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Abstract: The detection of Parkinson’s disease (PD) in its early stages is of great importance for its
treatment and management, but consensus is lacking on what information is necessary and what
models should be used to best predict PD risk. In our study, we first grouped PD-associated factors
based on their cost and accessibility, and then gradually incorporated them into risk predictions,
which were built using eight commonly used machine learning models to allow for comprehensive
assessment. Finally, the Shapley Additive Explanations (SHAP) method was used to investigate
the contributions of each factor. We found that models built with demographic variables, hospital
admission examinations, clinical assessment, and polygenic risk score achieved the best prediction
performance, and the inclusion of invasive biomarkers could not further enhance its accuracy. Among
the eight machine learning models considered, penalized logistic regression and XGBoost were the
most accurate algorithms for assessing PD risk, with penalized logistic regression achieving an area
under the curve of 0.94 and a Brier score of 0.08. Olfactory function and polygenic risk scores were
the most important predictors for PD risk. Our research has offered a practical framework for PD risk
assessment, where necessary information and efficient machine learning tools were highlighted.

Keywords: machine learning; Parkinson’s disease; polygenic risk scores; risk prediction model;
SHAP value

1. Introduction

Parkinson’s disease (PD) is currently the fastest-growing neurodegenerative disease
in the world [1], with its prevalence and socioeconomic burden second only to Alzheimer’s
disease [2]. It is primarily characterized by symptoms such as muscle stiffness, slow
movement, and resting tremors [3]. It typically occurs in the middle-aged and elderly
population, and its prevalence is gradually increasing as the population ages. It is estimated
that by 2040, the number of PD patients worldwide will reach 12 million [4]. The exact
causes of PD are still unknown, and the symptoms of PD appear relatively late in the
pathological process, by which time the diagnosis of PD has already been delayed [5].
Therefore, accurately predicting PD in its early stages is crucial for promoting health and
effective treatments.

PD, as a complex and heterogeneous multifactorial disease, is influenced by both
genetic and environmental factors. Demographic characteristics (e.g., age, gender, edu-
cation, race/ethnicity, and family history) have already been shown to have predictive
power in PD [6]. For example, compared with females, the risk of PD for males is increased
by 3.27 times [7]. Individuals with first or second-degree relatives having PD have a
4.2-fold increased risk of PD [8]. In addition, studies have shown that the prevalence of
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left-handedness is higher among PD patients, suggesting a connection between hand domi-
nance and the side of asymmetric disease manifestation [9]. Some of the routinely collected
measures from hospital admission have shown to be associated with PD. For example,
height is positively correlated with the risk of late-onset PD in males, while obesity indi-
cated by body mass index is associated with a higher mortality rate in male PD patients [10].
Timely treatment of orthostatic hypotension and supine hypertension can improve the
quality of life of Parkinson’s patients and prevent the occurrence of short-term and long-
term complications [11]. Clinical assessments, which evaluate olfactory function, cognitive
function, sleep quality, emotional symptoms, autonomic dysfunction, and language fluency,
are often used as tools for PD diagnosis and treatments. For example, the olfactory function,
typically assessed through the University of Pennsylvania Smell Inventory Test (UPSIT),
has the potential for early disease diagnosis [12]. The Montreal Cognitive Assessment
(MoCA) that assesses the risk of cognitive decline in PD can screen for dementia in PD
patients. Table 1 summarizes the commonly used tests and questionnaires for the clinical
assessment of PD. Biomarkers, such as cerebrospinal fluid (CSF) biomarkers and uric acid,
have provided additional information for PD risk. For example, CSF biomarkers including
alpha-synuclein (α-Syn), amyloid β1-42 (Aβ42), total tau (t-tau), and phosphorylated tau
(p-tau) are associated with cognitive decline and can serve as independent predictors of
cognitive impairment in PD [13]. Low levels of uric acid are significantly correlated with
motor impairments [14]. Genetic factors have also played a significant role in PD, although
less than 1% of cases are caused by a single gene mutation [2]. Indeed, research indicates
that the vast majority is sporadic, showcasing complex and polygenic genetic influences of
PD [15]. Genome-wide association study (GWAS) analysis has made substantial contribu-
tions in supporting the genetic aspect of PD etiology, and Blauwendraat et al. estimated that
the heritability of PD is around 27% [16]. The latest, largest GWAS detected 90 independent
PD-associated loci, which can explain 16% to 36% of the genetic risk [17]. Polygenic risk
scores (PRS) that are calculated as the weighted sum of genetic variants are commonly
used tools to quantify genetic susceptibility to a specific trait or disease [18], and recent
studies have shown that PRS that are constructed using genome-wide data have better
prediction power than those built with significant disease-associated loci. For example, our
latest study has obtained an AUC of 0.75 using genome-wide data [19], whereas the model
constructed by Nalls et al. that is built with known PD-related loci has only achieved an
AUC of 0.64 [17]. While demographic variables, hospital admission examinations, clinical
assessments, biomarkers, and PRS all provide important information for PD risk, it remains
unclear how to best integrate them to facilitate the early detection of PD.

Table 1. Summary of common clinical assessment methods and questionnaires.

