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Abstract: The ability of cancer cells to detach from the primary site and metastasize is the main cause
of cancer- related death among all cancer types. Epithelial-to-mesenchymal transition (EMT) is the
first event of the metastatic cascade, resulting in the loss of cell–cell adhesion and the acquisition of
motile and stem-like phenotypes. A critical modulator of EMT in cancer cells is the stromal tumor
microenvironment (TME), which can promote the acquisition of a mesenchymal phenotype through
direct interaction with cancer cells or changes to the broader microenvironment. In this review, we
will explore the role of stromal cells in modulating cancer cell EMT, with particular emphasis on
the function of mesenchymal stromal/stem cells (MSCs) through the activation of EMT-inducing
pathways, extra cellular matrix (ECM) remodeling, immune cell alteration, and metabolic rewiring.

Keywords: mesenchymal stem cells; direct and indirect interaction; ECM remodeling; reprograming

1. Introduction

Epithelial-to-mesenchymal transition EMT is a series of complex processes that enables
epithelial cells to acquire a mesenchymal phenotype, leading to increased cell mobility and
invasiveness. During EMT, epithelial cells undergo a series of dynamic events, including the
activation of transcription factors, reorganization of the cytoskeleton and surface proteins,
detachment of the basement membrane, and extra cellular matrix (ECM) degradation.
EMT occurs in response to several environmental cues such as hypoxia, inflammation, and
oxidative stress. Based on the broader biological context in which it is occurring, EMT is
classified into three subtypes: (I) implantation and organ development, (II) response to
wound healing and tissue regeneration, and (III) neoplastic progression [1,2]. In this review,
we will focus on EMT associated with neoplastic progression.

In carcinoma, the EMT program is mainly associated with the acquisition of a metastatic
phenotype. However, several studies also demonstrate a role for EMT during tumor ini-
tiation, whereas others suggest cancer cells maintain the activation of EMT-associated
signaling throughout the metastatic cascade (extravasation, circulation, and intravasa-
tion) [3–7]. EMT processes appear to be triggered by different signals originating either
within the carcinoma cells or from the nearby tumor-associated stroma. One critical com-
ponent of the cancer-associated stroma is the cancer-associated mesenchymal stem cell
(CA-MSC), which is a multi-potent stroma progenitor cell. CA-MSCs have been known
to support tumor progression and metastasis in multiple cancers [8,9]. In this review, we
will further highlight the role of CA-MSCs in inducing the EMT program during neo-
plastic progression. CA-MSCs’ signaling triggers EMT in carcinoma cells through the
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activation of EMT-inducing pathways, ECM remodeling, immune cell modification, and
metabolic rewiring.

2. Activation of EMT-Inducing Pathways

It has been reported that EMT-associated intracellular signaling is induced by the
complex crosstalk with stroma cells within the tumor microenvironment [10]. These in-
tracellular cues can be activated either through the direct binding of ligands on stromal
cells to their cognate receptor on cancer cells or in a paracrine manner (Figure 1). Previous
work by our group and others indicates CA-MSCs contribute to cancer aggressiveness
through direct interaction with cancer cells, enhancing their invasiveness and metastatic
capacity in ovarian cancer [8]. The direct binding of CA-MSCs to cancer cells has also been
reported to induce EMT in other cancers. Using CRISPR-Cas9 genomic perturbation and
RNA-Seq, one study demonstrated MSCs via integrin B1 active Wnt/B-catenin signaling
in acute lymphoblastic leukemia (ALL) cells, leading ALL cells to enter a EMT state [11].
In acute myeloid leukemia (AML), the direct co-culture of AML tumor cells and mes-
enchymal/fibroblastic HS5 cells results in the upregulation of the vimentin level—a main
EMT pathway—and increases the metastatic phenotype of AML cells [12]. Furthermore, a
study showed that the presence of a stroma component enhances EMT in BEAS-2B and
HBEC-3KT lung cancer cells after a single acute exposure to radiation [13].
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Figure 1. Activation of EMT-inducing pathways via cell–cell interaction. CAMSCs can activate the
EMT-inducing pathway through: (A) direct CAMSC–tumor cell interaction; (B) indirect CA-MSC
and tumor cell interaction via the secretion of growth factors (created with BioRender.com).

