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Abstract: Anthocyanins are a type of flavonoids that give plants and fruits their vibrant colors. They
are known for their potent antioxidant properties and have been linked to various health benefits.
Upon consumption, anthocyanins are quickly absorbed and can penetrate the blood–brain barrier
(BBB). Research based on population studies suggests that including anthocyanin-rich sources in
the diet lower the risk of neurodegenerative diseases. Anthocyanins exhibit neuroprotective effects
that could potentially alleviate symptoms associated with such diseases. In this review, we compiled
and discussed a large body of evidence supporting the neuroprotective role of anthocyanins. Our
examination encompasses human studies, animal models, and cell cultures. We delve into the con-
nection between anthocyanin bioactivities and the mechanisms underlying neurodegeneration. Our
findings highlight how anthocyanins’ antioxidant, anti-inflammatory, and anti-apoptotic properties
contribute to their neuroprotective effects. These effects are particularly relevant to key signaling
pathways implicated in the development of Alzheimer’s and Parkinson’s diseases. In conclusion,
the outcome of this review suggests that integrating anthocyanin-rich foods into human diets could
potentially serve as a therapeutic approach for neurological conditions, and we identify promising
avenues for further exploration in this area.

Keywords: anthocyanins; antioxidants; food chemicals; natural products; neuroprotection; neurode-
generation

1. Introduction

Polyphenols are natural compounds primarily found in fruits, vegetables, cereals, and
natural juices. They serve as secondary metabolites in plants, aiding in defense against
ultraviolet radiation and pathogens [1]. Polyphenols are abundant, often reaching up to
200–300 mg per 100 g of fresh weight. The amount of polyphenols in a glass of red wine
or a cup of tea or coffee is approximately 100 mg [2]. The high levels of polyphenols
in the human diet suggest their exceptional tolerance; however, the amount that can be
safely and beneficially added for human consumption remains unclear [3]. Polyphenols
are antioxidants and, therefore, may contribute to preventing diseases related to oxidative
stress, such as cardiovascular and neurodegenerative diseases [4]. Additionally, they act as
active agents in many medicinal plants, influencing various enzymes and cell receptors [5].
Beyond their antioxidant qualities, polyphenols represent a source of bioactive compounds
that remain largely untapped in Western medicine [6].

Polyphenols are characterized chemically by their phenolic structures. These com-
pounds exhibit diverse structures in the diet, ranging from simple molecules (monomers

Biomolecules 2023, 13, 1598. https://doi.org/10.3390/biom13111598 https://www.mdpi.com/journal/biomolecules

https://doi.org/10.3390/biom13111598
https://doi.org/10.3390/biom13111598
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://orcid.org/0000-0003-4940-1107
https://orcid.org/0000-0001-9717-0265
https://doi.org/10.3390/biom13111598
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/article/10.3390/biom13111598?type=check_update&version=1


Biomolecules 2023, 13, 1598 2 of 16

and oligomers) to polymers [7]. Most plant polyphenols exist as glycosides with different
sugars and/or acylated sugars conjugated to their structures [8,9]. Polyphenols are classi-
fied based on their origin, biological function, and chemical structure [10]. For instance,
among the over 8000 identified phenolic structures from natural sources, approximately
4000 are flavonoids. Flavonoids share a common structure consisting of two aromatic rings
connected by an oxygenated heterocycle [11]. These compounds fall into six subclasses
based on the heterocycle type: flavonols, flavones, isoflavones, flavanones, anthocyani-
dins, and flavanols (catechins and proanthocyanidins). Within each subclass, individual
differences arise from varying numbers and arrangements of hydroxyl groups, along with
degrees of alkylation and glycosylation [2].

Anthocyanins, a subset of flavonoids, are responsible for the red, purple, or blue
colors in plants and fruits [12,13]. Over 600 anthocyanins have been identified in plants,
demonstrating robust antioxidant capacity and a wide range of health benefits [14]. For
example, in a meta-analysis of randomized controlled clinical trials, Park et al. (2021)
showed that anthocyanin supplementation, up to 300 mg/day for four weeks, was sufficient
to reduce body weight and body mass index [15]. In addition, a diet supplemented with
anthocyanins reduces vascular and systemic inflammation in multiple clinical settings
(reviewed by [16]), including type 2 diabetes patients [17].

