Is the β3-Adrenoceptor a Valid Target for the Treatment of Obesity and/or Type 2 Diabetes?
Abstract
:1. Introduction
2. Historical Aspects
2.1. Insight from Gene Polymorphism Association Studies
2.2. Insight from β3-AR Knock-Out Studies
2.3. Early Research and Development Programs
3. Insulin Release and Cellular Glucose Uptake
3.1. Insulin Release
3.2. Cellular Glucose Uptake
4. Lipolysis and Adipose Tissue Remodeling
4.1. β3-Adrenoceptor Expression in Adipose Tissue
4.2. Lipolysis and Thermogenesis
4.2.1. Non-Primate Animals Studies
4.2.2. Human and Primate Studies
4.2.3. In Vitro Studies
4.3. Adipose Tissue Remodeling
5. Obesity
5.1. Non-Primate Animal Studies
5.2. Human and Primate Studies
6. Clinical Development Programs
7. Why Do Rodent and Primate Studies Differ?
8. Conclusions and Future Perspectives
9. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blüher, M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288–298. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, L.; Xu, T.; Lang, J.; Li, Z.; Gong, J.; Liu, Q.; Liu, X. A population-based survey of the prevalence, potential risk factors, and symptom-specific bother of lower urinary tract symptoms in adult Chinese women. Eur. Urol. 2015, 68, 97–112. [Google Scholar] [CrossRef] [PubMed]
- Michel, M.C.; Cardozo, L.; Chermansky, C.J.; Cruz, F.; Igawa, Y.; Lee, K.S.; Sahai, A.; Wein, A.J.; Andersson, K.E. Current and emerging pharmacological targets and treatments of urinary incontinence and related disorders. Pharmacol. Rev. 2023, 75, 554–674. [Google Scholar] [CrossRef]
- Bergmann, N.C.; Davies, M.J.; Lingvay, I.; Knop, F.K. Semaglutide for the treatment of overweight and obesity: A review. Diabetes Obes. Metab. 2023, 25, 18–35. [Google Scholar] [CrossRef]
- Prillaman, M. Four key questions on the new wave of anti-obesity drugs. Nature 2023, 620, 28–30. [Google Scholar] [CrossRef] [PubMed]
- Michel, M.C.; Mayoux, E.; Vallon, V. A comprehensive review of the pharmacodynamics of the SGLT2 inhibitor empagliflozin in animals and humans. Naunyn Schmiedebergs Arch. Pharmacol. 2015, 388, 801–816. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Han, S.-L.; Sun, X.-F.; Wang, S.-X.; Wang, H.-Y.; Liu, X.; Chen, L.; Xia, L. Efficacy and safety of empagliflozin for type 2 diabetes mellitus: Meta-analysis of randomized controlled trials. Medicine 2018, 97, e12843. [Google Scholar] [CrossRef]
- Procino, G.; Carmosino, M.; Milano, S.; Dal Monte, M.; Schena, G.; Mastrodonato, M.; Gerbino, A.; Bagnoli, P.; Svelto, M. b3 adrenergic receptor in the kidney may be a new player in sympathetic regulation of renal function. Kidney Int. 2016, 90, 555–567. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.Y.; Brychta, R.J.; Sater, Z.A.; Cassimatis, T.M.; Cero, C.; Fletcher, L.A.; Israni, N.S.; Johnson, J.W.; Lea, H.J.; Linderman, J.D. Opportunities and challenges in the therapeutic activation of human energy expenditure and thermogenesis to manage obesity. J. Biol. Chem. 2020, 295, 1926–1942. [Google Scholar] [CrossRef]
- Darcy, J.; Tseng, Y.-H. ComBATing aging—Does increased brown adipose tissue activity confer longevity? Geroscience 2019, 41, 285–296. [Google Scholar] [CrossRef]
- Aldiss, P.; Betts, J.; Sale, C.; Pope, M.; Budge, H.; Symonds, M.E. Exercise-induced ‘browning’of adipose tissues. Metabolism 2018, 81, 63–70. [Google Scholar] [CrossRef]
- Bel, J.S.; Tai, T.; Khaper, N.; Lees, S.J. Mirabegron: The most promising adipose tissue beiging agent. Physiol. Rep. 2021, 9, e14779. [Google Scholar] [CrossRef]
- O’Mara, A.E.; Johnson, J.W.; Linderman, J.D.; Brychta, R.J.; McGehee, S.; Fletcher, L.A.; Fink, Y.A.; Kapuria, D.; Cassimatis, T.M.; Kelsey, N.; et al. Chronic mirabegron treatment increases human brown fat, HDL cholesterol, and insulin sensitivity. J. Clin. Investig. 2020, 130, 2209–2219. [Google Scholar] [CrossRef]
- Loh, R.K.; Formosa, M.F.; La Gerche, A.; Reutens, A.T.; Kingwell, B.A.; Carey, A.L. Acute metabolic and cardiovascular effects of mirabegron in healthy individuals. Diabetes Obes. Metab. 2019, 21, 276–284. [Google Scholar] [CrossRef]
- Cawthorne, M.A.; Carroll, M.J.; Levy, A.L.; Lister, C.A.; Sennitt, M.V.; Smith, S.A.; Young, P. Effects of novel beta-adrenoceptor agonists on carbhohydrate metabolism: Relevance for the treatment of non-insulin-dependent diabetes. Int. J. Obes. 1984, 8 (Suppl. S1), 93–102. [Google Scholar]
- Lands, A.M.; Arnold, A.; McAuliff, J.P.; Luduena, F.P.; Brown, T.G. Differentiation of receptor systems activated by sympathetic amines. Nature 1967, 214, 597–598. [Google Scholar] [CrossRef]
- Furchgott, R.F. The classification of adrenoceptors (adrenergic receptors). An evaluation from the standpoint of receptor theory. In Catecholamines; Blaschko, H., Muecholl, E., Eds.; Springer: New York, NY, USA, 1972; pp. 283–335. [Google Scholar]
- Harms, H.H.; Zaagsma, J.; van der Wal, B. Beta-adrenoceptor studies. III. on the beta-adrenoceptors in rat adipose tissue. Eur. J. Pharmacol. 1974, 25, 87–97. [Google Scholar] [CrossRef]
- Harms, H.H. Stereochemical aspects of beta-adrenoceptor antagonist-receptor interactions in adipocytes. Differentiation of beta-adrenoceptors in human and rat adipocytes. Life Sci. 1976, 19, 1447–1452. [Google Scholar] [CrossRef]
- Bianchetti, A.; Manara, L. In vitro inhibition of intestinal motility by phenylethanolaminetetralines: Evidence of atypical β-adrenoceptors in rat colon. Br. J. Pharmacol. 1990, 100, 831–839. [Google Scholar] [CrossRef]
- Nergardh, A.; Boreus, L.O.; Naglo, A.S. Characterization of the adrenergic beta-receptor in the urinary bladder of man and cat. Acta Pharmacol. Toxicol. (Copenh.) 1977, 40, 14–21. [Google Scholar] [CrossRef]
- Arch, J.R.S. Perspectives from β3-adrenoceptor agonists on pharmacology, physiology and obesity drug discovery. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2008, 378, 225–240. [Google Scholar] [CrossRef]
- Emorine, L.J.; Marullo, S.; Briden-sutren, M.M.; Patey, G.; Tate, K.; Delavier-Klutchko, C.; Strosberg, A.D. Molecular characterization of the human β3-adrenergic receptor. Science 1989, 245, 1118–1121. [Google Scholar] [CrossRef]
- Muzzin, P.; Revelli, J.P.; Kuhne, F.; Gocayne, J.D.; McCombie, W.R.; Venter, J.C.; Giacobino, J.P.; Fraser, C.M. An adipose tissue-specific β-adrenergic receptor. Molecular cloning and down-regulation in obesity. J. Biol. Chem. 1991, 266, 24053–24058. [Google Scholar] [CrossRef]
- Nahmias, C.; Blin, N.; Elalouf, J.M.; Mattei, M.G.; Strosberg, A.D.; Emorine, L.J. Molecular characterization of the mouse β3-adrenergic receptor: Relationship with the atypical receptor of adipocytes. EMBO J. 1991, 10, 3721–3727. [Google Scholar] [CrossRef]
