The Role of Neuroactive Steroids in Analgesia and Anesthesia: An Interesting Comeback?
Abstract
:1. Introduction
2. Neuroactive Steroids as Promising Anesthetic Agents
3. Neuroactive Steroids in Clinical Practice
4. Neuroactive Steroids as Promising Analgesics
4.1. Voltage-Gated Ca2+ Channels (VGCCs) and Nociception
4.2. GABAA Ligand-Gated Channels and Nociception
4.3. Sensitization of Pain Responses Following Surgical Skin Incision
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jevtovic-Todorovic, V.; Hartman, R.E.; Izumi, Y.; Benshoff, N.D.; Dikranian, K.; Zorumski, C.F.; Olney, J.W.; Wozniak, D.F. Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J. Neurosci. 2003, 23, 876–882. [Google Scholar] [CrossRef] [PubMed]
- Rizzi, S.; Carter, L.B.; Ori, C.; Jevtovic-Todorovic, V. Clinical anesthesia causes permanent damage to the fetal guinea pig brain. Brain Pathol. 2008, 18, 198–210. [Google Scholar] [CrossRef] [PubMed]
- Slikker, W., Jr.; Zou, X.; Hotchkiss, C.E.; Divine, R.L.; Sadovova, N.; Twaddle, N.C.; Doerge, D.R.; Scallet, A.C.; Patterson, T.A.; Hanig, J.P.; et al. Ketamine-induced neuronal cell death in the perinatal rhesus monkey. Toxicol. Sci. 2007, 98, 145–158. [Google Scholar] [CrossRef] [PubMed]
- Paule, M.G.; Li, M.; Allen, R.R.; Liu, F.; Zou, X.; Hotchkiss, C.; Hanig, J.P.; Patterson, T.A.; Slikker, W., Jr.; Wang, C. Ketamine anesthesia during the first week of life can cause long-lasting cognitive deficits in rhesus monkeys. Neurotoxicology Teratol. 2011, 33, 220–230. [Google Scholar] [CrossRef] [PubMed]
- Schenning, K.J.; Noguchi, K.K.; Martin, L.D.; Manzella, F.M.; Cabrera, O.H.; Dissen, G.A.; Brambrink, A.M. Isoflurane exposure leads to apoptosis of neurons and oligodendrocytes in 20- and 40-day old rhesus macaques. Neurotoxicology Teratol. 2017, 60, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Wilder, R.T.; Flick, R.P.; Sprung, J.; Katusic, S.K.; Barbaresi, W.J.; Mickelson, C.; Gleich, S.J.; Schroeder, D.R.; Weaver, A.L.; Warner, D.O. Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology 2009, 110, 796–804. [Google Scholar] [CrossRef]
- Hu, D.; Flick, R.P.; Zaccariello, M.J.; Colligan, R.C.; Katusic, S.K.; Schroeder, D.R.; Hanson, A.C.; Buenvenida, S.L.; Gleich, S.J.; Wilder, R.T.; et al. Association between Exposure of Young Children to Procedures Requiring General Anesthesia and Learning and Behavioral Outcomes in a Population-based Birth Cohort. Anesthesiology 2017, 127, 227–240. [Google Scholar] [CrossRef]
- Reighard, C.; Junaid, S.; Jackson, W.M.; Arif, A.; Waddington, H.; Whitehouse, A.J.O.; Ing, C. Anesthetic Exposure During Childhood and Neurodevelopmental Outcomes: A Systematic Review and Meta-analysis. JAMA Netw. Open 2022, 5, e2217427. [Google Scholar] [CrossRef]
- Warner, D.O.; Zaccariello, M.J.; Katusic, S.K.; Schroeder, D.R.; Hanson, A.C.; Schulte, P.J.; Buenvenida, S.L.; Gleich, S.J.; Wilder, R.T.; Sprung, J.; et al. Neuropsychological and Behavioral Outcomes after Exposure of Young Children to Procedures Requiring General Anesthesia: The Mayo Anesthesia Safety in Kids (MASK) Study. Anesthesiology 2018, 129, 89–105. [Google Scholar] [CrossRef]