Notably, it has been shown that anthocyanin consumption improves cognitive health.
Dietary supplementation with blueberry anthocyanins improves cognitive performance
in aging individuals [18], in elderly adults with cognitive impairment [19], in healthy
adults [20–23], and in school children (7–10 years of age) [24]. Those effects correlate with
improved brain perfusion and activation in brain areas associated with cognitive function
and reduced cardiometabolic risk [25,26].

Furthermore, anthocyanins show significant potential in treating neurodegenerative
diseases in various experimental models [27]. Given that neurodegenerative diseases share
common pathogenic mechanisms, in the present narrative review, we aim to provide a
detailed description of the effects of anthocyanins in the molecular pathways promoting
neurodegeneration, such as neuroinflammation, oxidative stress, and excitotoxicity. Fur-
thermore, we discuss the effects of anthocyanins on relevant in vitro and in vivo models
and clinical studies. The evidence summarized here demonstrates that anthocyanins are
compounds with multiple molecular targets and mechanisms of action that cooperate to
elicit beneficial effects in patients with neurological conditions.

2. Anthocyanins
2.1. Dietary Sources

Anthocyanins constitute the largest group of water-soluble pigments, contributing
shades of pink, red, blue, or purple to the vacuolar sap of flowers and fruits’ epidermal
tissues [28,29]. These compounds can also exist in colorless forms depending on pH levels.
In their aglycone state (anthocyanidins), they exhibit instability. Although they resist
light-induced degradation in plants, they are vulnerable to pH fluctuations and oxidative
conditions. Glycosylation, often with glucose at the 3-position, and esterification with
organic or phenolic acids prevent degradation. Additionally, complex formation with other
flavonoids stabilizes anthocyanins [30].

Anthocyanins are present in red wine, some cereal varieties, and select leafy veg-
etables and roots (e.g., eggplants, cabbage, beans, onions, radishes). Red wine contains
approximately 200–350 mg of anthocyanins per liter, with these compounds undergoing
structural transformations as the wine matures [1]. However, fruits remain the primary
source of anthocyanin consumption [31]. While mainly concentrated in the peel, certain
red fruits, like cherries and strawberries, also contain anthocyanins in the pulp. Cyanidin
(Figure 1B) stands out as the most prevalent anthocyanidin in foods [32]. Levels typically
correlate with color intensity, with values reaching up to 2 to 4 g/kg of fresh weight in
blackcurrants or blackberries, increasing as the fruits ripen [33].
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2.2. Chemistry and Its Relationship with Bioavailability and Biodistribution

Anthocyanins exhibit a complex structure, characterized by glycosylation, polyhy-
droxy or polymethoxylated 2-phenylbenzopyryl derivatives, featuring two benzoyl rings
(A and B) separated by a heterocyclic ring (C) (Figure 1A). The plant kingdom boasts
around 400 distinct anthocyanins [29]. These flavonoids are distinguished by their height-
ened oxidation state, boasting a fully unsaturated C ring and a hydroxyl group at the
3-position [34]. Anthocyanins consist of an anthocyanidin (aglycone) bound to sugars
(Figure 1A), often accompanied by organic acids in the case of acylated anthocyanins.
Notably, variations in the number of sugars and binding positions, as well as the acylating
groups of sugar substitutions, contribute to the diverse array of anthocyanin structures.
Acylated anthocyanins exhibit pH-stable characteristics, tending to exhibit bluer hues
compared to non-acylated counterparts. Favorable storage conditions involve cool, dark
environments to maintain anthocyanin integrity due to the impact of light and temperature
on anthocyanin degradation [34].

The therapeutic effects of anthocyanins require their absorption from dietary sources.
Anthocyanins are susceptible to degradation in human saliva [35] and by the intestinal
microbiota [36]. Due to their hydrophilicity, anthocyanins do not cross the gastrointestinal
epithelium for paracellular absorption but use transporters. Anthocyanin glycosides can
be translocated by sodium-dependent glucose transporter 1 (SGLT1), glucose transporter
2 (GLUT2), and organic anion-transporting polypeptide 2B1 (OATP 2B1), whereas the
aglycon forms use only GLUT2 and OATP 2B1 [37]. After gastrointestinal absorption,
anthocyanins are susceptible to phase II biotransformation, and their metabolites are
transported in an ATP-dependent manner [38]. Because of all the above, some authors have
expressed concerns that the therapeutic efficacy of anthocyanins may be hindered by their
low bioavailability.