- Granneman, J.G.; Lahners, K.N.; Rao, D.D. Rodent and human β3-adrenergic receptor genes contain an intron within the protein-coding block. Mol. Pharmacol. 1992, 42, 964–970. [Google Scholar]
- Granneman, J.G.; Lahners, K.N.; Chaudhry, A. Characterization of the human β3-adrenergic receptor gene. Mol. Pharmacol. 1993, 44, 264–270. [Google Scholar]
- Van Spronsen, A.; Nahmias, C.; Krief, S.; Briend-Sutren, M.-M.; Strosberg, A.D.; Emorine, L.J. The promoter and intron/exon structure of the human and mouse β3-adrenergic-receptor genes. Eur. J. Biochem. 1993, 213, 1117–1124. [Google Scholar] [CrossRef]
- Brown, J.A.; Machida, C.A. The 5′ flanking region of the rat β3-adrenergic receptor gene: Divergence with the human gene and implications for species-specific gene expression. DNA Seq. 1994, 4, 319–324. [Google Scholar] [CrossRef]
- Clement, K.; Vaisse, C.; Manning, B.S.J.; Basdevant, A.; Guy-Grand, B.; Riuz, J.; Silver, K.D.; Shuldiner, A.R.; Froguel, P.; Strosberg, A.D. Genetic variation in the β3-adrenergic receptor and an increased capacity to gain weight in patients with morbid obesity. N. Engl. J. Med. 1995, 333, 352–354. [Google Scholar] [CrossRef]
- Walton, J.; Silver, K.; Bogardus, C.; Knowler, W.C.; Celi, F.S.; Austin, S.; Manning, B.; Strosberg, A.D.; Stern, M.P.; Raben, N.; et al. Time of onset of non-insulin-dependent diabetes mellitus and genetic variation in the β3-adrenergic receptor gene. N. Engl. J. Med. 1995, 333, 343–347. [Google Scholar] [CrossRef]
- Li, L.S.; Lönnqvist, F.; Luthman, H.; Arner, P. Phenotypic characterization of the Trp64Arg polymorphism in the beta 3-adrenergic receptor gene in normal weight and obese subjects. Diabetologia 1996, 39, 857–860. [Google Scholar] [CrossRef]
- Umekawa, T.; Yoshida, T.; Sakane, N.; Kogure, A.; Kondo, M.; Honjyo, H. Trp64Arg Mutation of β3-adrenoceptor gene deteriorates lipolysis by β3-adrenoceptor agonist in human omental adipocytes. Diabetes 1999, 48, 117–120. [Google Scholar] [CrossRef]
- Kimura, K.; Sasaki, N.; Asano, A.; Mizukami, J.; Kayahashi, S.; Kawada, T.; Fushiki, T.; Morimatsu, M.; Yoshida, T.; Saito, M. Mutated human β3-adrenergic receptor (Trp64Arg) lowers the response to β3-adrenergic agonists in transfected 3T3-L1 preadipocytes. Horm. Metab. Res. 2000, 32, 91–96. [Google Scholar] [CrossRef]
- Kadowaki, H.; Yasuda, K.; Iwamoto, K.; Otabe, S.; Shimokawa, K.; Silver, K.; Walston, J.; Yoshinaga, H.; Kosaka, K.; Yamada, N.; et al. A mutation in the β3-adrenergic receptor gene is associated with obesity and hyperinsulinemia in Japanese subjects. Biochem. Biophys. Res. Commun. 1995, 215, 555–560. [Google Scholar] [CrossRef]
- Snitker, S.; Odeleye, O.E.; Hellmér, J.; Boschmann, M.; Monroe, M.B.; Shuldiner, A.R.; Ravussin, E. No effect of the Trp64Arg beta 3-adrenoceptor variant on in vivo lipolysis in subcutaneous adipose tissue. Diabetologia 1997, 40, 838–842. [Google Scholar] [CrossRef]
- Büettner, R.; Schäffler, A.; Arndt, H.; Rogler, G.; Nusser, J.; Zietz, B.; Enger, I.; Hügl, S.; Cuk, A.; Schölmerich, J.; et al. The Trp64Arg polymorphism of the β3-adrenergic receptor gene is not associated with obesity or type 2 diabetes mellitus in a large population-based Caucasian cohort. J. Clin. Endocrinol. Metab. 1998, 83, 2892–2897. [Google Scholar] [CrossRef]
- Janssen, J.A.M.J.L.; Koper, J.W.; Stolk, R.P.; Englaro, P.; Uitterlinden, A.G.; Huang, Q.; van Leeuwen, J.P.T.M.; Blum, W.F.; Attanasio, A.M.F.; Pols, H.A.P.; et al. Lack of associations between serum leptin, a polymorphism in the gene for the beta 3-adrenergic receptor and glucose tolerance in the Dutch population. Clin. Endocrinol. 1998, 49, 229–234. [Google Scholar] [CrossRef]
- Hoffstedt, J.; Poirier, O.; Thörne, A.; Lönnqvist, F.; Herrmann, S.M.; Cambien, F.; Arner, P. Polymorphism of the human β3-adrenoceptor gene forms a well-conserved haplotype that is associated with moderate obesity and altered receptor function. Diabetes 1999, 48, 203–205. [Google Scholar] [CrossRef]
- Ahles, A.; Engelhardt, S. Polymorphic variants of adrenoceptors: Physiology, pharmacology and role in disease. Pharmacol. Rev. 2014, 66, 598–637. [Google Scholar] [CrossRef]
- Michel, M.C. Are β3-adrenoceptor gene polymorphisms relevant for urology? Neurourol. Urodyn. 2023, 42, 33–39. [Google Scholar] [CrossRef]
- Susulic, V.S.; Frederich, R.C.; Lawitt, J.; Tozzo, E.; Kahn, B.B.; Harper, M.E.; Himms-Hagen, J.; Flier, J.S.; Lowell, B.B. Targeted disruption of the β3-adrenergic receptor gene. J. Biol. Chem. 1995, 270, 29483–29492. [Google Scholar] [CrossRef]
- Revelli, J.P.; Preitner, F.; Samec, S.; Muniesa, P.; Kuehne, F.; Boss, O.; Vassalli, J.D.; Dulloo, A.; Seydoux, J.; Giacobino, J.P.; et al. Targeted gene disruption reveals a leptin-independent role for the mouse β3-adrenoceptor in the regulation of body composition. J. Clin. Investig. 1997, 100, 1098–1106. [Google Scholar] [CrossRef]
- Preitner, F.; Muzzin, P.; Revelli, J.P.; Seydoux, J.; Galitzky, J.; Berlan, M.; Lafontan, M.; Giacobino, J.P. Metabolic response to various β-adrenoceptor agonists in β3-adrenoceptor knock-out mice: Evidence for a new β-adrenergic receptor in brown adipose tissue. Br. J. Pharmacol. 1998, 124, 1684–1688. [Google Scholar] [CrossRef]
- Kaumann, A.J.; Molenaar, P. The low affinity site of the β1-adrenoceptor and its relevance to cardiovascular pharmacology. Pharmacol. Ther. 2008, 118, 303–336. [Google Scholar] [CrossRef]
- Massoudi, M.; Evans, E.; Miller, D.S. Thermogenic drugs for the treatment of obesity: Screening using obese rats and mice. Ann. Nutr. Metab. 1983, 27, 26–37. [Google Scholar] [CrossRef]
- Yen, T.T.; McKee, M.M.; Bemis, K.G. Ephedrine reduces weight of viable yellow obese mice (Avy/a). Life Sci. 1981, 28, 119–128. [Google Scholar] [CrossRef]
- Arch, J.R.; Ainsworth, A.T.; Cawthorne, M.A. Thermogenic and anorectic effects of ephedrine and congeners in mice and rats. Life Sci. 1982, 30, 1817–1826. [Google Scholar] [CrossRef]
- Arch, J.R. The contribution of increased thermogenesis to the effect of anorectic drugs on body composition in mice. Am. J. Clin. Nutr. 1981, 34, 2763–2769. [Google Scholar] [CrossRef]
- Dulloo, A.G.; Miller, D.S. Thermogenic drugs for the treatment of obesity: Sympathetic stimulants in animal models. Br. J. Nutr. 1984, 52, 179–196. [Google Scholar] [CrossRef]
- Arch, J.R.S. Challenges in β3-adrenoceptor agonist drug development. Ther. Adv. Endocrinol. Metab. 2011, 2, 59–64. [Google Scholar] [CrossRef]