Clinical Assessments Assessment Contents

Geriatric Depression Scale (GDS) Depressive symptoms
Questionnaire for Impulsive-Compulsive Disorders Impulsive compulsive disorders
State Trait Anxiety Test (STAI) State anxiety and trait anxiety level
Assessment of Autonomic Dysfunction (SCOPA) Autonomic nervous system dysfunction
Epworth Sleepiness Scale Score (ESS) Daytime sleepiness level
Categorical REM Sleep Behavior Disorder Questionnaire (RBDSQ) Categorical rapid eye movement sleep behavior disorder
University of Pennsylvania Smell Inventory Test (UPSIT) Olfactory function
The Letter Number Sequencing Test Working memory and attention span
Semantic Fluency (SF) Semantic memory and lexical output ability
Symbol Digit Modalities (SDMT) Information processing speed and cognitive function

Montreal Cognitive Assessment (MoCA) Attention, memory, executive function, and other
cognitive domains

Hopkins Verbal Learning Test Immediate Recall (HVLT) Immediate memory ability
Benton Judgment of Line Orientation Spatial perception and direction judgment ability

Machine learning (ML) including deep learning techniques have been widely used in
medical studies [20], including the investigation of PD [21,22]. For example, Shahid et al.
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used a deep neural network model to predict the progression of PD [21]. Harvey et al.
employed random forest, elastic net, support vector machine, and conditional inference
forest to predict cognitive outcomes in PD, where the impacts of clinical and biofluid
predictors are modeled [23]. Makarious et al. integrated transcriptomics, genetics, and
clinical data into GenoML, an automated ML open-source Python package that develops a
peri-diagnostic model to predict PD risk [24]. Park et al. incorporated variables such as
anthropometric data, laboratory data, lifestyle factors, and others into neural networks,
gradient boosting machines, and random forest algorithms, achieving a maximum AUC
of 0.779 [25]. Existing ML techniques can range from simple models (e.g., decision tree
and logistic regression) to much more complex models (e.g., deep neural network) and
their prediction performance can differ dramatically depending on the diseases of interest
and their associated predictors. Although these ML models help to explain PD risks,
it can be hard to determine the appropriate ML models and their associated predictors
when assessing PD risk, as existing PD prediction models rely on different ML algorithms
with quite different sets of predictors. There are few systematic comparisons among the
existing ML algorithms for PD risk prediction, where each ML algorithm is constructed
with the same amount of input information. There also lack investigations on the essential
information for accurate PD risk assessment for each ML method, where the cost and
accessibility of each predictor have been considered. Indeed, some of the PD risk factors
can be invasive (e.g., CSF biomarkers) and expensive (e.g., PET imaging), which can pose
challenges for their collection. Therefore, it is of great practical importance to evaluate
the prediction power of different ML models on PD risk assessment and determine the
essential information needed for each ML model.

To better facilitate the clinical evaluation of PD risk, our study aims to identify the most
appropriate ML algorithms as well as the suitable set of predictors while taking the cost
and accessibility of each predictor into account. Using data obtained from the Parkinson’s
Progression Markers Initiative (PPMI), we first grouped predictors based on their cost and
accessibility and evaluated their relative contributions to PD risks. We then systematically
evaluated the PD risk prediction accuracy for the commonly used ML algorithms that
range from the most classic methods to the latest developments. Finally, we explored
explanations for our best predictive models.

2. Materials and Methods
2.1. Baseline Data

PPMI (https://www.ppmi-info.org, accessed on 20 August 2023) [26] is an interna-
tional, multicenter, prospective cohort study aimed at discovering and validating new
biomarkers for the progression of PD. PPMI employs advanced imaging techniques and
clinical monitoring to comprehensively assess PD patients, prodromal individuals, and
healthy controls. Its primary objective is to identify biomarkers of disease progression, with
the ultimate goal of expediting therapeutic trials to reduce the progression of disability in
PD. This comprehensive dataset provides valuable insights into various aspects of PD and
is instrumental for research and analysis in the field. The original study obtained approval
from the Institutional Review Boards at each trial site institution, and participants were
provided written informed consent.

The PPMI dataset was downloaded on 20 August 2023. We considered thirty-five PD-
related variables and categorized them into four groups based on their accessibility, in-
cluding demographic variables (S1 in Table 2), hospital admission examinations (S2 in
Table 2), clinical assessments (S3 in Table 2), and biomarkers (S4 in Table 2). Participants
with excessive missing data (>15% for each variable) were excluded. A total of 564 PD
patients and 183 controls were included in our final analyses. For the remaining missing
data, we followed the same procedure as Harvey et al. [21] and imputed the continuous
and categorical variables using the median and mode, respectively.

https://www.ppmi-info.org
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Table 2. Summary statistics of demographics and selected clinical measures.

Cases
(n = 564)

Controls
(n = 183)

Demographic characteristics (S1)

Age, years 62.21 (9.77) 61.53 (10.75)
Sex a 335 (59.40%) 118 (64.48%)
Education, years 15.38 (3.55) 16.07 (2.84)
PD family history a 209 (37.06%) 9 (4.92%)
Race a

White 535 (94.86%) 171 (93.44%)
Black 3 (0.53%) 8 (4.37%)
Asian 8 (1.42%) 1 (0.55%)
Ethnicity 31 (5.50%) 2 (1.09%)
Handedness a

Left 56 (9.93%) 23 (12.57%)
Right 493 (87.41%) 147 (80.33%)

Hospital admission examinations (S2)