- Sun, L.S.; Li, G.; Miller, T.L.; Salorio, C.; Byrne, M.W.; Bellinger, D.C.; Ing, C.; Park, R.; Radcliffe, J.; Hays, S.R.; et al. Association Between a Single General Anesthesia Exposure Before Age 36 Months and Neurocognitive Outcomes in Later Childhood. JAMA 2016, 315, 2312–2320. [Google Scholar] [CrossRef]
- Ing, C.; Hegarty, M.K.; Perkins, J.W.; Whitehouse, A.J.O.; DiMaggio, C.J.; Sun, M.; Andrews, H.; Li, G.; Sun, L.S.; von Ungern-Sternberg, B.S. Duration of general anaesthetic exposure in early childhood and long-term language and cognitive ability. Br. J. Anaesth. 2017, 119, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Jevtovic-Todorovic, V.; Useinovic, N. Early exposure to general anaesthesia and increasing trends in developmental behavioural impairments: Is there a link? Br. J. Anaesth. 2023, 131, 208–211. [Google Scholar] [CrossRef] [PubMed]
- Witlox, J.; Eurelings, L.S.; de Jonghe, J.F.; Kalisvaart, K.J.; Eikelenboom, P.; van Gool, W.A. Delirium in elderly patients and the risk of post-discharge mortality, institutionalization, and dementia: A meta-analysis. JAMA 2010, 304, 443–451. [Google Scholar] [CrossRef]
- Evered, L.; Silbert, B.; Knopman, D.S.; Scott, D.A.; Dekosky, S.T.; Rasmussen, L.S.; Oh, E.S.; Crosby, G.; Berger, M.; Eckenhoff, R.G. Recommendations for the nomenclature of cognitive change associated with anaesthesia and surgery. Br. J. Anaesth. 2018, 121, 1005–1012. [Google Scholar] [CrossRef] [PubMed]
- Creeley, C.; Dikranian, K.; Dissen, G.; Martin, L.; Olney, J.; Brambrink, A. Propofol-induced apoptosis of neurones and oligodendrocytes in fetal and neonatal rhesus macaque brain. Br. J. Anaesth. 2013, 110 (Suppl. S1), i29–i38. [Google Scholar] [CrossRef] [PubMed]
- Raper, J.; Alvarado, M.C.; Murphy, K.L.; Baxter, M.G. Multiple Anesthetic Exposure in Infant Monkeys Alters Emotional Reactivity to an Acute Stressor. Anesthesiology 2015, 123, 1084–1092. [Google Scholar] [CrossRef]
- Ing, C.; Landau, R.; DeStephano, D.; Miles, C.H.; von Ungern-Sternberg, B.S.; Li, G.; Whitehouse, A.J.O. Prenatal Exposure to General Anesthesia and Childhood Behavioral Deficit. Anesth. Analg. 2021, 133, 595–605. [Google Scholar] [CrossRef]
- Ing, C.; Sun, M.; Olfson, M.; DiMaggio, C.J.; Sun, L.S.; Wall, M.M.; Li, G. Age at Exposure to Surgery and Anesthesia in Children and Association with Mental Disorder Diagnosis. Anesth. Analg. 2017, 125, 1988–1998. [Google Scholar] [CrossRef]
- Sprung, J.; Flick, R.P.; Katusic, S.K.; Colligan, R.C.; Barbaresi, W.J.; Bojanić, K.; Welch, T.L.; Olson, M.D.; Hanson, A.C.; Schroeder, D.R.; et al. Attention-deficit/hyperactivity disorder after early exposure to procedures requiring general anesthesia. Mayo Clin. Proc. 2012, 87, 120–129. [Google Scholar] [CrossRef]
- Jevtovic-Todorovic, V. Functional implications of an early exposure to general anesthesia: Are we changing the behavior of our children? Mol. Neurobiol. 2013, 48, 288–293. [Google Scholar] [CrossRef]
- Song, J.; Li, H.; Wang, Y.; Niu, C. Does Exposure to General Anesthesia Increase Risk of ADHD for Children Before Age of Three? Front. Psychiatry 2021, 12, 717093. [Google Scholar] [CrossRef] [PubMed]
- Walters, J.L.; Paule, M.G. Review of preclinical studies on pediatric general anesthesia-induced developmental neurotoxicity. Neurotoxicology Teratol. 2017, 60, 2–23. [Google Scholar] [CrossRef] [PubMed]