Along with direct binding, MSC-derived growth factors and cytokines can stimulate
EMT in cancer cells in a paracrine manner. In different cancer types, including breast, ovar-
ian, gastric, prostate, and renal cancers, MSC-derived growth factors such as transforming
growth factor-β (TGF-β) have a critical role in promoting EMT in cancer cells through the
activation of the SMAD signaling pathway. Along with TGF-β, other MSC-derived growth
factors present in the ovarian neoplastic microenvironment, including FGF, epidermal
growth factor (EGF), and hepatocyte growth factor (HGF), are thought to impair cell–cell
cohesion through inducing E-cadherin cleavage, which consequentially leads to EMT [14].
Furthermore, in colorectal cancer, in vitro and in vivo studies have shown the ability of
MSC-conditioned media to upregulate NF-Kb signaling through the AMPK/mTOR path-
way in colorectal cancer cells [15]. Activated NF-Kb suppresses the expression of cancer
cell E-cadherin and induces the expression of vimentin, which consequentially promotes
EMT [16]. Furthermore, umbilical cord-derived MSC-conditioned media stimulate the Wnt
signaling pathway by promoting the nuclear translocation of B-catenin in cholangiocarci-
noma cell lines QBC939 [17]. Furthermore, it has been reported that stroma cells, including
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adipocytes and MSCs, can stimulate EMT in breast cancer cell lines through the production
of CCL5 and IGF1.

Additionally, MSCs can exert their paracrine signaling through MSC-derived extracel-
lular vesicles (EVs). MicroRNAs (miRNAs)—small non-coding RNAs—are highly enriched
in MSC-derived EVs. MiRNAs have recently been identified as inducers of EMT through
negatively targeted genes associated with an epithelial phenotype [18]. Mir-221/222 pro-
motes EMT in breast cancer cell lines through targeting the estrogen receptor (ESR1) and
trichorhinophalangeal syndrome type 1 (TRPS1) [19]. In gastric cancer, miR-27 increases
the expression level of the EMT-associated genes ZEB1, ZEB2, SLUG, and Vimentin, and
decreases E-cadherin [20].

Collectively, CA-MSCs promote EMT in cancer cells through direct and indirect in-
teractions (Table 1). However, the changes in CA-MSCs during the direct binding are still
unclear. Understanding how direct CAMSC–tumor cell interaction occurs will open up
new avenues to target this interaction and potentially block EMT.

3. ECM Remodeling

Among the many roles that MSCs have in modulating the TME, the alteration of the
extracellular matrix (ECM) to promote EMT has garnered attention over the last decade
(Figure 2). The ECM serves as a scaffold for cellular attachment, a guide for cellular traffic
into and out of tissue compartments, and as a stimulus for epithelial cells and tumor cells to
adapt and respond to changes in their local microenvironment [21,22]. Greater investigation
into MSC, ECM, and epithelial crosstalk resulted in a multifactorial understanding of how
ECM content, as well as structural attributes, elicit EMT [8,23,24].
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Figure 2. Activation of EMT-inducing pathways via extra cellular matrix (ECM) remodeling. CA-
MSCs can stimulate EMT through: (A) collagen IV deposition; (B) increasing lysyl oxidase (LOX);
(C) differentiating into cancer-associated fibroblasts (CAFs) (created with BioRender.com).