Height 171.13 (9.83) 171.75 (10.23)
Weight 79.24 (16.30) 79.99 (15.66)
Systolic blood pressure (SBP) 130.56 (18.12) 132.78 (16.86)
Diastolic blood pressure (DBP) 77.80 (10.77) 77.74 (10.70)
Heart rate (HRSUP) 68.27 (10.89) 65.64 (9.45)
Temperature 36.49 (0.44) 36.51 (0.43)
Neurological assessment a

Sensory exams 54 (9.57%) 14 (7.65%)
Coordination assessments 50 (8.87%) 4 (2.19%)
Reflex evaluations 232 (41.13%) 76 (41.53%)
Motor function assessments 20 (3.55%) 1 (0.55%)

Clinical assessments (S3)

Geriatric Depression Scale (GDS) 5.45 (1.60) 5.20 (1.38)
Questionnaire for Impulsive-Compulsive Disorders 0.48 (1.03) 0.30 (0.73)
State Trait Anxiety Test (STAI) 92.87 (8.75) 94.15 (6.94)
Assessment of Autonomic Dysfunction (SCOPA) 15.16 (10.58) 9.14 (7.42)
Epworth Sleepiness Scale Score (ESS) 6.05 (3.79) 5.55 (3.30)
Categorical REM Sleep Behavior Disorder
Questionnaire (RBDSQ) 3.43 (2.33) 1.79 (1.78)

University of Pennsylvania Smell Inventory
Test (UPSIT) 22.20 (8.60) 33.92 (4.94)

The Letter Number Sequencing Test (LNS) 10.34 (2.86) 10.85 (2.61)
Semantic Fluency (SF) 48.70 (12.34) 52.03 (11.43)

Symbol Digit Modalities (SDMT) 40.24 (10.47) 46.33 (10.32)
Montreal Cognitive Assessment (MoCA) 26.74 (2.86) 28.21 (1.11)
Hopkins Verbal Learning Test Immediate Recall (HVLT) 24.27 (5.11) 26.03 (4.49)
Benton Judgment of Line Orientation 12.42 (2.52) 13.05 (2.02)

Biological variables (S4)

Alpha-synuclein (α-Syn) 1553.98 (595.64) 1748.63 (719.36)
Amyloid β1-42 (Aβ42) 921.29 (359.77) 1053.66 (481.70)
Total tau (t-tau) 173.15 (56.95) 196.99 (76.47)
Phosphorylated tau (p-tau) 14.66 (5.27) 17.41 (8.23)
Total serum uric acid 312.43 (76.46) 324.36 (77.98)

a For sex, PD family history, race, handedness, and neurological assessment, the number and its percentage are
reported. For all others, mean (standard deviation) is reported.

2.2. Genomic Data, Quality Control, and PRS Construction

We downloaded the whole-genome sequencing data (Project 118; July 2018 ver-
sion) from the Laboratory of NeuroImaging Image Data Archive PPMI project website
(https://ida.loni.usc.edu/, accessed on 20 August 2023). DNA samples were prepared

https://ida.loni.usc.edu/
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using the Illumina HiSeq X Ten Sequencer (Illumina, San Diego, CA, USA). In our study,
autosomal single nucleotide polymorphisms (SNPs) were extracted, and we used the UCSC
genome browser’s liftover tool to convert genome coordinates from hg38 to hg19. We
excluded individuals with a missing rate larger than 10%, and a total of 747 participants
were retained. For the genetic data, the following exclusion criteria were applied: (1) ge-
netic variants with missingness > 0.1; (2) genetic variants with a minor allele frequency
(MAF) < 5%; (3) p-value < 1 × 10−10 in cases and < 1 × 10−6 in controls for Hardy–Weinberg
equilibrium [27]; and (4) unclear, mismatched, and duplicate SNPs. For the remaining
SNPs, we further performed imputation using PLINK v1.9 with its default settings.

The summary statistics for 7.8 million SNPs, one of the largest for PD to date, included
samples from Nalls et al. [28], 23andMe Web-Based PD study [29], International Parkinson’s
Disease Genomics Consortium, and 13 additional datasets [17]. They are derived based on a
total of 37,700 PD cases, 18,600 proxy-cases, and 1.4 million controls. After excluding SNPs
with a MAF less than 0.01 and further matching with the PPMI genetic data, 5,466,717 SNPs
were kept for the PRS constructions.

We built PD-PRS using the SDPR method, a flexible and robust Bayesian linear mixed
model that can accommodate complex diseases and efficiently model effect sizes of various
distributions [30]. We did not consider the other methods (e.g., clumping and thresholding
(C+T) [31] and LDpred [32]) mainly because the robustness and predictive power of PRS de-
pend on whether the modeling assumptions align with the underlying disease models and
SDPR has shown to have better predictive power across a range of complex diseases [30],
including PD [19]. We have provided the technical details of the SDPR method in the Sup-
plementary Methods. In our analyses, we set the number of Markov Chain Monte Carlo
iterations for SDPR to be 500 and the other parameters were kept at their default settings.

2.3. The Prediction of PD Risk

The goal of our study is to identify the most appropriate ML algorithms as well as the
suitable set of predictors that can accurately predict the risk of PD, while taking into account
the accessibility and cost of obtaining the information on the relevant variables. Figure 1
provides an overview of the research. We considered eight widely used ML methods to
predict PD risk. These methods include decision tree, K nearest neighbors, naïve Bayes,
neural network, penalized logistic regression, random forest, support vector machine
(SVM), and Extreme Gradient Boosting (XGBoost). Supplementary Table S1 summarizes
the corresponding settings for each method.