- Brown, L.; Deighton, N.M.; Bals, S.; Söhlmann, W.; Zerkowski, H.R.; Michel, M.C.; Brodde, O.E. Spare receptors for β-adrenoceptor-mediated positive inotropic effects of catecholamines in the human heart. J. Cardiovasc. Pharmacol. 1992, 19, 222–232. [Google Scholar] [CrossRef]
- Arch, J.R.S. β3-Adrenoceptor agonists: Potential, pitfalls and progress. Eur. J. Pharmacol. 2002, 440, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Arch, J.R.; Ainsworth, A.T.; Cawthorne, M.A.; Piercy, V.; Sennitt, M.V.; Thody, V.E.; Wilson, C.; Wilson, S. Atypical beta-adrenoceptor on brown adipocytes as target for anti-obesity drugs. Nature 1984, 309, 163–165. [Google Scholar] [CrossRef] [PubMed]
- Cernecka, H.; Sand, C.; Michel, M.C. The odd sibling: Features of β3-adrenoceptor pharmacology. Mol. Pharmacol. 2014, 86, 479–484. [Google Scholar] [CrossRef]
- Yoshida, T. The antidiabetic β3-adrenoceptor agonist BRL 26830A works by release of endogenous insulin. Am. J. Clin. Nutr. 1992, 55, 237S–241S. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Yoshioka, K.; Hiraoka, N.; Umekawa, T.; Sakane, N.; Kondo, N. Effects of CL 316,243, a novel β3-adrenoceptor agonist, on inuslin secretion in perfused mouse pancreas. Endocr. J. 1994, 41, 671–675. [Google Scholar] [CrossRef]
- Perfetti, R.; Hui, H.; Chamie, K.; Binder, S.; Seibert, M.; McLenithan, J.; Silver, K.; Walston, J.D. Pancreatic β-cells expressing the Arg64 variant of the β3-adrenergic receptor exhibit abnormal insulin secretory activity. J. Mol. Endocrinol. 2001, 27, 133–144. [Google Scholar] [CrossRef]
- Atef, N.; Lafontan, M.; Double, A.; Helary, C.; Ktorza, A.; Penicaud, L. A specific β3-adrenoceptor agonist induces pancreatic islet blood flow and insulin secretion in rats. Eur. J. Pharmacol. 1996, 298, 287–292. [Google Scholar] [CrossRef]
- Guimaraes, S.; Moura, D. Vascular adrenoceptors: An update. Pharmacol. Rev. 2001, 53, 319–356. [Google Scholar]
- Heine, M.; Fischer, A.W.; Schlein, C.; Jung, C.; Straub, L.G.; Gottschling, K.; Mangels, N.; Yuan, Y.; Nilsson, S.K.; Liebscher, G.; et al. Lipolysis triggers a systemic insulin response essential for efficient energy replenishment of activated brown adipose tissue in mice. Cell Metab. 2018, 28, 644–655.e644. [Google Scholar] [CrossRef]
- Ohlstein, E.H.; von Keitz, A.; Michel, M.C. A multicenter, double-blind, randomized, placebo controlled trial of the β3 -adrenoceptor agonist solabegron for overactive bladder. Eur. Urol. 2012, 62, 834–840. [Google Scholar] [CrossRef] [PubMed]
- Uehling, D.E.; Shearer, B.G.; Donaldson, K.H.; Chao, E.Y.; Deaton, D.N.; Adkison, K.K.; Brown, K.K.; Cariello, N.F.; Faison, W.L.; Lancaster, M.E.; et al. Biarylaniline phenethanolamines as potent and selective β3 adrenergic receptor agonists. J. Med. Chem. 2006, 49, 2758–2771. [Google Scholar] [CrossRef]
- Grujic, D.; Susulic, V.S.; Harper, M.-E.; Himms-Hagen, J.; Cunningham, B.A.; Corkey, B.E.; Lowell, B.B. β3-adrenergic receptors on white and brown adipocytes mediate β3-selective agonist-induced effects on energy expenditure, insulin secretion, and food intake: A study using transgenic and gene knockout mice. J. Biol. Chem. 1997, 272, 17686–17693. [Google Scholar] [CrossRef]
- Wheeldon, N.M.; McDevitt, D.G.; McFarlane, L.C.; Lipworth, B.J. β-Adrenoceptor subtypes mediating the metabolic effects of BRL 35135 in man. Clin. Sci. 1994, 86, 331–337. [Google Scholar] [CrossRef] [PubMed]
- El Hadri, K.; Charon, C.; Pairault, J.; Hauquel-De Mouzon, S.; Quignard-Boulange, A. Down-regulation of β3-adrenergic receptor expression in rat adipose tissue during the fasted/fed transition: Evidence for a role of insulin. Biochem. J. 1997, 323, 359–364. [Google Scholar] [CrossRef]
- Carpene, C.; Chalaux, E.; Lizarbe, M.; Estrada, A.; Mora, C.; Palacin, M.; Zorzano, A.; Lafontan, M.; Testar, X. β3-Adrenergic receptors are responsible for the adrenergic inhibition of insulin-stimulated glucose transport in rat adipocytes. Biochem. J. 1993, 296, 99–105. [Google Scholar] [CrossRef]
- Feve, B.; Pietri-Rouxel, F.; El Hadri, K.; Drumare, M.F.; Strosberg, A.D. Long term phorbol ester treatment down-regulates the β3-adrenergic receptor in 3T3-F4424 adipocytes. J. Biol. Chem. 1995, 270, 10952–10959. [Google Scholar] [CrossRef]
- Gokmen-Polar, Y.; Coronel, E.C.; Bahouth, S.W.; Fain, J.N. Insulin sensitizes β-agonist and forskolin-stimulated lipolysis to inhibition by 2′,5′-dideoxyadenosine. Am. J. Physiol. 1996, 270, C562–C569. [Google Scholar] [CrossRef]
- Shimizu, Y.; Kielar, D.; Minokoshi, Y.; Shimazu, T. Noradrenaline increases glucose transport into brown adipocytes in culture by a mechanism different from that of insulin. Biochem. J. 1996, 314, 485–490. [Google Scholar] [CrossRef]
- Kubo, N.; Kawahara, M.; Okamatsu-Ogura, Y.; Miyazaki, Y.; Otsuka, R.; Fukuchi, K. Evaluation of glucose uptake and uncoupling protein 1 activity in adipose tissue of diabetic mice upon β-adrenergic stimulation. Mol. Imaging Biol. 2019, 21, 249–256. [Google Scholar] [CrossRef]
- Abe, H.; Minokoshi, Y.; Shimazu, T. Effect of a β3-adrenergic agonist, BRL35135A, on glucose uptake in rat skeletal muscle in vivo and in vitro. J. Endocrinol. 1993, 139, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Duffaut, C.; Bour, S.; Prévot, D.; Marti, L.; Testar, X.; Zorzano, A.; Carpéné, C. Prolonged treatment with the beta3-adrenergic agonist CL 316243 induces adipose tissue remodeling in rat but not in guinea pig: 2) modulation of glucose uptake and monoamine oxidase activity. J. Physiol. Biochem. 2006, 62, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Dehvari, N.; da Silva Junior, E.D.; Bengtsson, T.; Hutchinson, D.S. Mirabegron: Potential off target effects and uses beyond the bladder. Br. J. Pharmacol. 2018, 175, 4072–4082. [Google Scholar] [CrossRef] [PubMed]
- Finlin, B.S.; Memetimin, H.; Zhu, B.; Confides, A.L.; Vekaria, H.J.; El Khouli, R.H.; Johnson, Z.R.; Westgate, P.M.; Chen, J.; Morris, A.J. The β3-adrenergic receptor agonist mirabegron improves glucose homeostasis in obese humans. J. Clin. Investig. 2020, 130, 2319–2331. [Google Scholar] [CrossRef]
- Cypess, A.M.; Weiner, L.S.; Roberts-Toler, C.; Elía, E.F.; Kessler, S.H.; Kahn, P.A.; English, J.; Chatman, K.; Trauger, S.A.; Doria, A. Activation of human brown adipose tissue by a β3-adrenergic receptor agonist. Cell Metab. 2015, 21, 33–38. [Google Scholar] [CrossRef]
- Lee, P.; Bova, R.; Schofield, L.; Bryant, W.; Dieckmann, W.; Slattery, A.; Govendir, M.A.; Emmett, L.; Greenfield, J.R. Brown adipose tissue exhibits a glucose-responsive thermogenic biorhythm in humans. Cell Metab. 2016, 23, 602–609. [Google Scholar] [CrossRef]