- Coleman, K.; Robertson, N.D.; Dissen, G.A.; Neuringer, M.D.; Martin, L.D.; Carlson, V.C.C.; Kroenke, C.; Fair, D.; Brambrink, A.M. Isoflurane Anesthesia Has Long-term Consequences on Motor and Behavioral Development in Infant Rhesus Macaques. Anesthesiology 2017, 126, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Huberman Samuel, M.; Meiri, G.; Dinstein, I.; Flusser, H.; Michaelovski, A.; Bashiri, A.; Menashe, I. Exposure to General Anesthesia May Contribute to the Association between Cesarean Delivery and Autism Spectrum Disorder. J. Autism Dev. Disord. 2019, 49, 3127–3135. [Google Scholar] [CrossRef]
- Laporta, M.L.; Sprung, J.; Fejedelem, C.A.; Henning, D.T.; Weaver, A.L.; Hanson, A.C.; Schroeder, D.R.; Myers, S.M.; Voigt, R.G.; Weingarten, T.N.; et al. Association Between Exposure of Children to General Anesthesia and Autism Spectrum Disorder. J. Autism Dev. Disord. 2022, 52, 4301–4310. [Google Scholar] [CrossRef]
- Pikwer, A.; Yang, B.; Granström, M.; Mattsson, N.; Sadr-Azodi, O. General anesthesia in early childhood and possible association with autism: A population-based matched cohort study. Minerva Anestesiol. 2023, 89, 22–31. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Drug Safety and Availability—FDA Drug Safety Communication: FDA Review Results in New Warnings about Using General Anesthetics and Sedation Drugs in Young Children and Pregnant Women. Drug Saf Availab—FDA Drug Saf Commun FDA Rev Results New Warn about Using Gen Anesth Sedat Drugs Young Child Pregnant Women: 1–11. 2016. Available online: https://www.fda.gov/Drugs/DrugSafety/ucm532356.htm (accessed on 1 February 2020).
- U.S. Food and Drug Administration. FDA Drug Safety Communication: FDA Review Results in New Warnings about Using General Anesthetics and Sedation Drugs in Young Children and Pregnant Women|FDA. 2018. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-review-results-new-warnings-about-using-general-anesthetics (accessed on 1 April 2022).
- Gyermek, L.; Iriarte, J.; Crabbé, P. Steroids. CCCX. Structure-Activity Relationship of Some Steroidal Hypnotic Agents. J. Med. Chem. 1968, 11, 117–125. [Google Scholar] [CrossRef]
- Ben-Ari, Y. Excitatory actions of GABA during development: The nature of the nurture. Nat. Rev. Neurosci. 2002, 3, 728–739. [Google Scholar] [CrossRef]
- Cabrera, O.H.; Tesic, V.; Tat, Q.L.; Chastain, S.; Quillinan, N.; Jevtovic-Todorovic, V. Sevoflurane-Induced Dysregulation of Cation-Chloride Cotransporters NKCC1 and KCC2 in Neonatal Mouse Brain. Mol. Neurobiol. 2020, 57, 1–10. [Google Scholar] [CrossRef]
- Todorovic, S.M.; Prakriya, M.; Nakashima, Y.M.; Nilsson, K.R.; Han, M.; Zorumski, C.F.; Covey, D.F.; Lingle, C.J. Enantioselective blockade of T-type Ca2+ current in adult rat sensory neurons by a steroid that lacks γ-aminobutyric acid-modulatory activity. Mol. Pharmacol. 1998, 54, 918–927. [Google Scholar] [CrossRef]
- Orestes, P.; Todorovic, S.M. Are neuronal voltage-gated calcium channels valid cellular targets for general anesthetics? Channels 2010, 4, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Pathirathna, S.; Brimelow, B.C.; Jagodic, M.M.; Krishnan, K.; Jiang, X.; Zorumski, C.F.; Mennerick, S.; Covey, D.F.; Todorovic, S.M.; Jevtovic-Todorovic, V. New evidence that both T-type calcium channels and GABAA channels are responsible for the potent peripheral analgesic effects of 5α-reduced neuroactive steroids. Pain 2005, 114, 429–443. [Google Scholar] [CrossRef] [PubMed]