Hahm and collaborators [37] recently summarized multiple in vivo pharmacokinetic
studies with anthocyanins, finding that, in general, bioavailability is low. However, the
physicochemical properties of each anthocyanin influence the bioavailability. For example,
the presence of cationic groups within anthocyanin glycosides appears to render them
resistant to enzymatic conjugation, facilitating efficient and rapid absorption as glycosides
both in experimental animals and humans [39–42]. Anthocyanins like cyanidin-3-glucoside
and cyanidin-3,5-diglucoside from fruits are incorporated into the liver and plasma of
rats and humans, indicating that structurally intact glycoside forms of anthocyanins are
efficiently absorbed from the digestive tract into the bloodstream [43,44]. In addition, the
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type of sugar bound to anthocyanins has been identified as an influential factor in their
permeability and bioavailability [45].

Importantly, a growing body of evidence underscores the ability of anthocyanins to
traverse the BBB [46,47]. Anthocyanins and their derivatives, such as cyanidin-3-rutinoside
and pelargonidin-3-O-glucoside, are taken up by mouse and rat brain endothelial cells,
revealing their capacity to penetrate the BBB [48]. Intravenous injection of anthocyanin
cyanidin-3-O-b-D-glucoside further supports rapid brain uptake [49]. Andres-Lacueva et al.
(2005) found anthocyanins like cyanidin-3-O-b-D-galactoside, cyanidin-3-O-b-D-glucoside,
and cyanidin-3-O-b-D-arabinose in various brain regions of rats fed blueberry polyphenols,
suggesting that dietary supplementation allows direct brain access [50]. Yet, the possible
therapeutic use of anthocyanins in neurodegenerative diseases requires further research to
identify strategies for improving bioavailability and biodistribution of anthocyanins with
specific activities.

3. Mechanisms of Neuronal Damage Affected by Anthocyanins

Dementia, a shared hallmark of neurodegenerative diseases, stems from the targeted
loss of specific neuronal cell populations within the central nervous system (CNS). Examples
include the entorhinal cortex and hippocampus in Alzheimer’s disease (AD), the substantia
nigra in Parkinson’s disease (PD), the striatum and cerebral cortex in Huntington’s disease
(HD), and motor neurons in amyotrophic lateral sclerosis (ALS) [51]. While these diseases
exhibit diverse underlying mechanisms, they share common features that intertwine [52]:
(i) oxidative stress generation, (ii) inflammatory response, and (iii) excitotoxicity induction.

Hence, targeting these shared features presents an appealing therapeutic avenue.
Within this context, polyphenols have emerged as promising candidates thanks to their
notable antioxidant, anti-neuroinflammatory, and anti-apoptotic properties [53]. Among
them, anthocyanins hold considerable promise as potential treatments for neurodegenera-
tive disorders [54]. These compounds, derived from diverse natural and dietary sources,
have garnered significant attention and are undergoing investigation in various biological
models to ascertain their neuroprotective potential by diverse mechanisms discussed below
and summarized in Figure 2.

3.1. Oxidative Stress

Oxidative stress denotes an imbalance in cellular equilibrium resulting from cells’
inability to counteract the excessive production of free radicals [55]. The brain is particularly
vulnerable due to its elevated lipid content, oxygen consumption, and relatively low
antioxidant system activity. Consequently, the brain is more susceptible to oxidative stress
than other organs [56].

Accumulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS),
combined with a dysfunction of the antioxidant system, leads to lipid, DNA, and protein
damage in age-related neurodegenerative diseases like AD, PD and ALS [57–59]. For
example, in models of AD, aggregation of beta-amyloid (bA) leads to mitochondrial dys-
function and oxidative stress prior to the development of plaque pathology [60]. Increased
ROS production by bA is caused by the inhibition of mitochondrial complexes I and IV in
neurons and astrocytes [61,62]. Similarly, mutations in the mitochondrial complex present
in PD patients lead to the overproduction of superoxide [63]. Furthermore, oxidative stress
perpetuates the release of proinflammatory molecules, exacerbating inflammation, which,
in turn, is influenced by oxidative stress [64]. This cycle disrupts proper cell signal transduc-
tion regulation. Thus, oxidative stress in the brain compromises various neuronal functions,
including synaptic plasticity, thus correlating with the emergence of neurodegenerative and
psychiatric conditions [65,66]. Thus, reducing oxidative stress and modifying the release of
mitochondrial ROS are desirable goals in therapeutic intervention of neurodegenerative
diseases [67].

A recent systematic review of randomized controlled trials in humans showed a
significant effect of consuming berries on biomarkers related to oxidative stress [68]. An-
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thocyanins’ neuroprotective effects are closely tied to their antioxidant and radical scav-
enging abilities. Various forms of anthocyanins, including pure compounds, anthocyanin-
enriched fractions, and their metabolites, shield neuronal model cells from hydrogen
peroxide-induced cell death [14,69,70], ethanol-induced damage [71], oxygen–glucose
deprivation [72], and bA peptide toxicity [73] by mitigating oxidative stress.

Moreover, anthocyanins exhibit protective effects against mitochondrial oxidative
stress (MOS). Cerebellar granule neuron cultures hamper MOS-induced apoptosis by
preserving mitochondrial glutathione (GSH) levels, inhibiting cardiolipin oxidation, and
preventing mitochondrial fragmentation. These actions collectively contribute to substantial
protection against induced apoptosis [74].

In mammalian cells, the main regulator of the antioxidant response is the Nrf2/
antioxidant response element (ARE) pathway [75]. Nrf2 is a transcription factor that
binds to ARE, coordinating the expression of multiple antioxidant enzymes, including
glutamate cysteine ligase (GCL), thioredoxin reductase 1 (Txnrd1), NAD(P)H-quinone
oxidoreductase 1 (NQO1) and heme oxygenase-1 (HMOX1) [76,77]. The protective activities
of anthocyanins are partially caused by their ability to induce Nrf-2 activation [78,79].
The administration of a diet rich in anthocyanins to aged rats significantly elevates Nrf2
levels in the hippocampus and prefrontal cortex as well as the expression of antioxidant
enzymes such as superoxide dismutase 1 (SOD1) and glutathione S-transferase [80]. Similar
effects have been reported in vitro. The berries’ anthocyanin cyanidin-3-glucoside [81] and
commercial proanthocyanidins [82] induce the Nrf2 antioxidant defense system, reducing
oxidative stress and apoptosis in stressed cultured neurons. This evidence suggests a
key role of Nrf2 activation in the neuroprotective effects of anthocyanins and calls for the
identification of additional Nrf2 activators for controlling oxidative stress in the brain.

3.2. Excitotoxicity

Excitotoxicity denotes cell demise triggered by the actions of excitatory amino acids
within the nervous system. Neurons susceptible to excitotoxicity play pivotal roles in func-
tions such as learning and memory. Given that the neurotransmitter glutamate is a primary
excitatory neurotransmitter in the mammalian CNS, neuronal excitotoxicity largely results
from prolonged exposure to glutamate [83]. A key pathogenic mechanism of excitotoxic-
ity is oxytosis [84]. Oxycytosis is an oxidative stress-induced cell death pathway [85,86]
that can be induced by extracellular glutamate. Elevated brain glutamate levels lead to
neurotoxicity, triggering heightened intracellular ROS [83,87]. Increased extracellular gluta-
mate concentrations hinder cystine influx into cells, diminishing intracellular glutathione
antioxidant levels and inducing oxidative stress [88]. Moreover, glutathione depletion ac-
celerates multiple downstream signaling pathways, ultimately leading to neuronal demise
via abnormal calcium uptake and lipid peroxidation [89]. This calcium overload activates
catabolic enzymes that degrade proteins, membranes, and nucleic acids, culminating in
neurotoxicity [90].