Each cancer or disease model has explored nuanced MSC features that are specific to
their tissue of origin. This undoubtedly contributes to the heterogeneity of MSC function;
however, the few salient mechanisms that are shared between MSC models irrefutably
support the role that MSCs play in modulating the ECM to promote EMT. Chief among
these effector functions are the MSC’s ability to increase the production of ECM proteins
and ECM-modifying enzymes in both themselves and other stromal support cells that
they signal to, the conservation of these expression changes in cells that MSCs differentiate
into (e.g., CAFs), as well as the induction of reciprocal changes in epithelial and tumor
cells localized to the MSC microenvironments. Each of these functions embolden the MSC
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influence in the surrounding tissue and synergize for effective EMT. In ovarian cancer,
specifically high-grade serous ovarian carcinoma (HGSOC), there is a robust collagen
deposition, resulting in densely packed regions of ECM [25,26]. An elevated deposition
of collagen, among other ECM components, is associated with a worsened prognosis in
patients with HGSOC [27]. The predominant type of collagen present in HGSOC tumors is
collagen IV [28]. Recent studies have shown that the switch to collagen IV is advantageous
for the maintenance of cancer stem cells and epithelial tumor cell proliferation [8]. Notably,
the presence of collagen IV in the ECM results in the upregulation of transcription factors
essential for EMT, namely, SLUG and SNAIL, via the direct interaction of collagen IV with
integrins α1β1 and α2β1 [29,30]. Recent evidence has emerged showing that the utilization
of collagen IV to enrich cancer cell growth and EMT is not restricted to the ovary. Rather,
collagen IV regulation is utilized in other cancers (e.g., hepatocellular carcinoma) and
tissues (e.g., breast epithelium) for pathologic and routine tissue maintenance [29,30]. In
2020, our group demonstrated that CA-MSCs are a potent source of collagen IV following
cancer education, demonstrating that MSCs directly influence EMT in the HGSOC TME.
Differential collagen production in MSCs appears to be conserved across disease processes,
each fine-tuned to the unique needs of the tumor cells in each tissue. MSCs in invasive
breast cancer deposit a diverse set of collagens that select for different stromal subtypes such
as adipocytes (COL10A1) and chondrocytes (COL8A1, COL12A1), exemplifying an MSC’s
adaptability to cancer-specific needs [31]. It is important to consider that the differential
regulation of the predominant collagen subtype in the TME is occurring in the background
of other ECM structural protein changes that may act in concert with collagen IV in driving
EMT. The clear influence that ECM structural proteins have on epithelial and tumor cell
EMT has driven investigations into therapeutics targeted towards the ECM; however, for
HGSOC, no advances have been made.

As mentioned previously, simply increasing ECM structural protein production is
often not the case. MSCs and their derivatives (e.g., CAFs) regulate matrix metallopro-
teinase (MMP) production. MMPs are a class of Zn2+-dependent enzymes that break down
ECM proteins, allowing for the reorganization of the ECM structure, as well as endocrine
signaling. Continuing with our example of invasive breast cancer, fibroblast derivatives
of MSCs upregulate the expression of MMP-2, -3, and -9. Increased MMP-9 in the back-
ground of increased ECM structural protein deposition suggests a potential feedforward
mechanism for ECM remodeling and EMT. For instance, bone-marrow-derived MSCs
(BM-MSCs) are known to be recruited to sites of tissue remodeling via various growth
factors and chemotactic molecules. Given the BM-MSC expression profile changes that
are seen following exposure to tumor cells and other stromal cells, it is plausible that
after recruitment to sites of tissue remodeling, BM-MSCs could be co-opted to embolden
a pro-EMT microenvironment. The recruitment of BM-MSCs to sites of tissue remod-
eling is one of many downstream results of TGF-β signaling, a highly studied master
regulator of EMT [32].

At a more local level, MMP upregulation serves as a three-fold selective pressure
for EMT in epithelial and tumor cells by changing the ECM into an environment per-
missive to cell extravasation and migration, inducing the expression of MMPs in other
cell types, and most importantly, by directly inducing EMT [33–38]. The pro-tumorigenic
functions of MMPs, combined with specialized and increased collagen deposition, provide
synergistic EMT signals, enrich cancer cell stemness, and promote epithelial and tumor
cell proliferation.

In addition to MMPs, lysyl oxidases are well characterized ECM-modifying enzymes
capable of inducing EMT in epithelial and tumor cells directly. Lysyl oxidases, or LOX
enzymes, are a family of Cu2+-dependent enzymes that stabilize the ECM by crosslinking
ECM constituent proteins at lysine residues. Increased ECM stiffness is a common feature
among a wide variety of solid cancers and alone can elicit EMT via mechanosenstation.
Not only are LOX enzymes upregulated in MSCs of breast cancer patients, but MSCs are
enriched in breast tissue and in circulation [39], suggesting that LOX expressing MSCs
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locally drive EMT and begin to promote the formation of cancer-permissive ECM in distal
tissue sites [39].