To take the cost and accessibility into consideration, we designed five modeling
strategies for each ML method (Figure 1), where the difficulties of obtaining the relevant
predictors are increasing either due to the cost or the procedure itself. We started by
considering the scenario where only routinely collected demographic variables are modeled
(i.e., scenario I). We then gradually incorporated hospital admission examinations (scenario
II), PD-relevant clinical assessments that are relatively easy to obtain (scenario III), polygenic
risk scores that are built from relatively expensive genotype data (scenario IV), and invasive
biomarkers (scenario V) into the model built from the previous scenario. Scenario V has
the maximum number of variables, and it modeled the impact from all 35 PD-relevant
variables and the PRS.

For each ML algorithm and modeling strategy, we utilized the idea of cross-validation.
We randomly sampled 70% of the data to train the model and used the remaining 30% to
validate the results. To reduce the chance finding, we repeated this process 20 times. We
assessed the classification accuracy using the testing set, where the true positive rate (TPR),
true negative rate (TNR), area under the curve (AUC), Brier score, Matthews correlation
coefficient (MCC), and accuracy [33] are reported.

Finally, we used SHAP values to provide an intuitive explanation for the selected
variables, with SHAP values calculated as the mean based on results from 20 random
samples. SHAP analysis, proposed by Lundberg and Lee, is frequently utilized for inter-
preting black-box machine learning models [34]. This method evaluates the contribution of
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each feature to model predictions by considering their impact across various combinations,
utilizing Shapley values from coalitional game theory, transforming the feature space of
predictive models into a clinical variable space to quantify their impact on the model output.
In our research, we used kernel SHAP that employs weighted local linear regression to
estimate SHAP values and visualizes the results. We utilized the SHAP variable importance
plot to demonstrate the influence of each modeled variables on predictions and employed
the SHAP summary plot, a beeswarm plot, to obtain information regarding the magnitude
and directionality of contributions from each variable in predicting PD. SHAP analysis was
conducted using the Python SHAP library (0.40.0).
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3. Results

A total of 564 patients and 183 controls were included in our study. Baseline char-
acteristics, including demographic variables, hospital admission examinations, clinical
assessments, and biomarkers are summarized in Table 2.

3.1. The Impact of Different Modeling Strategies

Figure 2 presents the prediction performance derived from the cross-validation testing
samples across five different scenarios, where we progressively increased the number of
predictors based on their ease of acquisition. We observed that, as the groups of predictors
increased, the predictive performance of all models generally improved, especially for
scenarios III, IV, and V. Comparing scenarios I and II, we found that the further inclusion
of variables obtained at hospital admission examinations into the model that was built
with demographic variables did not significantly improve the predictive performance
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(p-value > 0.05 for the comparison between AUCs based on the Delong test [35]). Even
though some of the hospital admission variables (e.g., height, weight, and blood pressure)
have shown to be PD-related [10], they did not offer additional prediction power across
all the ML models considered. Indeed, we noticed that for some ML models (i.e., decision
tree, naïve Bayes, and random forest), the inclusion of these variables could result in a
significant worse performance with regards to accuracy and Brier score.
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Figure 2. The comparisons of accuracy, area under the curve (AUC), Brier score, and Matthews correla-
tion coefficient (MCC) among different modeling strategies. ML methods include decision tree (DT), K
nearest neighbors (KNN), naïve Bayes (NB), neural network (NN), penalized logistic regression (PLR),
random forest (RF), support vector machine (SVM), and Extreme Gradient Boosting (XGBoost). The
scenarios assessed were as follows: Scenario I: demographic, Scenario II: demographic + hospital ad-
mission examinations, Scenario III: demographic + hospital admission examinations + clinical assess-
ments, Scenario IV: demographic + hospital admission examinations + clinical assessments + PRS,
Scenario V: demographic + hospital admission examinations + clinical assessments + PRS + biomarkers.

It is worth noting that the inclusion of clinical assessments into the risk prediction
models significantly boosted the prediction accuracy regardless of the ML methods. As
expected, incorporating clinical assessments (scenario III) into the predictive models built
from scenario II can significantly improve the prediction accuracy for all ML models, es-
pecially for SVM with an increase of 54.50%. Under scenario III, both penalized logistic
regression and XGBoost can achieve AUCs of above 0.9. The addition of PRS (scenario
IV) into the model that has demographic variables, hospital admission examinations, and
clinical assessments (i.e., scenario III) also resulted in an improvement in the prediction per-
formance for PD. We noticed that in scenario IV, the AUC for penalized logistic regression
and XGBoost could exceed 0.92, which is significantly higher than that from scenario III
(p-value < 0.05 based on the Delong test). Additionally, the inclusion of invasive biomarkers
into the model built with demographic variables, admission examinations, clinical assess-
ments, and PRS (i.e., scenario IV) further improved predictive performance. In comparison
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to scenario IV and scenario V, the AUC values for penalized logistic regression, random
forest, and naïve Bayes increased by only 0.23%, 0.27%, and 0.38%, respectively. However,
the AUC for the other methods did not improve and, in some cases, even showed a slight
decrease. Other measures also exhibited a similar trend that was similar to AUC.