- Joksovic, P.M.; Covey, D.F.; Todorovic, S.M. Inhibition of T-type calcium current in the reticular thalamic nucleus by a novel neuroactive steroid. Ann. N. Y. Acad. Sci. 2007, 1122, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Manzella, F.M.; Cabrera, O.H.; Wilkey, D.; Fine-Raquet, B.; Klawitter, J.; Krishnan, K.; Covey, D.F.; Jevtovic-Todorovic, V.; Todorovic, S.M. Sex-specific hypnotic effects of the neuroactive steroid (3β,5β,17β)-3-hydroxyandrostane-17-carbonitrile are mediated by peripheral metabolism into an active hypnotic steroid. Br. J. Anaesth. 2023, 130, 154–164. [Google Scholar] [CrossRef]
- Atluri, N.; Joksimovic, S.M.; Oklopcic, A.; Milanovic, D.; Klawitter, J.; Eggan, P.; Krishnan, K.; Covey, D.F.; Todorovic, S.M.; Jevtovic-Todorovic, V. A neurosteroid analogue with T-type calcium channel blocking properties is an effective hypnotic, but is not harmful to neonatal rat brain. Br. J. Anaesth. 2018, 120, 768–778. [Google Scholar] [CrossRef]
- Tesic, V.; Joksimovic, S.M.; Quillinan, N.; Krishnan, K.; Covey, D.F.; Todorovic, S.M.; Jevtovic-Todorovic, V. Neuroactive steroids alphaxalone and CDNC24 are effective hypnotics and potentiators of GABAA currents, but are not neurotoxic to the developing rat brain. Br. J. Anaesth. 2020, 124, 603–613. [Google Scholar] [CrossRef]
- Iyer, S.V.; Chandra, D.; Homanics, G.E. GABAA-R α4 subunits are required for the low dose locomotor stimulatory effect of alphaxalone, but not for several other behavioral responses to alphaxalone, etomidate or propofol. Neurochem. Res. 2014, 39, 1048–1056. [Google Scholar] [CrossRef]
- Selye, H. Anesthetic effects of steroid hormones. Proc. Soc. Exp. Biol. Med. 1941, 46, 116–121. [Google Scholar] [CrossRef]
- Laubach, G.D.; P’an, S.Y.; Rudel, H.W. Steroid anesthetic agent. Science 1955, 122, 78. [Google Scholar] [CrossRef]
- Phillipps, G.H. Structure-activity relationships in steroidal anaesthetics. J. Steroid Biochem. 1975, 6, 607–613. [Google Scholar] [CrossRef]
- Monagle, J.; Siu, L.; Worrell, J.; Goodchild, C.S.; Serrao, J.M. A Phase 1c Trial Comparing the Efficacy and Safety of a New Aqueous Formulation of Alphaxalone with Propofol. Anesth. Analg. 2015, 121, 914–924. [Google Scholar] [CrossRef] [PubMed]
- Goodchild, C.S.; Serrao, J.M.; Sear, J.W.; Anderson, B.J. Pharmacokinetic and Pharmacodynamic Analysis of Alfaxalone Administered as a Bolus Intravenous Injection of Phaxan in a Phase 1 Randomized Trial. Anesth. Analg. 2020, 130, 704–714. [Google Scholar] [CrossRef] [PubMed]
- Serrao, J.M.; Goodchild, C.S. Alfaxalone anaesthesia increases brain derived neurotrophic factor levels and preserves postoperative cognition by activating pregnane-X receptors: An in vitro study and a double blind randomised controlled trial. BMC Anesthesiol. 2022, 22, 401. [Google Scholar] [CrossRef] [PubMed]
- Meyer, R.; Patel, A.M.; Rattana, S.K.; Quock, T.P.; Mody, S.H. Prescription opioid abuse: A literature review of the clinical and economic burden in the United States. Popul. Health Manag. 2014, 17, 372–387. [Google Scholar] [CrossRef]
- Mudumbai, S.C.; Lewis, E.T.; Oliva, E.M.; Chung, P.D.; Harris, B.; Trafton, J.; Mariano, E.R.; Wagner, T.; Clark, J.D.; Stafford, R.S. Overdose Risk Associated with Opioid Use upon Hospital Discharge in Veterans Health Administration Surgical Patients. Pain Med. 2019, 20, 1020–1031. [Google Scholar] [CrossRef] [PubMed]