Numerous in vitro studies underscore that at elevated concentrations, glutamate is
a potent neurotoxin capable of eliciting neuronal apoptosis [91]. Glutamate-triggered
cell death in primary cortical neurons and HT22 neurons involves positive regulation
of a caspase-dependent pathway with mitochondrial signaling involvement [92]. Those
effects are primarily attributed to the glutamate/cystine antiporter imbalance and its
repercussions on cytosolic homeostasis [93]. Kainic acid, a non-degradable glutamate
analog, is utilized in brain injury models and induces cell death in HT22 neurons and
primary hippocampal neurons [94–96]. The cytotoxicity of kainic acid correlates with
increased ROS levels and caspase-3 activation. Pretreatment with anthocyanins from
the “Korean black soybean” Glycine max (L.) Merr. (Fabaceae), at 100 and 200 µg/mL,
significanltly mitigates kainic acid-induced cell viability loss [95]. Similarly, anthocyanin-
containing extracts from Vitis vinifera L. grapes [97] and black capulin cherry tree [98]
significantly reduced glutamate-triggered cell death in HT22 cells. Notably, anthocyanins’
in vivo neuroprotective effect was demonstrated by Shah et al. (2016), revealing that
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anthocyanins can alleviate glutamate-induced neurotoxicity in the developing rat brain
through an AMPK-dependent mechanism [99]. Purified cyanidin-3-O-galactoside [98]
mirrors the neuroprotective impact of whole extracts by mitigating glutamate-induced
oxidative stress, preserving mitochondrial function, and reducing caspase-dependent
apoptosis. A similar effect has been reported for astaxanthin [100], which is commercialized
in multiple countries as a supplement, underscoring the potential of anthocyanins isolated
from natural sources for further investigation.

3.3. Neuroinflammation

Neuroinflammation is a feature of neurodegenerative diseases. Persistent inflamma-
tion in the brain affects neural plasticity, impairs memory, and is considered a typical
driver of neurodegenerative disorders [101]. Multiple cells are located within the CNS,
including neurons, macroglia, and microglia. Microglia constitute the most abundant resi-
dent macrophages in the CNS, with roles in tissue defense and repair [102]. Dysregulated
activation of microglia and astrocytes within the CNS and infiltrating immune cells has
been observed in various neurodegenerative conditions [103,104]. The accumulation of
inflammatory cells and soluble mediators leads to sustained neuroinflammation and sensi-
tizes neurons to further insults, triggering neurodegeneration [104]. Accordingly, therapies
in neurodegenerative diseases aim to reduce the activation of astrocytes and microglia, and
the concentration of proinflammatory cytokines [67].

Various factors such as environmental, genetic, and age merge to activate microglia and
trigger inflammatory pathways [105]. For example, lipopolysaccharide binding to Toll-like
receptor 4 (TLR4) on the surface of microglia activates phosphoinositide 3-kinase/protein
kinase B (PI3K/AKT), mitogen-activated protein kinase (MAPK) and mammalian target of
rapamycin (mTOR) pathways, which ultimately lead to NF-κB activation [106,107]. In turn,
activation of NF-κB mediates the production of proinflammatory molecules, including
iNOS, interleukin 1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), cyclooxygenase-1
(COX-1), COX-2, and ROS, resulting in neuroinflammation [108] and potentially in neuronal
dysfunction and cell death [109,110].

Poulose et al. (2012) showed that anthocyanins from the pulp of the açai fruit (Euterpe
oleracea Mart.) attenuate inflammatory stress signaling in mouse brain BV-2 microglial cells
through the reduction of COX- 2, p38-MAPK) TNFα, and NF-κB [111]. Anthocyanins from
black soybean seed coats significantly inhibited proinflammatory mediators induced by
lipopolysaccharide in BV2 microglial cells, such as nitric oxide (NO) and prostaglandin
E 2, and proinflammatory cytokines such as TNF-α and IL-1β. They also inhibited the
nuclear translocation of NF-κB by reducing the degradation of the inhibitor IκB-alpha and
the activation of the AKT/JNK pathway [112].