- Saito, M.; Okamatsu-Ogura, Y.; Matsushita, M.; Watanabe, K.; Yoneshiro, T.; Nio-Kobayashi, J.; Iwanaga, T.; Miyagawa, M.; Kameya, T.; Nakada, K. High incidence of metabolically active brown adipose tissue in healthy adult humans: Effects of cold exposure and adiposity. Diabetes 2009, 58, 1526–1531. [Google Scholar] [CrossRef]
- Peirce, V.; Carobbio, S.; Vidal-Puig, A. The different shades of fat. Nature 2014, 510, 76–83. [Google Scholar] [CrossRef]
- Granneman, J.G.; Li, P.; Zhu, Z.; Lu, Y. Metabolic and cellular plasticity in white adipose tissue I: Effects of β3-adrenergic receptor activation. Am. J. Physiol. Endocrinol. Metab. 2005, 289, E608–E616. [Google Scholar] [CrossRef]
- Trayhurn, P.; Beattie, J.H. Physiological role of adipose tissue: White adipose tissue as an endocrine and secretory organ. Proc. Nutr. Soc. 2001, 60, 329–339. [Google Scholar] [CrossRef]
- Proença, A.R.; Sertié, R.A.L.; Oliveira, A.; Campaaa, A.; Caminhotto, R.; Chimin, P.; Lima, F.B. New concepts in white adipose tissue physiology. Braz. J. Med. Biol. Res. 2014, 47, 192–205. [Google Scholar] [CrossRef] [PubMed]
- Wronska, A.; Kmiec, Z. Structural and biochemical characteristics of various white adipose tissue depots. Acta Physiol. 2012, 205, 194–208. [Google Scholar] [CrossRef] [PubMed]
- Klingenspor, M.; Bast, A.; Bolze, F.; Li, Y.; Maurer, S.; Schweizer, S.; Willershäuser, M.; Fromme, T. Brown adipose tissue. In Adipose Tissue Biology; Springer International: Cham, Switzerland, 2017; pp. 91–147. [Google Scholar]
- Cannon, B.; Nedergaard, J. Brown adipose tissue: Function and physiological significance. Physiol. Rev. 2004, 84, 277–359. [Google Scholar] [CrossRef] [PubMed]
- Virtanen, K.A.; Lidell, M.E.; Orava, J.; Heglind, M.; Westergren, R.; Niemi, T.; Taittonen, M.; Laine, J.; Savisto, N.-J.; Enerbäck, S. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 2009, 360, 1518–1525. [Google Scholar] [CrossRef]
- Pinckard, K.M.; Stanford, K.I. The heartwarming effect of brown adipose tissue. Mol. Pharmacol. 2022, 102, 460–471. [Google Scholar] [CrossRef]
- Nedergaard, J.; Bengtsson, T.; Cannon, B. Unexpected evidence for active brown adipose tissue in adult humans. Am. J. Physiol. 2007, 293, E444–E452. [Google Scholar] [CrossRef]
- Wu, J.; Boström, P.; Sparks, L.M.; Ye, L.; Choi, J.H.; Giang, A.-H.; Khandekar, M.; Virtanen, K.A.; Nuutila, P.; Schaart, G. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 2012, 150, 366–376. [Google Scholar] [CrossRef]
- Pilkington, A.-C.; Paz, H.A.; Wankhade, U.D. Beige adipose tissue identification and marker Specificity—Overview. Front. Endocrinol. 2021, 12, 599134. [Google Scholar] [CrossRef]
- Thyagarajan, B.; Foster, M.T. Beiging of white adipose tissue as a therapeutic strategy for weight loss in humans. Horm. Mol. Biol. Clin. Investig. 2017, 31, 20170016. [Google Scholar] [CrossRef]
- Baskin, A.S.; Linderman, J.D.; Brychta, R.J.; McGehee, S.; Anflick-Chames, E.; Cero, C.; Johnson, J.W.; O’Mara, A.E.; Fletcher, L.A.; Leitner, B.P.; et al. Regulation of human adipose tissue activation, gallbladder size, and bile acid metabolism by a β3-adrenergic receptor agonist. Diabetes 2018, 67, 2113–2125. [Google Scholar] [CrossRef]
- Galitzky, J.; Carpene, C.; Bousquet-Mélou, A.; Berlan, M.; Lafontan, M. Differential activation of β1-, β2-and β3-adrenoceptors by catecholamines in white and brown adipocytes. Fundam. Clin. Pharmacol. 1995, 9, 324–331. [Google Scholar] [CrossRef]
- Blondin, D.P.; Nielsen, S.; Kuipers, E.N.; Severinsen, M.C.; Jensen, V.H.; Miard, S.; Jespersen, N.Z.; Kooijman, S.; Boon, M.R.; Fortin, M. Human brown adipocyte thermogenesis is driven by β2-AR stimulation. Cell Metab. 2020, 32, 287–300.e287. [Google Scholar] [CrossRef] [PubMed]
- Revelli, J.P.; Muzzin, P.; Giacobino, J.P. Modulation in vivo of β-adrenergic-receptor subtypes in rat brown adipose tissue by the thermogenic agonist Ro 16-8714. Biochem. J. 1992, 286, 743–746. [Google Scholar] [CrossRef] [PubMed]
- Evans, B.A.; Papaioannou, M.; Bonazzi, V.R.; Summers, R.J. Expression of β3-adrenoceptor mRNA in rat tissues. Br. J. Pharmacol. 1996, 117, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Adli, H.; Bazin, R.; Perret, G.Y. Interaction of amiodarone and triiodothyronine on the expression of β-adrenoceptors in brown adipose tissue of rat. Br. J. Pharmacol. 1999, 126, 1455–1461. [Google Scholar] [CrossRef] [PubMed]
- Scarpace, P.J.; Matheny, M.; Thümer, N. Differential down-regulation of β3-adrenergic receptor mRNA and signal transduction by cold exposure in brown adipose tissue of young and senescent rats. Pflügers Arch. Eur. J. Physiol. 1999, 437, 479–483. [Google Scholar] [CrossRef] [PubMed]
- Evans, B.A.; Papaioannou, M.; Anastasopoulos, F.; Summers, R.J. Differential regulation of β3-adrenoceptors in gut and adipose tissue of genetically obese (ob/ob) C57BL/6J-mice. Br. J. Pharmacol. 1998, 124, 763–771. [Google Scholar] [CrossRef]
- Evans, B.A.; Papaioannou, M.; Hamilton, S.; Summers, R.J. Alternative splicing generates two isoforms of the β3-adrenoceptor which are differentially expressed in mouse tissues. Br. J. Pharmacol. 1999, 127, 1525–1531. [Google Scholar] [CrossRef]
- Hutchinson, D.S.; Evans, B.A.; Summers, R.J. β3-Adrenoceptor regulation and relaxation responses in mouse ileum. Br. J. Pharmacol. 2000, 129, 1251–1259. [Google Scholar] [CrossRef]
- Collins, S.; Daniel, K.W.; Rohlfs, E.M.; Ramkumar, V.; Taylor, I.L.; Gettys, T.W. Impaired expression and functional activity of the beta 3- and beta 1-adrenergic receptors in adipose tissue of congenitally obese (C57BL/6J ob/ob) mice. Mol. Endocrinol. 1994, 8, 518–527. [Google Scholar] [CrossRef]
- Feve, B.; Elhadri, K.; Quignard-Boulange, A.; Pairault, J. Transcriptional down-regulation by insulin of the beta-3 adrenergic receptor expression in 3T3-F442A adipocytes: A mechanism for repressing the cAMP signaling pathway. Proc. Natl. Acad. Sci. USA 1994, 91, 5677–5681. [Google Scholar] [CrossRef]
- Rohlfs, E.M.; Daniel, K.W.; Premont, R.T.; Kozak, L.P.; Collins, S. Regulation of the uncoupling gene (Ucp) by β1, β2 and β3-adrenergic receptor subtypes in immortalized brown adipose cell lines. J. Biol. Chem. 1995, 270, 10723–10732. [Google Scholar] [CrossRef]
- Lönnqvist, F.; Krief, S.; Strosberg, A.D.; Nyberg, B.; Emorine, L.J.; Arner, P. Evidence for a functional β3-adrenoceptor in man. Br. J. Pharmacol. 1993, 110, 929–936. [Google Scholar] [CrossRef]