- Kuo, Y.F.; Raji, M.A.; Chen, N.W.; Hasan, H.; Goodwin, J.S. Trends in opioid prescriptions among Part D Medicare recipients from 2007 to 2012. Am. J. Med. 2016, 129, 221.e21–211.e30. [Google Scholar] [CrossRef]
- Turk, R.; Hamid, N. Postoperative Pain Control Following Shoulder Arthroplasty: Rethinking the Need for Opioids. Orthop. Clin. N. Am. 2023, 54, 453–461. [Google Scholar] [CrossRef]
- Schmidtko, A.; Lotsch, J.; Freynhagen, R.; Geisslinger, G. Ziconotide for treatment of severe chronic pain. Lancet 2010, 375, 1569–1577. [Google Scholar] [CrossRef]
- Perez-Reyes, E. Molecular physiology of low-voltage-activated t-type calcium channels. Physiol. Rev. 2003, 83, 117–161. [Google Scholar] [CrossRef]
- Todorovic, S.M.; Jevtovic-Todorovic, V.; Meyenburg, A.; Mennerick, S.; Perez-Reyes, E.; Romano, C.; Olney, J.W.; Zorumski, C.F. Redox modulation of T-Type calcium channels in rat peripheral nociceptors. Neuron 2001, 31, 75–85. [Google Scholar] [CrossRef]
- Bourinet, E.; Alloui, A.; Monteil, A.; Barrere, C.; Couette, B.; Poirot, O.; Pages, A.; McRory, J.; Snutch, T.P.; Eschalier, A.; et al. Silencing of the Cav3.2 T-type calcium channel gene in sensory neurons demonstrates its major role in nociception. EMBO J. 2005, 24, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Na, H.S.; Kim, J.; Lee, J.; Lee, S.; Kim, D.; Park, J.; Chen, C.C.; Campbell, K.P.; Shin, H.S. Attenuated pain responses in mice lacking CaV3.2 T-type channels. Genes Brain Behav. 2007, 6, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Jacus, M.O.; Uebele, V.N.; Renger, J.J.; Todorovic, S.M. Presynaptic CaV3.2 Channels Regulate Excitatory Neurotransmission in Nociceptive Dorsal Horn Neurons. J. Neurosci. 2012, 32, 9374–9382. [Google Scholar] [CrossRef] [PubMed]
- Joksimovic, S.L.; Joksimovic, S.M.; Tesic, V.; Garcia-Caballero, A.; Feseha, S.; Zamponi, G.W.; Jevtovic-Todorovic, V.; Todorovic, S.M. Selective inhibition of Cav3.2 channels reverses hyperexcitability of peripheral nociceptors and alleviates postsurgical pain. Sci. Signal. 2018, 11, eaao4425. [Google Scholar] [CrossRef] [PubMed]
- Joksimovic, S.L.; Joksimovic, S.M.; Manzella, F.M.; Asnake, B.; Orestes, P.; Raol, Y.H.; Krishnan, K.; Covey, D.F.; Jevtovic-Todorovic, V.; Todorovic, S.M. Novel neuroactive steroid with hypnotic and T-type calcium channel blocking properties exerts effective analgesia in a rodent model of post-surgical pain. Br. J. Pharmacol. 2020, 177, 1735–1753. [Google Scholar] [CrossRef]
- Lin, Q.; Peng, Y.B.; Willis, W.D. Role of GABA receptor subtypes in inhibition of primate spinothalamic tract neurons: Difference between spinal and periaqueductal gray inhibition. J. Neurophysiol. 1996, 75, 109–123. [Google Scholar] [CrossRef]
- Malcangio, M.; Bowery, N.G. GABA and its receptors in the spinal cord. Trends Pharmacol. Sci. 1996, 17, 457–462. [Google Scholar] [CrossRef]
- Sivilotti, L.; Woolf, C.J. The contribution of GABAA and glycine receptors to central sensitization: Disinhibition and touch-evoked allodynia in the spinal cord. J. Neurophysiol. 1994, 72, 169–179. [Google Scholar] [CrossRef]