Neuroinflammation reduction by anthocyanins may impact the progression of neu-
rodegenerative diseases. For example, anthocyanins (alone and loaded in nanoparticles)
decrease the expression of neuroinflammatory and apoptotic markers in Aβ (amyloid
beta peptide) 1-42-injected mouse models of AD and in vitro by inhibiting the p-JNK/NF-
κB/p-GSK3β pathway [113]. In a multiple sclerosis (MS) model, neuronal homeostasis
is restored by the administration of total anthocyanins from the grape (Vitis vinifera) skin.
Treatment reduces the expression of proinflammatory cytokines IL-1β and TNF-α and
increases the expression of anti-inflammatory cytokines (i.e., IL-10), reducing inflammatory
cell infiltration [114].

3.4. Altered Cholinergic Transmission

Reduction in cholinergic transmission, caused by alterations in acetylcholine (ACh)
synthesis and release and decreased expression of cholinergic receptors, contribute to the
cognitive impairment observed in patients with AD [115]. Acetylcholinesterase (AChE)
catalyzes the hydrolysis of ACh to choline and acetate, terminating ACh-mediated synaptic
transmission. Thus, an approach to treat AD is the use of AChE inhibitors [115], which
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reduce the breakdown of endogenously released ACh, increasing ACh levels in the synaptic
cleft and amplifying the activation of postsynaptic cholinergic receptors [116].

Anthocyanins from grape skin [117] or passion fruit epicarp extract [118] inhibit AChE
with IC50 of 363.61 µg/mL and 18.29 mg/mL, respectively. Similarly, the peel of hawthorn
fruit (Crataegus pinnatifida Bge. var. major) [119] and Morus fruit extract [120], mainly
containing anthocyanins/anthocyanidins, inhibit AChE. Red-leaf tea extract, which is
rich in delphinidin and cyanidin-3-O-galactosides, inhibits AChE [121]. Structure–activity
relationship studies have shown that the hydroxyl groups in the three anthocyanin rings
are important for the AChE inhibitory activity. Thus, glycosylation in positions 3 (C ring)
or 5 (A ring) decreases their potency, whereas the presence of hydroxyls in 3’ and 5’ (B ring)
promotes AChE inhibition [122]. Accordingly, anthocyanins have become lead compounds
for the development of more effective AChE inhibitors [123].
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Figure 2. General scheme of the signaling pathways modulated by anthocyanins in neuroinflamma-
tion, oxidative stress, and excitotoxicity. In neuroinflammation, the activation of microglia (upper
left) leads to the release of proinflammatory cytokines, promoting ROS generation. Exogenous or
endogenous ROS can induce Oxidative stress in neurons, activating multiple pathways. Active
Nrf2 promotes the expression of antioxidant enzymes by transactivating the antioxidant response
element (ARE), whereas activation of the JNK/p53 pathway promotes apoptosis. Glutamate-driven
excitotoxicity is promoted by an imbalance in the glutamate/cystine (XC-) antiporter system. An
increased glutamate concentration induces the release of cytochrome-C (Cyto-C) and inhibits the
entry of cystine, a key element for the formation of the antioxidant glutathione (GSH). GSH protects
against ROS-mediated oxidative damage and mitochondrial dysregulation. Anthocyanins act in
multiple stages of these pathways, decreasing proinflammatory signals, eliciting an antioxidant
effect, or modulating the activation of proteins in the pathways (see text for details). Consequently,
anthocyanins reduce neuroinflammation, oxidative stress, and/or apoptosis. Black arrows indicate
direct or indirect stimulation, while red arrows represent inhibition or reduction. NMDA-R: NMDA
receptor; AMPA-R: AMPA receptor; XC-: glutamate/cystine antiporter; Cyto-C: cytochrome-C.

4. Effect of Anthocyanins on Neurological Disorders

Due to their ability to modulate mechanisms implicated in the onset of neurological
diseases, anthocyanins hold significant potential for treating such conditions [27]. In this
section, we focus on three prevalent diseases with limited therapeutic options: AD, PD,
and brain ischemia.
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4.1. Alzheimer’s Disease

The protective impact of anthocyanins against AD is underscored by their potential to
delay disease progression. Consistent with this, studies reveal that consistent consumption
of fruits, vegetables, and beverages like green tea and red wine (in moderation) diminishes
the risk of age-related neurological disorders, including AD [124,125]. Examination of data
on AD prevalence and incidence in relation to genetic and environmental factors suggests
that the use of antioxidant supplements correlates with reduced occurrence of AD [126].