- Krief, S.; Lönnqvist, F.; Raimbault, S.; Baude, B.; van Spronsen, A.; Arner, P.; Strosberg, A.D.; Ricquier, D.; Emorine, L.J. Tissue distribution of beta 3-adrenergic receptor mRNA in man. J. Clin. Investig. 1993, 91, 344–349. [Google Scholar] [CrossRef]
- Berkowitz, D.E.; Nardone, N.A.; Smiley, R.M.; Price, D.T.; Kreutter, D.K.; Fremeau, R.T.; Schwinn, D.A. Distribution of β3-adrenoceptor mRNA in human tissues. Eur. J. Pharmacol. 1995, 289, 223–228. [Google Scholar] [CrossRef]
- Granneman, J.G.; Lahners, K.N. Analysis of human and rodent β3-adrenergic receptor messenger ribonucleic acids. Endocrinology 1994, 135, 1025–1031. [Google Scholar] [CrossRef] [PubMed]
- Cero, C.; Lea, H.J.; Zhu, K.Y.; Shamsi, F.; Tseng, Y.-H.; Cypess, A.M. β3-Adrenergic receptors regulate human brown/beige adipocyte lipolysis and thermogenesis. JCI Insight 2021, 6, e139160. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.F.; Liggett, S.B. Lack of β3-adrenergic receptor mRNA expression in adipose and other metabolic tissues in the adult human. Mol. Pharmacol. 1993, 43, 343–348. [Google Scholar]
- Deng, C.; Paoloni-Giacobino, A.; Kuehne, F.; Boss, O.; Revelli, J.P.; Moinat, M.; Cawthorne, M.A.; Muzzin, P.; Giacobino, J.P. Respective degree of expression of β1-, β2- and β3-adrenoceptors in human brown and white adipose tissue. Br. J. Pharmacol. 1996, 118, 929–934. [Google Scholar] [CrossRef] [PubMed]
- Michel, M.C.; Gravas, S. Safety and tolerability of β3-adrenoceptor agonists in the treatment of overactive bladder syndrome—Insight from transcriptosome and experimental studies. Expert Opin. Drug Saf. 2016, 15, 647–657. [Google Scholar] [CrossRef] [PubMed]
- Riis-Vestergaard, M.J.; Richelsen, B.; Bruun, J.M.; Li, W.; Hansen, J.B.; Pedersen, S.B. Beta-1 and not beta-3 adrenergic receptors may be the primary regulator of human brown adipocyte metabolism. J. Clin. Endocrinol. Metab. 2020, 105, e994–e1005. [Google Scholar] [CrossRef]
- Harms, H.H.; Zaagsma, J.; de Vente, J. Differentiation of β-adrenoceptors in right atrium, diaphragm and adipose tissue of the rat, using stereoisomers of propranolol, alprenolol, nifenalol and practolol. Life Sci. 1977, 21, 123–128. [Google Scholar] [CrossRef]
- Tan, S.; Curtis-Prior, P.B. Characterization of the beta-adrenoceptor of the adipose cells of the rat. Int. J. Obes. 1983, 7, 409–414. [Google Scholar] [PubMed]
- Wilson, C.; Wilson, S.; Piercy, V.; Sennitt, M.V.; Arch, J.R.S. The rat lipolytic β-adrenoceptor: Studies using novel β-adrenoceptor agonists. Eur. J. Pharmacol. 1984, 100, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Hollenga, C.; Zaagsma, J. Direct evidence for the atypical nature of functional beta-adrenoceptors in rat adipocytes. Br. J. Pharmacol. 1989, 98, 1420–1424. [Google Scholar] [CrossRef] [PubMed]
- Hollenga, C.; Haas, M.; Deinum, J.T.; Zaagsma, J. Discrepancies in lipolytic activities induced by beta-adrenoceptor agonists in human and rat adipocytes. Horm. Metab. Res. 1990, 22, 17–21. [Google Scholar] [CrossRef]
- Murphy, G.J.; Kirkham, D.M.; Cawthorne, M.A.; Young, P. Correlation of beta 3-adrenoceptor-induced activation of cyclic AMP-dependent protein kinase with activation of lipolysis in rat white adipocytes. Biochem. Pharmacol. 1993, 46, 575–581. [Google Scholar] [CrossRef]
- van Liefde, I.; van Witzenburg, A.; Vauquelin, G. Multiple beta adrenergic receptor subclasses mediate the l-isoproterenol-induced lipolytic response in rat adipocytes. J. Pharmacol. Exp. Ther. 1992, 262, 552–558. [Google Scholar]
- Germack, R.; Starzec, A.B.; Vassy, R.; Perret, G.Y. β-Adrenoceptor subtype expression and function in rat white adipocytes. Br. J. Pharmacol. 1997, 120, 201–210. [Google Scholar] [CrossRef]
- Moreno-Aliaga, M.; Alfredo, M.; Stanhope, K.; Otero, M.P.; Havel, P. Effects of TrecadrineR, a beta 3-adrenergic agonist, on leptin secretion, glucose and lipid metabolism in isolated rat adipocytes. Int. J. Obes. Relat. Metab. Disord. J. Assoc. Study Obes. 2002, 26, 912–919. [Google Scholar] [CrossRef]
- Hatakeyama, Y.; Sakata, Y.; Takakura, S.; Manda, T.; Mutoh, S. Acute and chronic effects of FR-149175, a β3-adrenergic receptor agonist, on energy expenditure in Zucker fatty rats. Am. J. Physiol. 2004, 287, R336–R341. [Google Scholar] [CrossRef]
- Rosenbaum, M.; Malbon, C.C.; Hirsch, J.; Leibel, R.L. Lack of β3-adrenergic effect on lipolysis in human subcutaneous adipose tissue. J. Clin. Endocrinol. Metab. 1993, 77, 352–355. [Google Scholar] [CrossRef]
- Vicario, P.P.; Candelore, M.R.; Schaeffer, M.-T.; Kelly, L.; Thompson, G.M.; Brady, E.J.; Saperstein, R.; MacIntyre, D.E.; Tota, L.M.; Cascieri, M.A. Desensitization of β3-adrenergic receptor- stimulated adenylyl cyclase activity and lipolysis in rats. Life Sci. 1998, 62, 627–638. [Google Scholar] [CrossRef] [PubMed]
- Hollenga, C.; Brouwer, F.; Zaagsma, J. Differences in functional cyclic AMP compartments mediating lipolysis by isoprenaline and BRL 37344 in four adipocyte types. Eur. J. Pharmacol. 1991, 200, 325–330. [Google Scholar] [CrossRef]
- Hollenga, C.; Brouwer, F.; Zaagsma, J. Relationship between lipolysis and cyclic AMP generation mediated by atypical beta-adrenoceptors in rat adipocytes. Br. J. Pharmacol. 1991, 102, 577–580. [Google Scholar] [CrossRef] [PubMed]
- Oriowo, M.A.; Chapman, H.; Kirkham, D.M.; Sennitt, M.V.; Ruffolo, R.R., Jr.; Cawthorne, M.A. The selectivity in vitro of the stereoisomers of the beta-3 adrenoceptor agonist BRL 37344. J. Pharmacol. Exp. Ther. 1996, 277, 22–27. [Google Scholar] [PubMed]
- Tavernier, G.; Jimenez, M.; Giacobino, J.P.; Hulo, N.; Lafontan, M.; Muzzin, P.; Langin, D. Norepinephrine induces lipolysis in β1/β2/β3-adrenoceptor knockout mice. Mol. Pharmacol. 2005, 68, 793–799. [Google Scholar] [CrossRef] [PubMed]
- Tavernier, G.; Galitzky, J.; Bousquet-Melou, A.; Montastruc, J.L.; Berlan, M. The positive chronotropic effect induced by BRL 37344 and CGP 12177, two beta-3 adrenergic agonists, does not involve cardiac beta adrenoceptors but baroreflex mechanisms. J. Pharmacol. Exp. Ther. 1992, 263, 1083–1090. [Google Scholar]
- Shen, Y.T.; Cervoni, P.; Claus, T.; Vatner, S.F. Differences in β3-adrenergic receptor cardiovascular regulation in conscious primates, rats and dogs. J. Pharmacol. Exp. Ther. 1996, 278, 1435–1443. [Google Scholar]
- Bousquet-Melou, A.; Galitzky, J.; Carpene, C.; Lafontan, M.; Berlan, M. β-Adrenergic control of lipolysis in primate white fat cells: A comparative study with nonprimate mammals. Am. J. Physiol. 1994, 267, R115–R123. [Google Scholar] [CrossRef]