In summary, the modeling strategy (i.e., scenario IV) that included demographic
variables, hospital admission examinations, clinical assessments, and PRS represented the
best modeling approach for PD. On one hand, the AUC, accuracy, Brier score, and MCC in
scenario IV are all not significantly different from scenario V that has invasive biomarkers
further incorporated (p-values > 0.05 based on the Mann–Whitney U and Delong tests),
indicating that these biomarkers cannot offer additional power for PD risk prediction. On
the other hand, the AUC, accuracy, Brier score, and MCC in scenario IV are all significantly
better than scenario III where PRS is excluded (p-value < 0.05), suggesting that genetic
factors help to further improve prediction accuracy. Therefore, we believe that scenario IV,
which combines demographic variables, admission examinations, clinical assessment scales,
and PRS, represents the best model for predicting PD, yielding superior results in terms of
AUC and all other metrics without requesting invasive and time-consuming measurements.

3.2. The Impact of Different Machine Learning Methods

We mainly focused on the comparisons among different ML methods under the best
performed scenario that included demographic variables, hospital admission examinations,
clinical assessments, and PRS in the model (i.e., scenario IV). Figure 3 shows the accuracy,
AUC, Brier score, and MCC among the eight ML methods under this scenario. As expected,
different ML methods can have very different predictive powers. Using accuracy as the
criterion, penalized logistic regression, random forest, XGBoost, and SVM perform the
best, followed by decision tree and neural network, with K nearest neighbors and naïve
Bayes performing the worst. Using AUC as the criterion, penalized logistic regression
and XGBoost are among the top-tier, followed by neural network, SVM, naïve Bayes,
random forest, with decision tree, and K nearest neighbors being the worst. For Brier
score, penalized logistic regression and XGBoost are among the best, followed by random
forest, SVM, and neural network, with decision tree, K nearest neighbors, and naïve Bayes
being the worst. Similar trends hold for MCC, except that penalized logistic regression,
random forest, SVM, and XGBoost perform similarly. Taking all four criteria together, the
PD risk prediction models built with penalized logistic regression and XGBoost are the
most accurate and robust, and the AUCs for penalized logistic regression and XGBoost
achieved 0.94 and 0.92, respectively.

Supplementary Figure S1 summarizes the prediction performance for the ML methods
under other scenarios (i.e., scenarios I to III and scenario V), and Table 3 provides the
corresponding average prediction performance across all the scenarios. As we progres-
sively moved from scenario I to scenario V, the prediction performance for all machine
learning methods generally increased. We noticed that models incorporating embedded
variable selection techniques generally exhibit better feature relevance and model explain-
ability. This leads to an improvement in model performance since the model can focus
on the most relevant variables, reducing noise and the risk of overfitting. On the other
hand, models without embedded variable selection techniques often have a larger feature
space, encompassing more variables. While this approach can capture a broader range of
information, it frequently results in increased complexity, potentially leading to overfitting
and a decrease in model explainability. Consequently, these models sometimes struggle to
generalize well to new data or make accurate predictions. Notably, under all the scenarios
considered, the simple penalized logistic regression has consistently showed the best or
close to the best results. While tree-based methods and neural networks are particularly
powerful in capturing non-linear effects, our study suggests that for PD risk prediction,
penalized logistic regression remains the most effective approach. This may be because
it can effectively handle feature selection and classification tasks specific to the problem
while maintaining model simplicity.
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Figure 3. The comparisons of accuracy, area under the curve (AUC), Brier score, and Matthews
correlation coefficient (MCC) among different ML methods in scenario IV (demographic + hospital
admission examinations + clinical assessments + PRS). ML methods include decision tree (DT), K
nearest neighbors (KNN), naïve Bayes (NB), neural network (NN), penalized logistic regression (PLR),
random forest (RF), support vector machine (SVM), and Extreme Gradient Boosting (XGBoost).

3.3. Explainability and the Importance of Predictors

Regardless of the ML methods, the models that were built with demographic vari-
ables, hospital admission examinations, clinical assessments, and PRS exhibited the best
predictive performance for PD. Therefore, we focused on the explainability of models
constructed with all predictive factors from scenario IV. Figure 4 displays the top 10 factors
in descending order of their SHAP values that reflect the impact on prediction performance.
The importance of each predictor is generally consistent across different ML methods,
with UPSIT consistently ranked the first and PRS ranked among the top three. This is
consistent with the findings from Figure 2, where we gradually increased the predictors
according to their accessibility. Incorporating clinical assessments that include UPSIT into
prediction models significantly improves the prediction accuracy (scenario III vs. II) and
further adding PRS into scenario IV also enhances the prediction performance. In addition
to UPSIT and PRS, MoCA, the Categorical REM Sleep Behavior Disorder Questionnaire
(RBDSQ), and Assessment of Autonomic Dysfunction (SCOPA) are among the top 10 im-
portant predictive factors for all models. Family history, State Trait Anxiety Test, age,
blood pressure, and others also hold significant predictive value. Furthermore, the SHAP
summary plot (Figure 5) further summarizes the direction of the relationships based on the
results of a single random sampling. We focused on examining the SHAP analysis results
for penalized logistic regression and XGBoost. We found that these two methods have a
high degree of overlap in SHAP analysis. PRS, RBDSQ, SCOPA, family history, and heart
rate have high SHAP values and are positively associated with higher PD risk, while lower
values of UPSIT, MoCA, and systolic blood pressure increase the risk of PD.
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Table 3. The average predictive performance of each machine learning model based on 20 random
samples under different modeling strategies.