- Moore, K.A.; Kohno, T.; Karchewski, L.A.; Scholz, J.; Baba, H.; Woolf, C.J. Partial Peripheral Nerve Injury Promotes a Selective Loss of GABAergic Inhibition in the Superficial Dorsal Horn of the Spinal Cord. J. Neurosci. 2002, 22, 6724–6731. [Google Scholar] [CrossRef]
- Scholz, J.; Broom, D.C.; Youn, D.-H.; Mills, C.D.; Kohno, T.; Suter, M.R.; Moore, K.A.; Decosterd, I.; Coggeshall, R.E.; Woolf, C.J. Blocking Caspase Activity Prevents Transsynaptic Neuronal Apoptosis and the Loss of Inhibition in Lamina II of the Dorsal Horn after Peripheral Nerve Injury. J. Neurosci. 2005, 25, 7317–7323. [Google Scholar] [CrossRef]
- Rudolph, U.; Möhler, H. Analysis of GABAA Receptor Function and Dissection of the Pharmacology of Benzodiazepines and General Anesthetics Through Mouse Genetics. Annu. Rev. Pharmacol. Toxicol. 2004, 44, 475–498. [Google Scholar] [CrossRef] [PubMed]
- Miletic, G.; Draganic, P.; Pankratz, M.T.; Miletic, V. Muscimol prevents long-lasting potentiation of dorsal horn field potentials in rats with chronic constriction injury exhibiting decreased levels of the GABA transporter GAT-1. Pain 2003, 105, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Eaton, M.J.; Plunkett, J.A.; Karmally, S.; Martinez, M.A.; Montanez, K. Changes in GAD- and GABA- immunoreactivity in the spinal dorsal horn after peripheral nerve injury and promotion of recovery by lumbar transplant of immortalized serotonergic precursors. J. Chem. Neuroanat. 1998, 16, 57–72. [Google Scholar] [CrossRef] [PubMed]
- Mertens, P.; Ghaemmaghami, C.; Bert, L.; Perret-Liaudet, A.; Sindou, M.; Renaud, B. Amino acids in spinal dorsal horn of patients during surgery for neuropathic pain or spasticity. Neuroreport 2000, 11, 1795–1798. [Google Scholar] [CrossRef]
- Zorumski, C.F.; Paul, S.M.; Covey, D.F.; Mennerick, S. Neurosteroids as novel antidepressants and anxiolytics: GABA-A receptors and beyond. Neurobiol. Stress 2019, 11, 100196. [Google Scholar] [CrossRef]
- Zorumski, C.F.; Mennerick, S.; Isenberg, K.E.; Covey, D.F. Potential clinical uses of neuroactive steroids. Curr. Opin. Investig. Drugs 2000, 1, 360–369. [Google Scholar]
- Nakashima, Y.M.; Pereverzev, A.; Schneider, T.; Covey, D.F.; Lingle, C.J. Blockade of Ba2+ current through human alpha1E channels by two steroid analogs, (+)-ACN and (+)-ECN. Neuropharmacology 1999, 38, 843–855. [Google Scholar] [CrossRef]
- Todorovic, S.M.; Pathirathna, S.; Brimelow, B.C.; Jagodic, M.M.; Ko, S.H.; Jiang, X.; Nilsson, K.R.; Zorumski, C.F.; Covey, D.F.; Jevtovic-Todorovic, V. 5beta-Reduced Neuroactive Steroids Are Novel Voltage-Dependent Blockers of T-Type Ca2+ Channels in Rat Sensory Neurons in Vitro and Potent Peripheral Analgesics in Vivo. Mol. Pharmacol. 2004, 66, 1223–1235. [Google Scholar] [CrossRef]
- Jiang, X.; Manion, B.D.; Benz, A.; Rath, N.P.; Evers, A.S.; Zorumski, C.F.; Mennerick, S.; Covey, D.F. Neurosteroid Analogues. 9. Conformationally Constrained Pregnanes: Structure-Activity Studies of 13,24-Cyclo-18,21-dinorcholane Analogues of the GABA Modulatory and Anesthetic Steroids (3α,5α)- and (3α,5β)-3-Hydroxypregnan-20-one. J. Med. Chem. 2003, 46, 5334–5348. [Google Scholar] [CrossRef]
- Campbell, J.N.; Meyer, R.A. Mechanisms of Neuropathic Pain. Neuron 2006, 52, 77–92. [Google Scholar] [CrossRef]