- Forrest, M.J.; Hom, G.; Bach, T.; Candelore, M.R.; Cascieri, M.A.; Strader, C.; Tota, L.; Fisher, M.H.; Szumiloski, J.; Ok, H.O.; et al. L-750355, a human β3-adrenoceptor agonist; in vitro pharmacology and profile of activity in vivo in the rhesus monkey. Eur. J. Pharmacol. 2000, 407, 175–181. [Google Scholar] [CrossRef]
- Lipworth, B.J. Clinical pharmacology of β3-adrenoceptors. Br. J. Clin. Pharmacol. 1996, 42, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Hoffstedt, J.; Shimizu, M.; Sjöstedt, S.; Lönnqvist, F. Determination of β3-adrenoceptor mediated lipolysis in human fat cells. Obes. Res. 1995, 3, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Hoffstedt, J.; Lönnqvist, F.; Shimizu, M.; Blaak, E.; Arner, P. Effects of several putative beta3-adrenoceptor agonists on lipolysis in human omental adipocytes. Int. J. Obes. Relat. Metab. Disord. 1996, 20, 428–434. [Google Scholar] [PubMed]
- Sennitt, M.V.; Kaumann, A.J.; Molenaar, P.; Beeley, L.J.; Young, P.W.; Kelly, J.; Chapman, H.; Henson, S.M.; Berge, J.M.; Dean, D.K.; et al. The contribution of classical (β1/2-) and atypical β-adrenoceptors to the stimulation of white adipocyte lipolysis and right atrial appendage contraction by novel β3-adreoceptor agonists of differing selectivities. J. Pharmacol. Exp. Ther. 1998, 285, 1084–1095. [Google Scholar] [PubMed]
- El-Yazbi, A.F.; Elrewiny, M.A.; Habib, H.M.; Eid, A.H.; Elzahhar, P.A.; Belal, A.S. Thermogenic modulation of adipose depots: A perspective on possible therapeutic intervention with early cardiorenal complications of metabolic impairment. Mol. Pharmacol. 2023, 104, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Astrup, A.; Toubro, S.; Cannon, S.; Hein, P.; Breum, L.; Madsen, J. Caffeine: A double-blind, placebo-controlled study of its thermogenic, metabolic, and cardiovascular effects in healthy volunteers. Am. J. Clin. Nutr. 1990, 51, 759–767. [Google Scholar] [CrossRef]
- Van Schaik, L.; Kettle, C.; Green, R.; Sievers, W.; Hale, M.; Irving, H.; Whelan, D.; Rathner, J. Stimulatory, but not anxiogenic, doses of caffeine act centrally to activate interscapular brown adipose tissue thermogenesis in anesthetized male rats. Sci. Rep. 2021, 11, 113. [Google Scholar] [CrossRef]
- De Matteis, R.; Arch, J.; Petroni, M.; Ferrari, D.; Cinti, S.; Stock, M. Immunohistochemical identification of the β3-adrenoceptor in intact human adipocytes and ventricular myocardium: Effect of obesity and treatment with ephedrine and caffeine. Int. J. Obes. 2002, 26, 1442–1450. [Google Scholar] [CrossRef]
- Meyers, D.S.; Skwish, S.; Dickinson, K.E.; Kienzle, B.; Arbeeny, C.M. β3-Adrenergic receptor-mediated lipolysis and oxygen consumption in brown adipocytes from cynomolgus monkeys. J. Clin. Endocrinol. Metab. 1997, 82, 395–401. [Google Scholar] [CrossRef]
- Puigserver, P.; Pico, C.; Stock, M.; Palou, A. Effect of selective β-adrenoceptor stimulation on UCP synthesis in primary cultures of brown adipocytes. Mol. Cell. Endocrinol. 1996, 117, 7–16. [Google Scholar] [CrossRef]
- Yamakawa, A.; Tanaka, E.; Nakano, S. Effect of the adrenergic beta 3-agonist, BRL37344, on heat production by brown adipocytes in obese and in older rats. Tokai J. Exp. Clin. Med. 1994, 19, 139–142. [Google Scholar] [PubMed]
- Hao, L.; Scott, S.; Abbasi, M.; Zu, Y.; Khan, M.S.H.; Yang, Y.; Wu, D.; Zhao, L.; Wang, S. Beneficial metabolic effects of mirabegron in vitro and in high-fat diet-induced obese mice. J. Pharmacol. Exp. Ther. 2019, 369, 419–427. [Google Scholar] [CrossRef]
- Choe, S.S.; Huh, J.Y.; Hwang, I.J.; Kim, J.I.; Kim, J.B. Adipose tissue remodeling: Its role in energy metabolism and metabolic disorders. Front. Endocrinol. 2016, 7, 30. [Google Scholar] [CrossRef]
- Tanaka, M.; Itoh, M.; Ogawa, Y.; Suganami, T. Molecular mechanism of obesity-induced ‘metabolic’tissue remodeling. J. Diabetes Investig. 2018, 9, 256–261. [Google Scholar] [CrossRef]
- Auger, C.; Kajimura, S. Adipose tissue remodeling in pathophysiology. Annu. Rev. Pathol. Mech. Dis. 2023, 18, 71–93. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-J.; Wu, Y.; Fried, S.K. Adipose tissue remodeling in pathophysiology of obesity. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 371. [Google Scholar] [CrossRef]
- Lee, Y.-H.; Mottillo, E.P.; Granneman, J.G. Adipose tissue plasticity from WAT to BAT and in between. Biochim. Et Biophys. Acta (BBA)-Mol. Basis Dis. 2014, 1842, 358–369. [Google Scholar] [CrossRef]
- Willows, J.W.; Blaszkiewicz, M.; Townsend, K.L. The sympathetic innervation of adipose tissues: Regulation, functions, and plasticity. Compr. Physiol. 2011, 13, 4985–5021. [Google Scholar]
- Zhao, Y.; Li, X.; Yang, L.; Eckel-Mahan, K.; Tong, Q.; Gu, X.; Kolonin, M.G.; Sun, K. Transient overexpression of vascular endothelial growth factor A in adipose tissue promotes energy expenditure via activation of the sympathetic nervous system. Mol. Cell. Biol. 2018, 38, e00242-18. [Google Scholar] [CrossRef]
- Jimenez, M.; Léger, B.; Canola, K.; Lehr, L.; Arboit, P.; Seydoux, J.; Russell, A.P.; Giacobino, J.-P.; Muzzin, P.; Preitner, F. β1/β2/β3-adrenoceptor knockout mice are obese and cold-sensitive but have normal lipolytic responses to fasting. FEBS Lett. 2002, 530, 37–40. [Google Scholar] [CrossRef]
- van Marken Lichtenbelt, W.D.; Vanhommerig, J.W.; Smulders, N.M.; Drossaerts, J.M.; Kemerink, G.J.; Bouvy, N.D.; Schrauwen, P.; Teule, G.J. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 2009, 360, 1500–1508. [Google Scholar] [CrossRef]
- Finlin, B.S.; Memetimin, H.; Confides, A.L.; Kasza, I.; Zhu, B.; Vekaria, H.J.; Harfmann, B.; Jones, K.A.; Johnson, Z.R.; Westgate, P.M. Human adipose beiging in response to cold and mirabegron. JCI Insight 2018, 3, e121510. [Google Scholar] [CrossRef]
- Preite, N.Z.; do Nascimento, B.P.; Muller, C.R.; Américo, A.L.V.; Higa, T.S.; Evangelista, F.S.; Lancellotti, C.L.; dos Santos Henriques, F.; Batista Jr, M.L.; Bianco, A.C. Disruption of beta3 adrenergic receptor increases susceptibility to DIO in mouse. J. Endocrinol. 2016, 231, 259. [Google Scholar] [CrossRef]
- Granneman, J.; Burnazi, M.; Zhu, Z.; Schwamb, L. White adipose tissue contributes to UCP1-independent thermogenesis. Am. J. Physiol. Endocrinol. Metab. 2003, 285, E1230–E1236. [Google Scholar] [CrossRef]
- Warner, A.; Kjellstedt, A.; Carreras, A.; Böttcher, G.; Peng, X.-R.; Seale, P.; Oakes, N.; Lindén, D. Activation of β3-adrenoceptors increases in vivo free fatty acid uptake and utilization in brown but not white fat depots in high-fat-fed rats. Am. J. Physiol. Endocrinol. Metab. 2016, 311, E901–E910. [Google Scholar] [CrossRef] [PubMed]