A flavor of each of these regulatory changes has been observed in numerous cancer
models, including pancreatic, hepatocellular, non-small cell lung, invasive breast, and ovar-
ian cancers both in vivo and in vitro. Given the conserved, yet highly diverse, functionality
of MSCs throughout the body, future therapies targeting MSCs will require a thorough
understanding of MSC tissue dynamics, as well as long-distance signaling mechanisms,
along with their contribution to tumor initiation.

4. Immune Cell Modification

Inflammation has been implicated in various stages of tumorigenesis, including initia-
tion, promotion, and metastasis. Chronic inflammation, driven by immune cells, cytokines,
and chemokines, promotes tumor initiation and progression by creating a pro-tumorigenic
microenvironment. Inflammatory cells, such as macrophages, neutrophils, and lympho-
cytes, infiltrate the tumor site and secrete pro-inflammatory cytokines, including interleukins
(ILs) and tumor necrosis factor-alpha (TNF-α). These cytokines trigger EMT in cancer cells,
leading to increased motility, invasion, and intravascular dissemination [40–42]. Cancer cells
undergoing EMT have immune-modulatory properties that facilitate immune escape and
metastatic dissemination. EMT-induced changes in cancer cells result in a reduced expres-
sion of major histocompatibility complex (MHC) molecules, leading to impaired antigen
presentation and reduced recognition by cytotoxic T cells. Consequently, cancer cells evade
immune surveillance and develop a resistance to immunotherapies [2].

EMT-induced immune modulation affects various immune cell populations. EMT-
driven cancer cells can attract tumor-associated macrophages (TAMs) and myeloid-derived
suppressor cells (MDSCs) to the tumor site, contributing to tumor growth and immunosup-
pression. Additionally, an upregulated expression of indoleamine 2,3-dioxygenase (IDO)
enzyme by cancer cells drives effector lymphocytes, mainly T cells, towards apoptosis,
further impairing the immune response [43]. This enzyme has been utilized to identify
cancer activity and treatment response in clinical settings [44]. B and T regulatory cells
have also been linked to tumor progression [45]. T reg might increase the population of
activated CD4 þ and CD8 þ T cells IDO by affecting metabolite levels, a process of immune
regulation also executed by MSCs [46,47].

MSCs engage in immune modulation through a range of mechanisms. They suppress
natural killer (NK) cell activation, lessening the activation and fundamental activities
of dendritic cells (DC); affect B cell proliferation and functions; and promote regulatory
T cell expansion [48–51]. Another mechanism used by MSCs to immunomodulate the
microenvironment around them is by direct cell-to-cell contact or the release of soluble
factors. Some identified soluble factors produced by MSCs that affect the immune response
are cytokines, enzymes, and nitric oxide. This process is caused by the inhibition of naïve
and memory T-cell responses, consequently reducing the communication between these
immune cells and antigen-presenting cells, which lessens the immune adaptive response.
Via intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1
(VCAM-1) upregulations, MSCs reduce T-cell activation and leukocyte attraction to the
inflamed area [52,53].

In vitro investigations have elucidated the direct impact of mesenchymal stem cells
(MSCs) on B-cells, particularly regarding their interaction with adipose tissue-derived
MSCs (A-MSCs). Through cell-to-cell contact, A-MSCs have been observed to enhance
the survival of quiescent B-cells and promote B-cell differentiation independently from
T-cells [54]. A-MSCs exhibit a multifaceted approach to regulate B-cell behavior; they
counteract Caspase 3-mediated apoptosis by upregulating vascular endothelial growth
factor (VEGF) and impede B-cell proliferation by inducing G0/G1 cell cycle arrest via
the activation of p38 mitogen-activated protein kinase (MAPK) pathways [55,56]. Fur-
thermore, A-MSCs contribute to immune homeostasis by inhibiting plasma cell forma-
tion and fostering regulatory B cell (Breg cell) generation [28]. Notably, Breg cells that
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produce interleukin-10 (IL-10) play a pivotal role in transforming effector CD4+ T cells
into Foxp3+ regulatory T cells (Treg cells) [57]. This immunomodulation extends to the
context of T cell presence, as MSCs persist in restraining B-cell proliferation [58]. The
suppression of B-cell proliferation is achieved through G0/G1 cell cycle arrest induction
and the secretion of Blimp-1, an antigen production factor. Significantly, MSC-mediated
communication involving programmed cell death protein 1 (PD-1) is instrumental in this
immunosuppressive process [59].