Algorithms TPR TNR MCC Brier
Score Accuracy AUC

Scenario I: Demographic variables

DT 93.616% 13.052% 0.102 0.255 0.745 0.534
SVM 98.155% 6.103% 0.118 0.237 0.763 0.523
NB 97.101% 11.925% 0.177 0.231 0.769 0.546

KNN 84.187% 29.484% 0.149 0.288 0.712 0.570
RF 97.452% 9.014% 0.143 0.236 0.764 0.533

PLR 98.477% 7.887% 0.156 0.165 0.769 0.698
NN 99.561% 1.690% 0.034 0.167 0.763 0.684

XGBoost 81.933% 30.141% 0.126 0.233 0.696 0.642

Scenario II: Demographic variables + Hospital admission examinations

DT 83.748% 25.540% 0.106 0.301 0.699 0.549
SVM 98.653% 4.883% 0.105 0.236 0.764 0.521
NB 89.898% 20.751% 0.140 0.265 0.735 0.554

KNN 82.489% 28.920% 0.123 0.302 0.698 0.558
RF 95.959% 9.107% 0.098 0.247 0.753 0.525

PLR 98.184% 7.418% 0.145 0.161 0.727 0.728
NN 96.310% 7.512% 0.081 0.176 0.752 0.696

XGBoost 86.296% 25.352% 0.133 0.220 0.718 0.660

Scenario III: Demographic variables + Hospital admission examinations + Clinical assessments

DT 92.123% 65.915% 0.602 0.141 0.859 0.791
SVM 91.127% 70.423% 0.619 0.138 0.862 0.811
NB 82.460% 77.183% 0.546 0.188 0.812 0.799

KNN 86.120% 54.366% 0.407 0.214 0.786 0.704
RF 95.520% 65.634% 0.662 0.116 0.884 0.799

PLR 92.123% 72.582% 0.652 0.092 0.875 0.920
NN 90.395% 64.131% 0.560 0.125 0.842 0.862

XGBoost 93.148% 69.014% 0.640 0.100 0.874 0.906

Scenario IV: Demographic variables + Hospital admission examinations + Clinical
assessments + PRS

DT 92.533% 65.446% 0.605 0.139 0.861 0.790
SVM 93.324% 73.615% 0.682 0.114 0.886 0.839
NB 83.660% 78.967% 0.575 0.175 0.825 0.813

KNN 87.145% 58.779% 0.460 0.196 0.804 0.731
RF 96.076% 67.042% 0.686 0.108 0.892 0.812

PLR 93.704% 73.333% 0.687 0.082 0.889 0.937
NN 91.362% 68.920% 0.610 0.112 0.860 0.881

XGBoost 94.348% 72.864% 0.693 0.089 0.892 0.919

Scenario V: Demographic variables + Hospital admission examinations + Clinical
assessments + PRS + Biological variables

DT 92.006% 64.789% 0.675 0.145 0.855 0.810
SVM 93.763% 72.864% 0.717 0.112 0.888 0.833
NB 86.413% 76.526% 0.640 0.159 0.841 0.830

KNN 87.906% 55.587% 0.477 0.198 0.802 0.718
RF 96.310% 67.700% 0.740 0.105 0.895 0.820

PLR 94.085% 73.897% 0.719 0.079 0.893 0.939
NN 90.970% 68.809% 0.547 0.117 0.857 0.873

XGBoost 94.348% 72.864% 0.768 0.088 0.892 0.914
Decision tree (DT), K nearest neighbors (KNN), naïve Bayes (NB), neural network (NN), penalized logistic
regression (PLR), random forest (RF), support vector machine (SVM), and Extreme Gradient Boosting (XGBoost);
true positive rate (TPR), true negative rate (TNR), Matthews correlation coefficient (MCC), area under the
curve (AUC).



Biomolecules 2023, 13, 1761 11 of 18Biomolecules 2023, 13, x FOR PEER REVIEW 12 of 19 
 

 
Figure 4. The importance ranking of the top 10 variables based on different ML methods according 
to the mean (|SHAP value|). The plot displays the top 10 variables in descending order based on 
the SHAP values, indicating their importance in the development of the final predictive model. ML 
methods include: (A) decision tree, (B) K nearest neighbors, (C) naïve Bayes, (D) neural network, 
(E) penalized logistic regression, (F) random forest, (G) support vector machine, (H) Extreme Gra-
dient Boosting. 

Figure 4. The importance ranking of the top 10 variables based on different ML methods according
to the mean (|SHAP value|). The plot displays the top 10 variables in descending order based
on the SHAP values, indicating their importance in the development of the final predictive model.
ML methods include: (A) decision tree, (B) K nearest neighbors, (C) naïve Bayes, (D) neural net-
work, (E) penalized logistic regression, (F) random forest, (G) support vector machine, (H) Extreme
Gradient Boosting.