In animal models, anthocyanins have demonstrated AD-delaying effects. For instance,
in a mutant AD mouse model, anthocyanins from blueberry and black currant impeded
Aβ deposition and mitigated cognitive impairment [127]. Cranberry anthocyanins avert
memory and learning deficits in rats induced by streptozotocin injection by regulating
ion pumps and cholinergic neurotransmission [128]. Anthocyanins in gold nanoparticles
alleviate memory loss and neurodegeneration in mice with Alzheimer’s-like symptoms
by reducing Aβ, beta-secretase (BACE-1), and amyloid precursor protein levels [113].
Administration of cyanidin-3-glucoside orally halted cognitive decline induced by Aβ

peptide [129].
Mechanistically, the effects of anthocyanins in AD mouse models relate to changes

in Aβ deposition. Anthocyanin mixtures hinder Aβ oligomerization and subsequent tau
phosphorylation, potentially curbing tau protein aggregate formation [130]. Cranberry-
derived anthocyanin-rich extracts hinder Aβ1-40 and Aβ1-42 peptide formation in vitro,
diverting these peptides to non-toxic aggregates. These interventions preserve cognitive
function in disease-model mice [131]. Cyanidin-3-O-glucopyranoside anthocyanins [132]
and malvidin (Figure 1B) [131] directly interfere with Aβ peptide oligomerization into toxic
fibrils. These effects may be tied to microglia activation. Blueberry anthocyanins enhance
microglial Aβ peptide clearance, inhibiting aggregation via the mitogen-activated protein
kinases (MAPKs) pathway [133].

An enhanced antioxidant response is also elicited by anthocyanins. In a model of
sporadic Alzheimer’s dementia induced by streptozotocin, commercial anthocyanins from
grape skins decreased lipid peroxidation. They restored the level of antioxidant enzymes,
such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx),
in the cortex and hippocampus [134]. Anthocyanins from black soybean (Glycine max (L.)
Merr.) also exhibit direct protection against neuronal cytotoxicity induced by bA injected
in the hippocampus [135]. Black soybean anthocyanins enhance HT22 neuron cell viability
compared to Aβ-treated cells [135], and blueberry anthocyanins prevent ROS formation
and cognitive decline [127]. Natural anthocyanins from Korean black beans reduce ROS
levels in mice with high Aβ production and HT22 cells exposed to Aβ oligomers [113,136].
In summary, anthocyanins present promise for AD treatment and prevention, potentially
supplementing current therapies due to their established safety.

Finally, the effect of anthocyanins on AD is associated with the regulation of cholinergic
neurotransmission by AChE inhibition. In vivo studies showed that the administration of
anthocyanins protects against the increase of AChE in the cortex hippocampus [134,137]
and cerebellum [138] in models of cognitive deficits associated with AD. In addition,
administration of anthocyanin-rich blueberry extract (Vaccinium angustifolium) to mice
decreases AChE activity [139]. The inhibition was significantly higher in the brain compared
to other tissues [139], suggesting a preferential biodistribution or a selective binding to the
AChE isoform expressed in the brain. Treatment of mice with spatial memory impairment
with delphidin (50 mg/Kg) reduced AChE activity and amyloid plaque formation in the
brain [140].

4.2. Parkinson’s Disease (PD)

Epidemiological evidence suggests that consumption of anthocyanin-rich berries, like
blueberries or strawberries, may mitigate the risk of PD [141]. Clinical studies indicate
that blackcurrant (Ribes nigrum) anthocyanins augment the neuroprotective cyclic glycine-
proline concentration in Parkinson’s patients’ cerebrospinal fluid [142]. An anthocyanin-
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rich blackberry extract showed preventive effects against bradykinesia and dopaminergic
neuronal damage induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in a
PD model [143].