MSCs can secrete interleukin-10 (IL-10), and in a study using a sepsis model in mice,
MSCs displayed the ability to bolster IL-10 production. This effect was found to be instru-
mental in enhancing overall survival, as evidenced by experiments where neutralizing
IL-10 actually counteracted the beneficial impact of MSCs following sepsis induction [60].
These findings underscore the potency of IL-10 in MSC-mediated immune modulation.
This IL-10 guided modulation in a non-cancerous environment may indicate that in tumors,
CA-MSCs might lose the capacity to produce this interleukin. Consequently, this would be
favorable to increase inflammation.

Regulatory T cells (Tregs) are important figures in immune responses and tumor
progression. As cancer cells undergo epithelial-mesenchymal transition (EMT), they strate-
gically downregulate effector molecules in CD8+ T cells, which promotes the expansion of
Tregs in a TGF-B dependent process. The involvement of MSC-secreted soluble factors, in-
cluding CCL-18 and transforming growth factor beta 1 (TGF-β1), guide the transformation
of naïve CD4+ T cells into T regs [61]. The interplay between T regs and MSCs in cancer
suggests that CA-MSCs are supportive to these cells’ proliferation and action, which affects
the treatment response.

In ovarian cancer, CA-MSCs have been associated with protumorogenic behavior
and chemotherapy resistance [62,63]. TGF-B1 is expressed by ovarian tumor cells and
CA-MSCs (R), suggesting that this could be associated with T regs transformation; TGF-B1
was also associated with driving the expression of Tgfbi in monocytes and macrophages.
This process contributes to immunosuppression and to anti–PD-L1 therapy resistance.
Ovarian tumors present an inverse correlation between the presence of CA-MSCs and the
abundance of intratumoral CD8+ T cells [64]. These T cells are predominantly localized
within the peritumoral stroma, aligning themselves with immunosuppressive myeloid
cells. CA-MSCs also release CCL2 and CX3CL1, besides TGF-B1, factors related to CCR2
monocyte recruiting and promotion to a protumorigenic M2-like phenotype [62]. In a study
using a syngeneic orthotopic mouse model of ovarian cancer, the anti-tumor properties
of compact bone-derived MSCs (CB-MSCs) were shown to be enhanced when combined
with a fusion protein labeled as VIC-008. The intricate mechanism of VIC-008 involves
the activation of CD4+ and CD8+ T-cells and the suppression of Tregs within the tumor
microenvironment (TME), contributing to its anti-tumor effects [65].

Understanding the intricate interplay between EMT, inflammation, and immunomod-
ulation in cancer presents potential therapeutic opportunities. Targeting MSCs offers
promising therapeutic approaches to counter immune evasion in cancer. Further research
is essential to clarify the specific interactions between immune cells and MSCs in ovarian
cancer. This will facilitate the development of therapies aimed at inhibiting or reducing
the transformation of normal MSCs into CA-MSCs. These therapeutic interventions have
the potential to restore the anti-tumor immune response, enhance the infiltration immune
cells into the tumor microenvironment, and sensitize cancer cells to immune-mediated
cytotoxicity. Immunotherapy has demonstrated effectiveness in treating various solid
tumors, often with a lower toxicity profile compared to standard-of-care treatments. There-
fore, the pursuit of innovative therapies targeting the immune system appears to be a
promising approach for enhancing the prognosis and quality of life for individuals with
ovarian cancer.
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5. Metabolic Rewiring

Metabolic reprogramming is a critical hallmark of cancer and contributes to numerous
disease processes such as tumorigenesis, metastasis, and therapy resistance [66,67]. As
the metabolism needs to evolve throughout cancer progression, malignant cells adapt their
metabolism through a variety of cell-intrinsic and -extrinsic mechanisms, engaging in a
complex crosstalk with their surrounding microenvironment to meet energy demands [67,68].
Accordingly, the process of EMT (and other motility-altering phenotypes) necessitates
alterations to cellular metabolism to both meet the energy requirements for motility and
survive in hostile environments outside of the solid tumor [69]. This association between
metabolic reprogramming and EMT has indeed been extensively demonstrated; however, less
is known regarding the cause-and-effect relationship between the two processes, including
the machinations of the stromal TME in the complex EMT–metabolic crosstalk [69–71]. In this
section, we will explore our current understanding of EMT–metabolic crosstalk and how
the stromal tumor microenvironment contributes to this interplay.