Biomolecules 2023, 13, 1761 12 of 18Biomolecules 2023, 13, x FOR PEER REVIEW 13 of 19 
 

 
Figure 5. The SHAP summary plot for the top 10 important variables contributing to different ML 
methods in the PPMI dataset based on a random sample. ML methods include: (A) decision tree, 
(B) K nearest neighbors, (C) naïve Bayes, (D) neural network, (E) penalized logistic regression, (F) 
random forest, (G) support vector machine, (H) Extreme Gradient Boosting. Feature rankings (y-
axis) indicate the importance to the predictive model, while the x-axis represents the SHAP values 
of the features, reflecting their positive or negative associations. The horizontal position indicates 
whether the impact of the value is positively or negatively associated with higher or lower predic-
tions, where red dots represent high-risk values, and blue dots represent low-risk values. 

  

Figure 5. The SHAP summary plot for the top 10 important variables contributing to different ML
methods in the PPMI dataset based on a random sample. ML methods include: (A) decision tree, (B) K
nearest neighbors, (C) naïve Bayes, (D) neural network, (E) penalized logistic regression, (F) random
forest, (G) support vector machine, (H) Extreme Gradient Boosting. Feature rankings (y-axis) indicate
the importance to the predictive model, while the x-axis represents the SHAP values of the features,
reflecting their positive or negative associations. The horizontal position indicates whether the impact
of the value is positively or negatively associated with higher or lower predictions, where red dots
represent high-risk values, and blue dots represent low-risk values.
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4. Discussion

PD is a complex neurological disorder with an as yet incompletely understood etiology,
and it currently lacks effective treatments [36]. Studies have indicated that identifying PD
in its prodromal stage and implementing protective interventions can be highly beneficial
for PD patients [37]. Therefore, the development of an accurate and cost-effective model
to aid in the early diagnosis of PD is of paramount importance. In our study, we aimed at
constructing PD risk prediction models with cost-effective and non-penetrance measures.
We systematically investigated the prediction performance of eight ML methods, including
decision tree, K nearest neighbors, naïve Bayes, neural network, penalized logistic regres-
sion, random forest, SVM, and XGBoost, under a variety of modeling strategies. We found
that prediction models built with demographic characteristics, hospital admission exami-
nations, clinical assessments, and genetic data can achieve similar prediction performance
as those with invasive CSF biomarkers further incorporated. We also found that penalized
logistic regression and XGBoost are the most accurate PD risk prediction methods, with
AUCs reaching 0.94 and 0.92, respectively. This indicates that PD risk can be accurately
assessed with cost-effective and practical measures. Our SHAP analysis further suggests
that UPSIT and PRS are among the top three important predictors for PD. The effective
tool UPSIT for detecting olfactory dysfunction in PD and the PRS that aggregates a large
number of genetic variations to assess the genetic risk of PD are of significant importance
for the early identification of PD.

Our research has found that integrating multidimensional data significantly improves
the performance of PD prediction. In our study, we have grouped predictors based on
their cost and accessibility. Although demographic characteristics and general hospital
admission measures are associated with PD [38], they are not particularly powerful for
prediction (Figure 2). As expected, PD-related clinical assessments are the most relevant for
PD risk predictors. As shown in Figure 4, UPSIT, which measures olfactory dysfunction,
offers the most valuable information for PD prediction, and this is consistent with the
existing studies [7]. UPSIT, as a non-invasive olfactory testing tool, indicates a higher risk
of PD when the score is lower, reflecting the presence of olfactory problems in individuals.
Studies have shown that genetic factors contribute to PD risk with an estimated heritability
of 27% [16]. Our study is consistent with the findings of Makarious et al. [24]. By further
adding genetic factors into the prediction models built with demographic variables, hospi-
tal admission examinations, and clinical assessments, the AUC significantly improved (e.g.,
for penalized logistic regression, increased by 2.15%). Moreover, compared to scenario III,
the model’s performance was substantially enhanced with the addition of PRS, indicating
that ignoring the contributions of genetic factors can lead to reduced prediction perfor-
mance. For example, Chairta et al. combined a PRS composed of twelve SNPs with seven
environmental factors to predict PD, emphasizing the potential of using genetic factors for
predicting PD risk [39]. It is worth noting that with PRS incorporated (i.e., scenario IV), the
prediction models built by penalized logistic regression and XGBoost methods can be quite
accurate with penalized logistic regression having an AUC of 0.94 and Brier score of 0.08.
Interestingly, we noticed that further adding invasive CSF biomarkers into this prediction
model did not significantly improve prediction performance (scenario V vs. IV). Although
CSF biomarkers, such as α-Syn, Aβ42, t-tau, and p-tau, are demonstrated to be informative
for PD risk [40], they generally do not offer additional predictive power when sufficient
information (i.e., clinical assessments and PRS) are already included in the model. Indeed,
the prediction models built from this study exceed those where invasive or expensive
measures are included. For example, Lewitt et al. incorporated compounds from the CSF
into an SVM to predict PD, but achieved only an AUC of 0.79 [41]. Trezzi et al. collected
CSF through lumbar puncture and applied a non-targeted metabolomics approach based
on gas chromatography coupled to mass spectrometry to analyze the metabolic changes in
PD patients, achieving an AUC of 0.833 [42]. The use of expensive and invasive measure
can limit the practical applications of the models [43], especially for PD early diagnosis.
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Our study offers a more convenient and cost-effective means for evaluating PD risk without
sacrificing the robustness and accuracy of the assessment.