- Woolf, C.J. Dissecting out mechanisms responsible for peripheral neuropathic pain: Implications for diagnosis and therapy. Life Sci. 2004, 74, 2605–2610. [Google Scholar] [CrossRef] [PubMed]
- Woolf, C.J. Central sensitization: Implications for the diagnosis and treatment of pain. Pain 2011, 152 (Suppl. S3), S2–S15. [Google Scholar] [CrossRef] [PubMed]
- Martinez, V.; Fletcher, D.; Bouhassira, D.; Sessler, D.I.; Chauvin, M. The evolution of primary hyperalgesia in orthopedic surgery: Quantitative sensory testing and clinical evaluation before and after total knee arthroplasty. Anesth. Analg. 2007, 105, 815–821. [Google Scholar] [CrossRef] [PubMed]
- Brennan, T.J. Pathophysiology of postoperative pain. Pain 2011, 152, S33–S40. [Google Scholar] [CrossRef]
- Li, X.; Angst, M.S.; Clark, J.D. Opioid-induced hyperalgesia and incisional pain. Anesth. Analg. 2001, 93, 204–209. [Google Scholar] [CrossRef]
- Timic Stamenic, T.; Feseha, S.; Manzella, F.M.; Wallace, D.; Wilkey, D.; Corrigan, T.; Fiedler, H.; Doerr, P.; Krishnan, K.; Raol, Y.H.; et al. The T-type calcium channel isoform Cav3.1 is a target for the hypnotic effect of the anaesthetic neurosteroid (3β,5β,17β)-3-hydroxyandrostane-17-carbonitrile. Br. J. Anaesth. 2021, 126, 245–255. [Google Scholar] [CrossRef]
- Timic Stamenic, T.; Manzella, F.M.; Maksimovic, S.; Krishnan, K.; Covey, D.F.; Jevtovic-Todorovic, V.; Todorovic, S.M. Further Evidence that Inhibition of Neuronal Voltage-Gated Calcium Channels Contributes to the Hypnotic Effect of Neurosteroid Analogue, 3β-OH. Front. Pharmacol. 2022, 13, 850658. [Google Scholar] [CrossRef]
- Tat, Q.L.; Joksimovic, S.M.; Krishnan, K.; Covey, D.F.; Todorovic, S.M.; Jevtovic-Todorovic, V. Preemptive Analgesic Effect of Intrathecal Applications of Neuroactive Steroids in a Rodent Model of Post-Surgical Pain: Evidence for the Role of T-Type Calcium Channels. Cells 2020, 9, 2674. [Google Scholar] [CrossRef]
- Naik, A.K.; Pathirathna, S.; Jevtovic-Todorovic, V. GABAA receptor modulation in dorsal root ganglia in vivo affects chronic pain after nerve injury. Neuroscience 2008, 154, 1539–1553. [Google Scholar] [CrossRef]
- Obradovic, A.L.; Scarpa, J.; Osuru, H.P.; Weaver, J.L.; Park, J.Y.; Pathirathna, S.; Peterkin, A.; Lim, Y.; Jagodic, M.M.; Todorovic, S.M.; et al. Silencing the α2 Subunit of γ-aminobutyric Acid Type A Receptors in Rat Dorsal Root Ganglia Reveals Its Major Role in Antinociception Posttraumatic Nerve Injury. Anesthesiology 2015, 123, 654–667. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jevtovic-Todorovic, V.; Todorovic, S.M. The Role of Neuroactive Steroids in Analgesia and Anesthesia: An Interesting Comeback? Biomolecules 2023, 13, 1654. https://doi.org/10.3390/biom13111654
Jevtovic-Todorovic V, Todorovic SM. The Role of Neuroactive Steroids in Analgesia and Anesthesia: An Interesting Comeback? Biomolecules. 2023; 13(11):1654. https://doi.org/10.3390/biom13111654
Chicago/Turabian StyleJevtovic-Todorovic, Vesna, and Slobodan M. Todorovic. 2023. "The Role of Neuroactive Steroids in Analgesia and Anesthesia: An Interesting Comeback?" Biomolecules 13, no. 11: 1654. https://doi.org/10.3390/biom13111654
APA StyleJevtovic-Todorovic, V., & Todorovic, S. M. (2023). The Role of Neuroactive Steroids in Analgesia and Anesthesia: An Interesting Comeback? Biomolecules, 13(11), 1654. https://doi.org/10.3390/biom13111654