Perhaps the most straightforward link between EMT and metabolic reprogramming is
the overlap of multiple signaling factors that can induce both. Though TGF-β signaling has
a well-documented EMT-inducing role in multiple cancer types, it also acts as a metabolic
modulator both in tumor cells, as well as the broader microenvironment [72–75]. Though
autocrine TGF-β signaling can occur in tumor cells, the tumor-associated stroma may
secrete TGF-β and drive tumor cell EMT in a paracrine manner as well. TGF-β secreted
from CA-MSCs and their derivatives (such as CAFs) have been shown to drive cancer EMT
and metastasis in numerous malignancies, including colorectal, pancreatic, breast, prostate,
bladder, and lung cancers [76–81].

Enhanced glycolysis is closely linked to EMT programming and can be upregulated
through TGF-β signaling, which increases the expression of multiple glycolytic enzymes
and glucose transporters. The expression of glucose transporter 1 (GLUT1), which mediates
the influx of glucose into the cytoplasm as the first steps in glycolysis, is induced by
TGF-β in gastric cancer, pancreatic ductal adenocarcinoma (PDAC), glioma, and breast
cancer [82–85]. The EMT markers E-cadherin and vimentin are also correlated with the
expression of GLUT1, corresponding to increased cellular glucose during TGF-β1-induced
EMT in breast cancer cells [84]. Similarly, the TGF-β induction of EMT in non-small
cell lung cancer (NSCLC) cells leads to GLUT3 upregulation, the inhibition of which
decreases glucose uptake and proliferation [86]. In addition to promoting glucose uptake,
TGF-β signaling can also increase the transcription of key glycolytic enzymes hexokinase
2 (HK2), 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), and pyruvate
kinase M2 (PKM2) to promote glycolysis during EMT [14,16,18,19]. PFKFB3 was also
found to be upregulated by TGF-β1 in Panc1 PDAC cells, which promoted glycolysis,
and when silenced, inhibited TGF-β1-induced invasion through the downregulation of
SNAIL expression [85].

In addition to promoting glycolysis, TGF-β signaling can alter fatty acid metabolism
by upregulating fatty acid oxidation (FAO), providing increased energy production to
cells undergoing EMT. Lung A549 cells treated with TGF-β1 downregulated the major
lipid metabolism regulator carbohydrate-responsive element-binding protein (ChREBP)
to decrease fatty acid synthesis and promote FAO during EMT induction [75]. TGF-β2
signaling was also shown to promote FAO by increasing fatty acid uptake via CD36 [73].
The TGF-β induction of FAO at the expense of de novo fatty acid synthesis during EMT has
been documented in multiple studies; interestingly, this induction appears to be context-
dependent, as TGF-β can inhibit FAO and promote fatty acid synthesis as well [87–89].

EMT-associated transcription factors (EMT-TFs) can also alter cellular metabolism inde-
pendent of TGF-β signaling. SNAIL, SLUG/TWIST, and ZEB1/2 represent a core group of
well-defined EMT-TFs that couple the activation of EMT to a multitude of pro-tumorigenic
functions, such as stemness, survival, and metabolic reprogramming [90,91]. In general,
the activation of these particular EMT-TFs influence metabolism by promoting glycolysis
and downregulating glucose-related OXPHOS; however, there are exceptions [86,92–96]. In
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breast cancer MDA-MB-231 and MCF7 cell lines, SNAIL was shown to suppress glycolysis
through the suppression of the glycolytic enzyme platelet isoform of the phosphofruc-
tokinase (PFKP) under oxidative stress, shifting glucose flux to generate NADPH via the
pentose phosphate pathway (PPP) [92]. EMT-TFs can also influence other aspects of cellular
metabolism, such the cellular lipid pool, autophagy, and ROS; though the discussion of
these processes is beyond the scope of this review, they are covered in greater detail here
(Table 1) [71,90,97].