Machine learning techniques, including deep learning models, have advanced rapidly
over the past decades, and they have greatly facilitated disease risk prediction and decision
making in medicine [44]. However, there is no ML method that works universally across a
range of diseases, and it remains unclear which ML method suits PD risk prediction best.
While simple models (e.g., logistic regression) are usually easy to implement and interpret,
they are not particularly powerful in capturing complex relationships. On the contrary,
complex models (e.g., neural network) are designed for modeling predictive effects of
various types, but their robustness as well as explainability are usually compromised.
In our study, we systematically compared the prediction performance of eight widely
used ML methods for PD risk prediction. We found that the simple penalized logistic
regression exhibited the best or close to the best prediction performance. This is consistent
with previous studies, which indicated that more complex algorithms may not necessarily
outperform logistic regression in clinical practice [45]. We also found that XGBoost, based
on gradient boosting decision trees and employing second-order Taylor expansion for loss
function computation, exhibited the second-best prediction performance. Surprisingly,
unlike the field of natural language process and imaging recognition where neural network
models have achieved state-of-the-art performance [46], the deep neural network models
usually perform worse than the classic ML methods (e.g., SVM) for PD risk prediction.
This could be attributed to the limited sample size in our study or the over-parameterized
nature of neural networks that results in overfitting. Indeed, the determination of the best
network architecture and the corresponding parameters (e.g., the batch size, the number of
hidden layers, and learning rate) can be a challenging task [47]. It is worth emphasizing
that in the context of medical diagnosis or disease prediction, reducing the number of
false negatives can be crucial, as missing potential cases can lead to delayed intervention
and treatments. For the modeling strategy IV that we recommend, the penalized logistic
regression model has a false positive rate (FPR) and false negative rate (FNR) of 26.667%
and 6.296%, respectively, with a cutoff value determined using the highest Youden Index
being 0.726. On the other hand, the XGBoost model has a FPR and FNR of 27.136% and
5.652%, respectively, with a cutoff value of 0.896 (Table 3). This indicates that the XGBoost
model misses fewer true positives. However, the penalized logistic regression model is
more effective at preventing false positives. As shown in Supplementary Figure S2, we
have plotted the ROC curves for penalized logistic regression and XGBoost based on the
best results from 20 random samples. Early treatment can significantly improve the quality
of life for patients, so reducing the FNR could be more important. Under such a scenario,
the XGBoost method could be more suitable than the penalized logistic regression.

In this study, variable importance analysis, as shown in Figure 4, indicates that UPSIT,
PRS, MoCA, RBDSQ, and SCOPA are the most critical variables influencing the model’s
prediction of PD. Following them in importance are family history, State-Trait Anxiety Test,
age, and blood pressure. Among the demographic variables, age and family history are also
significant factors contributing to the occurrence of PD. Family history has consistently been
regarded as an independent risk factor for PD [48]. In the hospital admission examinations,
supine heart rate is a risk factor for PD, while systolic blood pressure is a protective
factor. A recent study indicated that with the progression of the disease, PD patients
experience a gradual decrease in systolic blood pressure [38]. A cohort study suggested
that men with a resting heart rate > 100 beats per minute have a 1.47 times higher risk
of developing PD compared to men with a heart rate of 60–100 beats per minute [49],
consistent with our findings. In clinical assessments, higher RBDSQ and SCOPA scores,
and lower UPSIT and MoCA scores were associated with a higher PD risk, aligning with
the fact that sleep behavior disorders, autonomic dysfunction, olfactory dysfunction, and
cognitive decline can increase the risk of developing PD [23]. Furthermore, studies have
shown that individuals with the highest 10% of PRS have a 3.37-fold increased risk of
developing PD compared to those with the lowest decile [50]. This consistent result
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highlights the significant role of genetic factors in predicting PD. Our SHAP analysis
underscores the importance of predictive factors in our model for PD prediction, enhancing
the explainability of ML algorithms.

Our study has some limitations. Firstly, due to the limitations in the availability
of PD data, our research results are solely based on the PPMI dataset, lacking external
validation. Secondly, a major issue with PRS is portability across different ethnicities [51].
The predictive performance of PRS depends on GWAS, and our summary statistics are
obtained from individuals mainly of European ancestry. When applied to individuals
of different ethnicities, the predictive performance may be affected. Future studies are
needed to evaluate our model when applied to other ethnicities, and model fine-tuning
should be conducted when summary statistics from diverse ethnicities becomes available.
While SHAP serves as a valuable tool for model explanation, it does have limitations [52].
Kernel SHAP uses Monte Carlo algorithms to estimate Shapley values and thus can impose
a significant computational cost. Furthermore, as Kernel SHAP tries to utilize linear
regression to approximate the relationship between input features and model output, it
may not fully capture the complexity of the model or the non-linear relationships between
features, thereby limiting a deeper understanding of the model. It is worth noting that
the order of SHAP’s input could influence its results, and early involvement of domain
knowledge is usually recommended and can have major benefits. Further research is
needed in the field of explainable models to explore other algorithms for predicting the risk
of PD. Nevertheless, our study has provided an efficient framework for PD risk prediction
and shed light on the importance of each predictor.

In conclusion, our research has established a practical framework for constructing
accurate risk prediction models for PD, where the penalized logistic regression model built
on demographics, clinical assessments, and PRS achieved an AUC of 0.94. Our study found
that UPSIT and PRS are regarded as the most important predictors for PD consistently. We
believe that our study can offer a viable and promising non-invasive approach to PD risk
prediction, thereby aiding in early, precise diagnosis and treatment for PD patients.
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