- Van Schaik, L.; Kettle, C.; Green, R.; Irving, H.R.; Rathner, J.A. Effects of caffeine on brown adipose tissue thermogenesis and metabolic homeostasis: A review. Front. Neurosci. 2021, 15, 54. [Google Scholar] [CrossRef]
- de Souza, C.J.; Burkey, B.F. Beta3-adrenoceptor agonists as anti-diabetic and anti-obesity drugs in humans. Curr. Pharm. Des. 2001, 7, 1433–1449. [Google Scholar] [CrossRef] [PubMed]
- Collins, S.; Daniel, K.W.; Petro, A.E.; Surwit, R.S. Strain-specific response to beta 3-adrenergic receptor agonist treatment of diet-induced obesity in mice. Endocrinology 1997, 138, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Arch, J.; Wilson, S. Prospects for beta 3-adrenoceptor agonists in the treatment of obesity and diabetes. Int. J. Obes. Relat. Metab. Disord. J. Int. Assoc. Study Obes. 1996, 20, 191–199. [Google Scholar]
- Liu, X.; Pérusse, F.; Bukowiecki, L.J. Mechanisms of the antidiabetic effects of the β3-adrenergic agonist CL-316243 in obese Zucker-ZDF rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1998, 274, R1212–R1219. [Google Scholar] [CrossRef]
- Himms-Hagen, J.; Cui, J.; Danforth Jr, E.; Taatjes, D.; Lang, S.; Waters, B.; Claus, T. Effect of CL-316,243, a thermogenic beta 3-agonist, on energy balance and brown and white adipose tissues in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1994, 266, R1371–R1382. [Google Scholar] [CrossRef]
- Arbeeny, C.M.; Meyers, D.S.; Hillyer, D.E.; Bergquist, K.E. Metabolic alterations associated with the antidiabetic effect of beta 3-adrenergic receptor agonists in obese mice. Am. J. Physiol. Endocrinol. Metab. 1995, 268, E678–E684. [Google Scholar] [CrossRef]
- Hamann, A.; Flier, J.S.; Lowell, B.B. Decreased brown fat markedly enhances susceptibility to diet-induced obesity, diabetes, and hyperlipidemia. Endocrinology 1996, 137, 21–29. [Google Scholar] [CrossRef]
- Lowell, B.B.; S-Susulic, V.; Hamann, A.; Lawitts, J.A.; Himms-Hagen, J.; Boyer, B.B.; Kozak, L.P.; Flier, J.S. Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature 1993, 366, 740–742. [Google Scholar] [CrossRef]
- Viguerie-Bascands, N.; Bousquet-Mélou, A.; Galitzky, J.; Larrouy, D.; Ricquier, D.; Berlan, M.; Casteilla, L. Evidence for numerous brown adipocytes lacking functional beta 3-adrenoceptors in fat pads from nonhuman primates. J. Clin. Endocrinol. Metab. 1996, 81, 368–375. [Google Scholar]
- Vijgen, G.H.; Bouvy, N.D.; Teule, G.J.; Brans, B.; Schrauwen, P.; van Marken Lichtenbelt, W.D. Brown adipose tissue in morbidly obese subjects. PLoS ONE 2011, 6, e17247. [Google Scholar] [CrossRef]
- Chondronikola, M.; Volpi, E.; Børsheim, E.; Porter, C.; Annamalai, P.; Enerbäck, S.; Lidell, M.E.; Saraf, M.K.; Labbe, S.M.; Hurren, N.M. Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans. Diabetes 2014, 63, 4089–4099. [Google Scholar] [CrossRef]
- Astrup, A.; Bülow, J.; Christensen, N.; Madsen, J. Ephedrine-induced thermogenesis in man: No role for interscapular brown adipose tissue. Clin. Sci. 1984, 66, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Widen, E.; Lehto, M.; Kanninen, T.; Walston, J.; Shuldiner, A.R.; Groop, L.C. Association of a polymorphism in the β3-adrenergic–receptor gene with features of the insulin resistance syndrome in Finns. N. Engl. J. Med. 1995, 333, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Arner, P.; Hoffstedt, J. Adrenoceptor genes in human obesity. J. Intern. Med. 1999, 245, 667–672. [Google Scholar] [CrossRef]
- Malik, S.G.; Saraswati, M.R.; Suastika, K.; Trimarsanto, H.; Oktavianthi, S.; Sudoyo, H. Association of beta3-adrenergic receptor (ADRB3) Trp64Arg gene polymorphism with obesity and metabolic syndrome in the Balinese: A pilot study. BMC Res. Notes 2011, 4, 167. [Google Scholar] [CrossRef] [PubMed]
- Gagnon, J.; Mauriège, P.; Roy, S.; Sjöström, D.; Chagnon, Y.C.; Dionne, F.T.; Oppert, J.-M.; Pérusse, L.; Sjöström, L.; Bouchard, C. The Trp64Arg mutation of the beta3 adrenergic receptor gene has no effect on obesity phenotypes in the Québec Family Study and Swedish Obese Subjects cohorts. J. Clin. Investig. 1996, 98, 2086–2093. [Google Scholar] [CrossRef]
- Oksanen, L.; Mustajoki, P.; Kaprio, J.; Kainulainen, K.; Jänne, O.; Peltonen, L.; Kontula, K. Polymorphism of the beta 3-adrenergic receptor gene in morbid obesity. Int. J. Obes. Relat. Metab. Disord. J. Int. Assoc. Study Obes. 1996, 20, 1055–1061. [Google Scholar]
- Larson, C.J. Translational Pharmacology and Physiology of Brown Adipose Tissue in Human Disease and Treatment. Handb. Exp. Pharmacol. 2019, 251, 381–424. [Google Scholar] [CrossRef] [PubMed]
- Connacher, A.A.; Bennet, W.M.; Jung, R.T.; Rennie, M.J. Metabolic effects of three weeks administration of the beta-adrenoceptor agonist BRL 26830A. Int. J. Obes. Relat. Metab. Disord. 1992, 16, 685–694. [Google Scholar]
- Connacher, A.A.; Lakie, M.; Powers, N.; Elton, R.A.; Walsh, E.G.; Jung, R.T. Tremor and the anti-obesity drug BRL 26830A. Br. J. Clin. Pharmacol. 1990, 30, 613–615. [Google Scholar] [CrossRef] [PubMed]
- Wheeldon, N.M.; McDevitt, D.G.; Lipworth, B.J. Do beta 3-adrenoceptors mediate metabolic responses to isoprenaline. Q. J. Med. 1993, 86, 595–600. [Google Scholar]
- Cawthorne, M.A.; Sennitt, M.V.; Arch, J.R.; Smith, S.A. BRL 35135, a potent and selective atypical beta-adrenoceptor agonist. Am. J. Clin. Nutr. 1992, 55, 252s–257s. [Google Scholar] [CrossRef]
- Mitchell, T.H.; Ellis, R.D.; Smith, S.A.; Robb, G.; Cawthorne, M.A. Effects of BRL 35135, a beta-adrenoceptor agonist with novel selectivity, on glucose tolerance and insulin sensitivity in obese subjects. Int. J. Obes. 1989, 13, 757–766. [Google Scholar]
- Dow, R.L. β3-Adrenergic agonists: Potential therapeutics for obesity. Expert Opin. Investig. Drugs 1997, 6, 1811–1825. [Google Scholar] [CrossRef] [PubMed]
- Weyer, C.; Tataranni, P.A.; Snitker, S.; Danforth, E., Jr.; Ravussin, E. Increase in insulin action and fat oxidation after treatment with CL 316,243, a highly selective beta3-adrenoceptor agonist in humans. Diabetes 1998, 47, 1555–1561. [Google Scholar] [CrossRef] [PubMed]
- Muzzin, P.; Revelli, J.P.; Ricquier, D.; Meier, M.K.; Assimacopoulos-Jeannet, F.; Giacobino, J.P. The novel thermogenic β-adrenergic agonist Ro 16-8714 increases the interscapular brown-fat β-receptor-adenylate cyclase and the uncoupling-protein mRNA level in obese (fa/fa) Zucker rats. Biochem. J. 1989, 261, 721–724. [Google Scholar] [CrossRef]
- Henny, C.; Schutz, Y.; Buckert, A.; Meylan, M.; Jequier, E.; Felber, J.P. Thermogenic effect of the new beta-adrenoreceptor agonist Ro 16-8714 in healthy male volunteers. Int. J. Obes. 1987, 11, 473–483. [Google Scholar]