Just as the activation of EMT influences cellular metabolism, changes in cellular
metabolism can subsequently promote or inhibit EMT. As mentioned above, cancer cells can
adjust their metabolism to exploit and adapt to their surrounding microenvironment [66,67].
Cancer cells generally exhibit increased glucose uptake compared to normal cells, and just
as the induction of the EMT program enhances glycolysis, glycolysis can also facilitate
EMT [98]. There is an increased expression of glucose transporters (GLUT1, GLUT5),
glycolytic pathway enzymes (HKI-III, PFK1, PGI, ALDOA/B, PGK1, ENO1, PKM2, LDH,
LDHC), and glycolysis-regulating enzymes (PFK2, PFKFB3, PDK1) [99–105] (comprehen-
sively reviewed in [98]). Furthermore, increased lactate production, a byproduct of aerobic
glycolysis, leads to the generation of an acidic microenvironment, in turn, promoting
EMT [106–108]. Likewise, increased fatty acid uptake and FAO can also induce EMT.
Treatment with free fatty acids enhanced the EMT phenotype in hepatocellular carcinoma
cells through CD36-mediated FFA uptake and TGF-β/Wnt pathway activation [109]. The
overexpression of carnitine palmitoyltransferase 1A (CPT1A), an essential enzyme for FAO,
increases vimentin and SNAIL and decreases E-cadherin expression in gastric cancer [110].
Increased FAO can also elevate mitochondrial ROS levels, driving EMT in high-ROS cancer
cells via p38 MAPK signaling [111]. Fatty acid-binding protein 12 (FABP12) amplification
in prostate cancer models leads to PPARγ activation and the concurrent induction of fatty
acid uptake, FAO, and EMT [112]. Acidosis, a common trait of most TMEs, promotes
autocrine TGF-β2 signaling and the formation of lipid droplets, fatty acid metabolism, and
partial EMT [73].

Tumor cells engage in a dynamic, bi-directional metabolic crosstalk with the sur-
rounding stromal microenvironment, which influences disease progression and metastasis.
Likewise, stromal cells within the TME can alter the tumor cell metabolism to induce
EMT. CA-MSCs and their derivatives, such as CAFs and carcinoma-associated adipocytes
(CAAs), influence tumor cell metabolism through either direct methods, such as the secre-
tion of cytokines and metabolites, or through indirect means by altering the surrounding
microenvironment (such as in ECM-remodeling) [70,113]. Several studies have demon-
strated that both CA-MSCs and CAFs are capable of increasing glycolytic flux in tumor
cells. CAF-derived IL-6 was shown to drive glycolytic flux and select for aggressive “stem-
like” CD133+ pancreatic tumor cells, enhancing their malignant potential [114]. Similarly,
tumor cell-derived TGF-β signaling can trigger the release of several cytokines from CAFs,
such as IL-6, CXCL10, and CCL5, which, in turn, drive the upregulation of glycogen
metabolism in tumor cells through phosphoglucomutase 1 (PGM1) activation [115]. Ac-
cumulated glycogen feeds into glycolysis to drive EMT and metastasis [115,116]. The
secretion of collapsin response mediator protein-2 (CRMP2) by ovarian cancer-derived
CAFs was shown to upregulate the HIF-1α-glycolysis signaling pathway in SKOV3 and
A2780 cells and drive EMT both in vitro and in vivo [117]. Lactate, a metabolic byproduct
of aerobic glycolysis, contributes to the acidification of the TME, which can induce EMT
through TGF-β signaling [73,104,114]. Lactate can be derived either from tumor or stromal
cells; interestingly, lactate secretion by either cell population appears to be cancer-type
specific, with prostate-derived CAFs secreting lactate, which is consumed by tumor cells
(the “reverse Warburg effect”), and the opposite reporting in breast, colon, pancreatic, and
ovarian CAFs [68,77,118–120].
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Table 1. Role of stromal cells in promoting EMT in different cancer types.