In PD, dopaminergic cell death involves mitochondrial complex I impairment, ox-
idative stress, microglial activation, and Lewy body formation. Blueberry and grape
seed extracts restored mitochondrial respiration defects caused by rotenone exposure in
dopaminergic cell lines, suggesting improved mitochondrial function and potential neu-
rodegeneration alleviation [144]. Anthocyanins from grape (Vitis vinifera) and Japanese
knotweed (Polygonum cuspidatum) enhanced climbing ability in a transgenic Drosophila
PD model expressing human alpha-synuclein [145]. Pelargonidin (Figure 1B) anthocyanin
exhibited neuroprotective effects against 6-OHDA-induced toxicity by reducing oxidative
stress [146]. Anthocyanins from mulberry (Morus alba L.) fruit protected dopaminergic
neurons against MPTP exposure by regulating ROS and NO generation, reducing Bcl-2 and
Bax expression, mitochondrial membrane depolarization, and caspase-3 activation [143].

4.3. Hypoxia/Cerebral Ischemia

Ischemic stroke is due to a transient or permanent reduction in cerebral blood flow. The
main mechanisms of ischemia/reperfusion injury include excitotoxicity, oxidative stress,
inflammation, and apoptosis [147]. In murine models of cerebral ischemia/reperfusion in-
jury, treatment with commercial anthocyanins [148], anthocyanins obtained from the dried
fruits of Lycium ruthenicum Murr. [149], or purified anthocyanins from Myrica rubra [150]
protect against middle cerebral artery occlusion injury, altering apoptosis and inflammation.
Similarly, cyanidin 3-O-β-glucopyranoside has a neuroprotective effect in an animal cere-
bral artery occlusion model [151]. In mice under conditions of transient global ischemia,
anthocyanins from black rice (Oryza sativa L., Poaceae) attenuate neuronal cell death, in-
hibit reactive astrogliosis, and prevent loss of expression of glutathione peroxidase in the
hippocampus, significantly improving memory impairment [152].

As for other diseases discussed above, the amelioration of neuronal injury by an-
thocyanins in ischemia/reperfusion can be partially explained by their anti-apoptotic,
anti-inflammatory, and anti-oxidative activities. Anthocyanins reduce neuronal apoptosis
induced by ischemia and/or reperfusion through regulation of the expression of Bcl-2
family proteins [149], reduction of cytochrome c and caspase-3 [153–155], and suppression
of JNK/p53 pathway [156]. Purified extracts of Myrica rubra anthocyanins protect against
cerebral ischemia-reperfusion injury by modulating the TLR4/NF-κB, NLRP3, and Nrf2
signaling pathways [150] and by reducing the levels of inflammatory molecules, includ-
ing TNF-α, IL-1β, and IL-6 [149]. In neuron cultures, anthocyanins from black soybean
(Glycine max (L.) or purified cyanidin-3-glucoside protect from the cytotoxicity induced by
oxygen–glucose deprivation by inhibiting oxidative stress and preserving the mitochon-
drial membrane potential [157]. The effects and mechanism of anthocyanins described here
make them candidates for consideration as a dietary supplement to reduce ischemia injury.

5. Conclusions

Anthocyanins are natural compounds with good safety profiles and biodistribution
to the CNS. Evidence from in vitro studies and animal models supports the beneficial
actions of dietary anthocyanins on neurodegenerative diseases, such as AD and PD, and
ischemic brain damage. Since oxidative stress, inflammation, cytotoxicity, and altered
neurotransmission are common mechanisms underlying the etiology of those diseases, the
neuroprotective effects of anthocyanins have been explained by (Figure 2): (i) their ability
to eliminate pathological concentrations of ROS and NRS either by acting directly as radical
scavengers or by promoting the expression of antioxidant enzymes; (ii) the reduction of
activation of inflammatory pathways in SNC; (iii) their cytoprotective and anti-apoptotic
effects on neurons; and (iv) the promotion of cholinergic neurotransmission. Eliciting
such mechanisms, anthocyanins reduce cellular damage and improve cognitive function.
Together, the findings discussed here underscore the potential utility of anthocyanins
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in neuroprotection. However, there are still areas of opportunity in the field. First, the
evidence from clinical studies is still limited, and thus, future research should explore
the efficacy of anthocyanins or anthocyanin-rich supplements in specific human diseases
using relevant populations. In those studies, the pharmacokinetic and pharmacodynamic
interactions between anthocyanins and standard-of-care drugs should be ruled out. Second,
structure–activity relationships should be established to identify the new candidates for
each potential clinical translation. Those analyses could also allow the design of new
anthocyanin-like molecules with selective or enhanced activities.
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