- Jéquier, E.; Munger, R.; Felber, J.P. Thermogenic effects of various beta-adrenoceptor agonists in humans: Their potential usefulness in the treatment of obesity. Am. J. Clin. Nutr. 1992, 55, 249s–251s. [Google Scholar] [CrossRef]
- Toubro, S.; Astrup, A.; Hardmann, M. A double-blind randomized 14 day trials of the effect of the β-3 agonist ICI D-7114 on 24 h energy expenditure and substract oxidation in adipose patients. Int. J. Obes. 1993, 17, S73. [Google Scholar]
- Kullmann, F.A.; Limberg, B.J.; Artim, D.E.; Shah, M.; Downs, T.R.; Contract, D.; Wos, J.; Rosenbaum, J.S.; De Groat, W.C. Effects of β3-adrenergic receptor activation on rat urinary bladder hyperactivity induced by ovariectomy. J. Pharmacol. Exp. Ther. 2009, 330, 704–717. [Google Scholar] [CrossRef] [PubMed]
- Redman, L.M.; de Jonge, L.; Fang, X.; Gamlin, B.; Recker, D.; Greenway, F.L.; Smith, S.R.; Ravussin, E. Lack of an effect of a novel β3-adrenoceptor agonist, TAK-677, on energy metabolism in obese individuals: A double-blind, placebo-controlled randomized study. J. Clin. Endocrinol. Metab. 2007, 92, 527–531. [Google Scholar] [CrossRef]
- van Baak, M.A.; Hul, G.B.J.; Toubro, S.; Astrup, A.; Gottesdiener, K.M.; DeSmet, M.; Saris, W.H.M. Acute effect of L-796568, a novel β3-adrenergic receptor agonist, on energy expenditure in obese men. Clin. Pharmacol. Ther. 2002, 71, 272–279. [Google Scholar] [CrossRef]
- Larsen, T.M.; Toubro, S.; van Baak, M.A.; Larson, P.; Saris, W.H.; Astrup, A. Effect of a 28-d treatment with L-796568, a novel β3-adrenergic receptor agonist, on energy expenditure and body composition in obese men. Am. J. Clin. Nutr. 2002, 76, 780–788. [Google Scholar] [CrossRef]
- Michel, M.C.; Korstanje, C. β3-Adrenoceptor agonists for overactive bladder syndrome: Role of translational pharmacology in a re-positioning drug development project. Pharmacol. Ther. 2016, 159, 66–82. [Google Scholar] [CrossRef] [PubMed]
- Chapple, C.R.; Cardozo, L.; Nitti, V.W.; Siddiqui, E.; Michel, M.C. Mirabegron in overactive bladder: A review of efficacy, safety, and tolerability. Neurourol. Urodyn. 2014, 33, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Kennelly, M.J.; Rhodes, T.; Girman, C.J.; Thomas, E.; Shortino, D.; Mudd, P.N., Jr. Efficacy of vibegron and mirabegron for overactive bladder: A systematic literature review and indirect treatment comparison. Adv. Ther. 2021, 38, 5452–5464. [Google Scholar] [CrossRef] [PubMed]
- Okeke, K.; Angers, S.; Bouvier, M.; Michel, M.C. Agonist-induced desensitisation of β3-adrenoceptors: Where, when and how? Br. J. Pharmacol. 2019, 176, 2539–2558. [Google Scholar] [CrossRef] [PubMed]
- Mo, W.; Michel, M.C.; Lee, X.W.; Kaumann, A.J.; Molenaar, P. The β3-adrenoceptor agonist mirabegron increases human atrial force through β1-adrenoceptors: An indirect mechanism? Br. J. Pharmacol. 2017, 174, 2706–2715. [Google Scholar] [CrossRef]
- Alexandre, E.C.; Kiguti, L.R.; Calmasini, F.B.; Silva, F.H.; da Silva, K.P.; Ferreira, R.; Ribeiro, C.A.; Monica, F.Z.; Pupo, A.S.; Antunes, E. Mirabegron relaxes urethral smooth muscle by a dual mechanism involving β3-adrenoceptor activation and α1-adrenoceptor blockade. Br. J. Pharmacol. 2016, 173, 415–428. [Google Scholar] [CrossRef]
- Huang, R.; Liu, Y.; Ciotkowska, A.; Tamalunas, A.; Waidelich, R.; Strittmatter, F.; Stief, C.G.; Hennenberg, M. Concentration-dependent alpha1-adrenoceptor antagonism and inhibition of neurogenic smooth muscle contraction by mirabegron in the human prostate. Front. Pharmacol. 2021, 12, 666047. [Google Scholar] [CrossRef]
- Michel, M.C. α1-Adrenoceptor activity of β-adrenoceptor ligands—An expected drug property with limited clinical relevance. Eur. J. Pharmacol. 2020, 889, 173632. [Google Scholar] [CrossRef]
- Perrone, M.G.; Scilimati, A. β3-Adrenoceptor ligand development history through patent review. Expert Opin. Ther. Pat. 2011, 21, 505–536. [Google Scholar] [CrossRef]
- Grazia Perrone, M.; Scilimati, A. β3-Adrenoceptor agonists and (antagonists as) inverse agonists: History, perspective, constitutive activity, and stereospecific binding. In Methods in Enzymology; Conn, P.M., Ed.; Academic Press: Cambridge, MA, USA, 2010; Volume 484, pp. 197–230. [Google Scholar]
β1-AR | β2-AR | β3-AR | |
---|---|---|---|
Ovary | 0.02 | 0.79 | 6.89 |
Gall bladder | 0.10 | 4.43 | 2.57 |
Placenta | 28.77 | 5.99 | 2.53 |
Urinary bladder | 0.29 | 6.63 | 1.54 |
Fallopian tube | 0.09 | 4.38 | 0.64 |
Colon | 0.75 | 2.07 | 0.54 |
Appendix | 0.38 | 2.34 | 0.41 |
Prostate | 4.01 | 9.64 | 0.29 |
Small intestine | 1.18 | 1.66 | 0.25 |
Endometrium | 0.07 | 2.20 | 0.22 |
Adipose tissue | 2.29 | 12.60 | 0.19 |
Duodenum | 0.73 | 1.54 | 0.19 |
Rectum | 0.87 | 2.63 | 0.16 |
Brain | 4.58 | 2.02 | 0.12 |
Myometrium | 0.13 | 3.62 | 0.12 |
Stomach | 0.76 | 6.68 | 0.11 |
Lung | 6.55 | 18.01 | 0.07 |
Lymph nodes | 0.11 | 3.08 | 0.07 |
Esophagus | 0.99 | 8.55 | 0.03 |
Skin | 0.16 | 5.60 | 0.02 |
Tonsil | 0.31 | 5.51 | 0.02 |
Heart | 11.57 | 4.92 | 0.02 |
Bone marrow | 0.32 | 7.82 | 0 |
Spleen | 0.90 | 6.90 | 0 |
Skeletal muscle | 0.06 | 4.19 | 0 |
Liver | 1.03 | 4.12 | 0 |
Salivary gland | 4.93 | 2.54 | 0 |
Adrenal | 0.16 | 1.48 | 0 |
Thyroid | 0.21 | 1.07 | 0 |
Kidney | 0.99 | 0.68 | 0 |
Pancreas | 0.65 | 0.58 | 0 |
Testis | 0.26 | 0.52 | 0 |
Rodent | Humans and Other Primates | |
---|---|---|
BAT presence in adults | abundant | sparse |
Insulin release by β3-AR agonists | +++ | - |
β3-AR expression in AT | +++ | + |
Glucose uptake in BAT | +++ | + |
Lipolysis/thermogenesis | +++ | + |
Lipolysis in WAT | β3-AR | β1-AR |
Weight loss | ++ | inconclusive |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dwaib, H.S.; Michel, M.C. Is the β3-Adrenoceptor a Valid Target for the Treatment of Obesity and/or Type 2 Diabetes? Biomolecules 2023, 13, 1714. https://doi.org/10.3390/biom13121714
Dwaib HS, Michel MC. Is the β3-Adrenoceptor a Valid Target for the Treatment of Obesity and/or Type 2 Diabetes? Biomolecules. 2023; 13(12):1714. https://doi.org/10.3390/biom13121714
Chicago/Turabian StyleDwaib, Haneen S., and Martin C. Michel. 2023. "Is the β3-Adrenoceptor a Valid Target for the Treatment of Obesity and/or Type 2 Diabetes?" Biomolecules 13, no. 12: 1714. https://doi.org/10.3390/biom13121714
APA StyleDwaib, H. S., & Michel, M. C. (2023). Is the β3-Adrenoceptor a Valid Target for the Treatment of Obesity and/or Type 2 Diabetes? Biomolecules, 13(12), 1714. https://doi.org/10.3390/biom13121714