Stromal Affect Type of Regulation Targets on
Cancer Cells Role in Cancer Cells References’

Number Cancer Types

Integrin B1 Direct binding Wnt/B catenin [11] Acute Lymphoblastic
leukemia ALL

TGF-b Secreted factor SMAD Promote EMT [14]

Breast cancer
Ovarian cancer
Gastric cancer
Prostate cancer
Renal cancers

FGF

Secreted factor E-cadherin
Promote EMT

[14] Ovarian cancerEGF

HGF Cell–cell adhesion

Conditioned media Secreted factors
AMPK/mTOR

Suppress the expression of
E-cadherin/ increase
vimentin expression

[15,16] Colorectal cancer

Wnt signaling Promote nuclear
translocation of B-catenin [17] Cholangiocarcinoma

cell lines QBC939

Collagen
deposition ECM remodeling Upregulation of SLUG

and SNAIL

Direct interaction of
collagen IV with integrins

a1b1 and a2b1
[29,30]

Ovarian cancer
Hepatocellular

carcinoma

MMPs ECM remodeling Provide synergistic
EMT signals

Enrich cancer cell stemness,
and promote epithelial and

tumor cell proliferation
[33–38] Ovarian cancer

Breast cancer

lysyl oxidases Increased ECM
stiffness

Stimulate EMT via
mechanosenstation [39] Breast cancer

Lactate Secreted TGF-b activation Induce EMT [68] Prostate cancer

TGF-b2 Secreted factor CD36 Promote FAO by increasing
fatty acid uptake [73]

Acidosis TME Promote autocrine
TGF-b2 signaling Induce partial EMT [73]

TGF-b1 Secreted factor Downregulate chREBP
Decrease fatty acid

synthesis and promote fatty
acid oxidation during EMT

[75] Lung A549 cells

TGF-b Secreted factor Upregulation of GLUT1 Increase glucose uptake [81–85]

Gastric cancer
Pancreatic ductal
adenocarcinoma

Glioma
Breast cancer

TGF-b Secreted factor
Upregulation of GLUT3 Increase glucose uptake

[86]
Non-small cell lung

carcinoma

PFKFB3 Promote glycolysis Panc1 PDAC cells

CPT1A Overexpression in
tumor cells

Vimentin, SNAIL,
E-cadherin

Increase vimentin and
SNAIL expression, decrease

E-cadherin expression,
enhance EMT phenotype

[110]

Gastric cancer
Pancreatic ductal
Adenocarcinoma

Glioma
Breast cancer

FABP12 Amplification in
tumor cells

Induce EMT via PPARy and
concurrent FAO [112] Prostate cancer

IL6 Secreted CD133

Drive glycolytic flux and
enhance malignant

potential by enriching
stemness

[114] Pancreatic cancer

IL6, CXCL10 CCL5 Secreted PGM1 activation
Upregulate glycogen

metabolism to drive EMT
and metastasis

[115,116]

CRMP2 Secreted HIF1A Drive EMT via
upregulation of glycolysis [117] Ovarian cancer
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6. Discussion

Though the role of epithelial-to-mesenchymal transition (EMT) in cancer progression
has been well established, growing evidence points to the role of stromal cells within
the tumor microenvironment in promoting and synergizing with the activation of EMT.
EMT is a series of complex external and internal signaling that enables epithelial cancer
cells to enter a mesenchymal-transition phenotype, leading to an increase in their mobility
and invasiveness. Even though EMT has been described as the first event of metastasis
and as a critical step in detaching tumor cells from the primary tumors, evidence has
shown that EMT signaling is present during the initiation step of cancer development.
Furthermore, within the past decade, studies have mentioned the critical role of maintaining
EMT signaling throughout the extravasation, circulation, and intravasation steps of the
metastatic cascade. Circulating tumor cells (CTCs) present a valuable model to examine
EMT-associated genes such as vimentin, E-cadherin, and N-cadherin. The upregulation
of EMT- associated genes enables CTCs to survive the transit microenvironment, which
is imposed by anoikis and shearing stress. Moreover, traveling as a cluster of CTCs and
stroma cells not only increases CTCs’ survival rate, but also their metastatic capacity.
These data suggest that the presence of stroma cells may play a role in maintaining the
activation of EMT-associated signaling throughout the circulation in the bloodstream.
Furthermore, in ovarian cancer, where ascites fluid is considered the mainstream for ovarian
cancer circulation within the abdominal cavity, our group has shown that ovarian cancer
patients’ ascites contain hetero-cellular complexes of tumor cells and stroma cells, including
mesenchymal stem cells. Together, these data suggest the critical role of stroma cells,
especially MSCs, in stimulating EMT not only within the primary tumor microenvironment,
but also throughout the metastatic processes.
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