analysis on Day 18. (B) iAs showed limited infection 24 h post-infection,
as shown by the white arrow and the inset. Figure S3: Strategy for mass spectrometric analysis of
infected neurons. (1) iPSCs were differentiated into i3Ns that were infected (2) either directly with
the virus or treated with pre-conditioned media from infected Calu-3 cells. 24 h post-infection, the
i3Ns were lysed and used for mass spectrometric analysis (3). Created with BioRender.com Figure S4:
Mass spectrometric analysis identified neuroproteomic changes. A. Upregulated and downregulated
proteins with a fold change of > 2 and p-value < 0.05 in i3Ns directly infected with SARS-CoV-2
compared to uninfected i3Ns. (B) Upregulated and downregulated proteins with a fold change of > 2
and p-value < 0.05 in i3Ns treated with pre-conditioned media from SARS-CoV-2 infected Calu-3
cells compared to i3Ns treated with media from uninfected Calu-3 cells. Figure S5: Analysis of
upregulated proteins in infected i3Ns. (A) Protein–protein interaction of all upregulated proteins
in infected i3Ns with extended interactors from the 1st shell showed more interactions compared
to Figure 3B. (B) Highlighted proteins are involved in apoptotic pathways in i3Ns infected with
SARS-CoV-2. Figure S6: Analysis of downregulated proteins in infected i3Ns. (A) Protein–protein
interaction of all downregulated proteins in infected i3Ns with extended interactors from the 1st
shell showed more interactions compared to Figure 4A. (B–E) Highlighted proteins are involved in
metabolism (B), axon guidance (C), cholesterol biosynthesis (D), and call response to stress (E) in
i3Ns infected with SARS-CoV-2. Table S1: Differentially expressed protein list in i3Ns infected with
SARS-CoV-2. Table S2: Differentially expressed protein list in i3Ns treated with pre-conditioned
media from SARS-CoV-2-infected Calu-3 cells. Table S3: Upregulated pathways in infected i3Ns
(direct infection + pre-conditioned media). Table S4: Upregulated biological processes in infected i3Ns
(direct infection + pre-conditioned media). Table S5: Upregulated molecular functions in infected
i3Ns (direct infection + pre-conditioned media). Table S6: Downregulated pathways in infected i3Ns
(direct infection + pre-conditioned media). Table S7: Downregulated biological processes in infected
i3Ns (direct infection + pre-conditioned media). Table S8: Downregulated molecular functions in
infected i3Ns (direct infection + pre-conditioned media).
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